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Abstract

This dissertation is about the meaning and distribution of the modifiers almost and barely. We
advocate for an analysis in which they are, across their uses, modifiers of quantifiers, encoding
set subtraction; barely, but not almost, additionally contributes negation. Both modifiers remove
elements from the arguments of quantifiers that they modify, and require exhaustification for
their licensing as modifiers. We start with subtractive modified quantificational determiners, like
almost every and barely any. We then push this analysis further, showing it very naturally ex-
tends to degree constructions like comparatives and equatives, and captures the facts better other
options. This extension also provides an argument for the idea that all natural language scales are
dense. Numeral constructions like almost one hundred and barely one hundred appear to compli-
cate the idea that almost and barely are in complementary distribution, but we argue this shows
us there’s more than meets the eye in such constructions. We offer a theory of numeral construc-
tions that captures the overlapping distribution. Finally, we suggest that subtractives are evidence
in favor of a view of exhaustification in which the contribution of the latter is presuppositional,
rather than truth conditional.
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Chapter 1

A very brief introduction

This chapter is really more of a prologue. In it, we’ll lay out the basic goals of the dissertation
and its outline, and we’ll end with some notational conventions we’ll make use of throughout

dissertation. From there, we’ll get started with our work.

1.1 The plot

This dissertation is about almost and barely. We’ll start in Chapter 2 with a bit of historical and
theoretical context for our investigation of almost and barely. Then, we’ll take a close look at uses

of these operators in which they seem to modify determiners.

(1) a.  Almost every vampire in Spike’s gang attacked Sunnydale High School.
b.  Barely any vampires in Angel’s gang attacked Sunnydale High School.

(1a) conveys that the vast majority of vampires in Spikes gang attacked, but not all of them did.
(1b) conveys that a few vampires in Angel’s gang attacked the school, but not very many at all.
We want to know how these interpretations arise. We also want to know why (2a) and (2b) are

odd; what’s going wrong with these cases?

(2) a. # Almost any vampires in Spike’s gang attacked Sunnydale High School.
b. # Barely every vampire in Angel’s gang attacked Sunnydale High School.

We want to explain why such combinations are illicit. Chapter 2 provides such a theory, starting
from and building on work by von Fintel (1993), Gajewski (2013), and Crni¢ (2018) on exceptive

but, which is similar to almost in meaning and distribution.

(3) a.  Every vampire in Spike’s gang but Drusilla attacked Sunnydale High School.
b. # Any vampires in Spike’s gang but Drusilla attacked Sunnydale High School.

13



We take seriously the idea that almost and barely are, at their core, modifiers of quantificational
determiners. We take the operators’ core semantic contribution to be set subtraction—they sub-
tract elements from the arguments of the quantifiers they modify. From now on, we’ll call these
operators subtractives.

Chapter 3 and Chapter 4 are, in some ways, the central contribution of the dissertation. Chap-
ter 3 expands the coverage of this theory to degree constructions. In the context of almost, degree
constructions like comparatives, equatives, and the positive have received little attention; in the

context of barely, they have received none.

(4) Willow is {almost/ #barely} as old as Buffy is.

a.
b.  Willow is {barely/ #almost} older than Bufty is.
(5) a.  Willow’s room is {almost/#barely} clean.
b.  Willow’s room is {barely/#almost} dirty.

We show the theory developed and refined in Chapter 2 naturally accounts for these data, and pro-
vides support for some very interesting proposals in the semantics of degrees. Chapter 4 probes
numeral constructions, where we see that complementarity in distribution between almost and

barely disappears.
(6) {Almost/barely} one hundred vampires attacked Sunnydale High School.

We’ll argue on the basis of the theory developed in Chapters 2 and 3 that there is structurally
more than meets the eye in (6). We’ll argue that subtractives give us evidence for a more compli-
cated compositional structure in numeral constructions than is typically assumed; in particular,
subtractives show us that there are multiple quantificational elements at play in the structure and
meaning of numerals.

Chapter 5 returns to quantificational determiners, and complicates matters by considering
structures in which subtractive-modified quantifiers are embedded under other quantificational
elements. What we ultimately are doing is exploring the source and nature of the polar inference
that subtractives give rise to—the inference in (1a) that not every vampire in Spike’s gang attacked
the high school, and the inference in (1b) that some vampires in Angel’s gang did, in fact, attack
the school. As will be discussed sooner than that, in Chapter 2, this inference is rather tricksy.
We'll pin it down a bit more in Chapter 5.

The dissertation then concludes in Chapter 6. There will be a lot of territory that we do not
cover here. The final chapter briefly discusses some of those important areas, and sketches how

the theory put forth in the dissertation might be extended.

14



1.2 Notational conventions and shorthand

Let’s get some notational conventions straight. Throughout the dissertation, I use italics in prose
to indicate particular expressions of the object language, e.g. vampire. Titles of books, paintings,
and movies, etc., when occurring in a larger expression of the object language, will be offset
by normal font in prose, e.g. Willow loves the spellbook The Writings of Dramius by Dramius, but
otherwise will be in italics consistently. Proper names of all kinds are taken to be rigid designators,
and denote entities. These are given in Latin letters as well, typically abbreviated where it is clear

and expeditious to do so.

(7) [Willow]#© = W(illow)
(8)  [The Writings of Dramius[& = WoD

Variables ranging over expressions of the object language will be given in Greek letters, e.g. “For
any expression o (of the object language)..” There are a few variables we will reserve for particular
kinds of expressions. We will use x as a variable for what we’ll call ‘exceptions. We’ll discuss these
more momentarily. We will also restrict ¢ and \ for exclusively referring to expressions denoting
(s,t) functions, and A for quantifiers, i.e. for any type o, expressions of type ((o,t),(ot,t)). This
includes expressions like every, also known as ‘quantificational determiners, and expressions like
-er, what we’ll call ‘degree quantifiers’

Greek letters will be used in two other ways. First, when discussing semantic types, we will
use three Greek letters: o, 1, and t. Second, when we discuss measure functions in degree con-
structions, we will use p as a variable over functions of type (e,d), functions often called ‘measure
functions.’ Hopefully, in both cases, it will be very clear that we are not referring to arbitrary ob-
ject language expressions in these cases; in any case, we will not use these particular Greek letters
as variables for object language expressions.

Metalanguage variables are given in Latin letters. For example, for any arbitrary expression o
whose denotation is a function of type (o, t), [a] = [AA,. A ... |. We will also use these when we
wish to talk about arbitrary expressions of the metalanguage, e.g. “For any function A..” Now,
there are a few Latin letters that will be used for specific purposes in line with more general
considerations. For example, unless otherwise marked, we will use A and B to refer to functions
of type (e,t), and D, D/, D* etc., for functions of type (d,t). There is one exception to this: we will
use Z as variable for the denotations of object language quantifiers A.

Functional constants in the metalanguage are given in small caps. I assume that common
nouns, expressions like vampire, denote relations between worlds and individuals, and worlds

are written as subscripts of other expressions in the metalanguage. So:

(9) [vampire]| = AWAX. VAMPIRE,(X)

15



In many situations, it is useful and more intuitive for us to manipulate sets. Sets are not identical
to functions, of course, but there is a one-to-one mapping between sets and the characteristic

functions of those sets.
(10) Let A be a set; then cHARy, the characteristic function of A, is that function A such that,
for any x € A, f(x) = 1, and for any x ¢ A, A(x) =0
(11) Let Abeafunction with range {O, 1 }; then cHAR,, the set characterized by A, is {X | A(x) = 1}
We will often use the first letter of object language expressions to indicate the sets characterized

by their denotation. For example, the object language expression vampire is of type (s,et), and

we can use the following shorthand to talk about the set of vampires in a given world w.

(12) Vy = {x| [vampire] (w)(x) = 1}
We will generalize this correspondence notationally across types in the following way.

(13) RULES FOR SET NOTATION
For any g, c, type o, object language expression «, and function A:
a. If [a]®¢ is of type (s,ot), then for any world w, A, is the set characterized by [a]®(w).
b. If [a]® is of type (o.,t), then A is the set characterized by [a]®*.
c. If Ais of type (o,t), then A is the set characterized by the value of A.

Here’s a denotation that makes use of these notational choices. In the dissertation, we will make

use of set-theoretic meanings for quantificational determiners like every.
(14) [every]#® =AA(yABiey. {x|Ax) =1} C {y|B(x) =1} (et,ett)

Given our shorthand, we can rewrite this as follows, since A is the set characterized by the value
A.

(15) [every[®® = AAyAB(y. ACB

Strictly speaking, quantifiers like every denote relations between functions, and every denotes a
relation between two (e,t) functions; this notation makes it seem like they denote relations be-
tween sets. We’'ll be cheating a bit, too, when we’re trafficking in arbitrary quantifier denotations.
That is, we'll use Z as the metalanguage variable for the denotations of quantifiers, i.e. relations
between functions, but we’ll also use it in the metalanguage as a relation between sets. For exam-
ple, not in not every vampire is evil, taking it to be a modifier of the quantificational determiner,

could have the following denotation:
(16) [[not]]g’c = k-@(et,etﬁ)\A)\B- @(A)(B) =0

16



The two uses of ¥ aren’t the same, but the two ways are related, just as set notation A is related
to A.

When we begin our analysis of almost and barely in earnest, we will see talk about ‘excep-
tions, as mentioned above, and we’ll utilize x to talk about them. Sometimes these expressions x

will bear indices. These are taken to be pronouns. So:

(17) For any n, [xa]* = g(n)

If x does not bear an index, then it is not a pronoun, but rather denotes an (e,t) function, and as
such, we will utilize our set notation, reserving X for ‘exception sets. So, [x]®¢ = X.

When we turn to degree constructions, additional notational conventions will be utilized.
First, we assume that adjectives encode measure functions which map entities in a world to a

degree, e.g:
(18) [old] = AwAdAx. AGE(x) > d

When it is clear from the discussion which adjective and measure function are under discussion,
we will use the following shorthand: for an arbitrary world w, AGE(Buffy) will be written B,
AGE,(Willow) will be written WW,,, and so on as necessary.

Finally, we will use ‘#’ in two ways in the dissertation. First, as a sort of neutral marker of
sentential oddity, if we do not wish to commit ourselves to claiming something is syntactically ill-
formed and ungrammatical, and second, as a truth value in a trivalent system wherein definedness
conditions on some expression are not met, i.e. neither truth nor falsity. Other such conventions,

as they arise, will be established.
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Chapter 2

Quantificational determiners

2.1 Subtractives, an introduction

2.1.1 Polarity and proximity

Our analytical quarry are the expressions almost and barely and their close kin. Let’s first consider

the contribution almost makes.

(19) a.  Bufty killed almost every vampire in the warehouse.
b.  Bufty almost always beats her enemies.

c.  Bufty almost killed the vampire last night.

(19a) conveys that Buffy didn’t kill every vampire, but she came close to killing them all. Similarly,
(19b) conveys that while there are some occasions where Bufty fails to beat her enemies, and hence
that she doesn’t always beat them, far more often than not she does beat them. (19¢) is true where
she failed to kill the vampire, but she came close to doing so—say, she tripped right before she
plunged the wooden stake in its heart and it escaped as she scrambled up.

These intuitive characterizations illustrate the core contribution of almost: from almost ¢ we
infer that ¢ does not hold, and further that ¢ is somehow ‘close’ to obtaining. We’ll call these two

inferences the poLAR and the proxiMAL, following Sevi (1998) and Horn (2002).

(20) almost ¢
a. g POLAR inference

b. cLOSE(¢) PROXIMAL inference

Some of the literature on almost investigates in parallel the modifier barely: it gives rise to infer-

ences we can characterize quite like we characterized those almost gives rise to.

19



(21) a.  Xander killed barely any vampires in the warehouse.
b.  Xander barely ever beats his enemies.

c.  Xander barely survived the vampire attack last night.

(21a) conveys that while Xander did kill at least one vampire, the total number is quite close to
zero—maybe just one or two. (21b) conveys that Xander occasionally beats his enemies, but such
events are few and far between. (21¢) conveys that Xander did indeed survive the attack, but it
was a close call. Had there been one misstep, he would have died. We can characterize, then,

barely’s contribution quite like we do almost’s.

(22) barely ¢
a. ¢ POLAR inference

b. CLOSE(—¢) PROXIMAL inference

Before we can decide on lexical entries, there are a few important issues to consider. First, we
need to figure out how these inferences are derived. Whether or not the polar and the proximal
inferences have the same semantic and pragmatic status has been hotly debated since Sadock
(1981). More specifically, there are disputes over whether the polar inference is truth conditional
and contributed by almost and barely, or else is something like a presupposition or an implicature.
The facts concerning this question are complicated and seemingly contradictory. Second, we need
to consider what notion of closeness underwrites the proximal inference. It is sometimes taken
to be a modal notion (Sadock 1981; Rapp & von Stechow 1999, Morzycki 2001, Nouwen 2006) and
other times taken to be a scalar one (Hitzeman 1992; Rotstein & Winter 2004; Penka 2006). Let’s

consider each question in turn.

2.1.1.1 The polar inference

The status of the polar inference, as mentioned above, has been debated for a long while and for

many reasons. First, it seems to be non-cancellable.

(23) a. # Bufty killed almost every vampire. In fact, she killed every one.
b. # Xander killed barely any vampires. In fact, he killed none.
(24) a. # Buffy almost killed the vampire last night. In fact, she did kill the vampire.
b. # Xander barely survived the vampire attack last night. In fact, he was killed in the

scuflle.

These are all quite odd; the continuations in each contradict the polar inference. This is perfectly

expected if the inference is a truth conditional contribution of almost and barely. Assuming that
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the proximal inference is also truth conditional, we might posit denotations for the operators as

in (25a) and (25b).

(25) a. [almost]® = Ap(nAw. 7p(w) & CLOSE(p(W))
b. [barely]®° = Ap(snAw. p(w) & CLOSE(—p(W))

These entries in (25) take almost and barely to be clausal modifiers, operating semantically at
the level of the proposition; this is a widespread view in the semantics of almost. These entries
also, as is clear, encode both the polar and the proximal inferences as truth conditional. Such
an analysis can be called conjuNcTIVE (Horn’s 2011 terminology) or INTEGRATED (Crnic¢’s 2018
terminology)—it proposes the two inferences to have the same status.

A conjunctive analysis faces a few problems, though. Barely, but not almost, licenses NPIs.

(26) a.  Bufty almost {never/ #ever} loses a fight.
b.  Bufty barely {ever/ #never} loses a fight.

(27) a. # Bufty almost {budged/ slept a wink/spoke to anyone}.
b.  Buffy barely {budged/ slept a wink/spoke to anyone}.

These contrasts are entirely unexpected given the conjunctive entries above. They both contain
a positive and a negative conjunct, and while a precise characterization of cLOSE is needed to
more accurately defend this, they are both non-monotonic on p as it stands. However, if we were
to sever the polar inference from the truth conditions, and we gave a more precise definition of
CLOSE, we could expect it.

There are other environments in which the polar inference seems to be inaccessible or back-

grounded, and only the proximal inference accessible.

(28) a Good news! My printer is almost functional.
b. ? Good news! My printer is barely functional.
(29) a. ?Bad news! My printer is almost functional.

b.  Bad news! My printer is barely functional. Horn (2002:57)

The good news in (28a) must be that the printer is approaching functionality, not that it isn’t
working. (28b) is rather odd, generally, but in a context where the printer’s inevitable decline
means we get to go home from work early, it’s acceptable. Regardless, the good news cannot be
that my printer is working. Similar intuitions arise for (29a) and (29b). Good news and bad news
only seem to have access to the proximal inference, not the polar. Now, these data should not be

taken to suggest that almost and good news correlate, and barely and bad newscorrelate.

(30) a.  Good news! My in-laws can barely stand me (so they plan to come around less).
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b.  Bad news! My in-laws are almost here (so we need to get out of here lickety split).

The good news in (30a) is that they are close to completely detesting me; the bad news in (30b)
is their spatial proximity. Similar facts can be shown for other similar modifiers, e.g. fortunately,
Nouwen 2006; luckily, amazingly, depressingly, and so on; we’ll call all these ‘speaker-oriented’
adverbs.

In other constructions, too, this inference is invisible to operators—Ziegeler (2000) shows for
almost that it is only the proximal inference, not the polar inference, that can support causal

justification. We can show the same for barely.

(31) Buffy almost won the battle...

a.  because of her skills and tenacity.

b. # because of her missteps and bad fortune.
(32) Willow barely understood the spellbook...

a. # because of her talent and research.

b.  because the text was terribly damaged.

It appears that the proximal inference is all that because has access to. (31a) explains why Buffty
came close to winning, but (31b) cannot be used as a continuation to explain why she ultimately
did not win. Similarly, (32a) cannot be used as a continuation to explain why she did in fact
understand a little of the spellbook, but (32b) can justify why it was so difficult. This asymmetry
between the two inferences is as unexpected as NPI licensing is on a conjunctive analysis. These
kinds of facts push some towards treating the polar inference as a presupposition (Ducrot 1973;
Anscombre & Ducrot 1983), an implicature, either conversational (Sadock 1981; Ziegeler 2000) or
conventional (Jayez & Tovena 2008), or else somewhere in between (Atlas 1984, 1997).

Zooming out, what we learned here is that any analysis of almost and barely has to account
for a few facts: (i) that barely, but not almost, licenses NPIs; (ii) that the polar inference, while
non-cancellable, is inaccessible to many operators. Throughout the dissertation, we’ll pursue a
particular division of labor between operators in almost and barely sentences that allows us to
account for these facts. The licensing of NPIs and the non-cancellability of the polar inference
will be discussed in this chapter, but the inaccessibility, the “invisibility” of the polar inference to

certain operators, will be discussed in Chapter 5. Now, we’ll turn to the proximal inference.

2.1.1.2 The proximal inference

The truth conditional status of the proximal inference has never been in doubt, as far as I can

tell. That said, the precise characterization of what notion underwrites a proposition being cLOSE
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is up for discussion. There are roughly two main camps in the literature, largely focusing on
almost. Abstractly, we can characterize these two as ‘modal’ closeness and ‘scalar’ closeness. With
various instantiations debating details, modal closeness analyses take the essential contribution
of almost to be intensional similarity: almost modifies a proposition and says that proposition
is true at some world closely related to the world of evaluation. This kind of a view originates
with Sadock (1981); Rapp & von Stechow (1999), Morzycki (2001), Nouwen (2006), among others,

adopt such an analysis as well.
(33)  [almostyeda]& = Ap(syAw. ~p(w) & Iw’ [cLOSE(W)(W) & p(W')] MODAL CLOSENESS

This almost takes as argument a proposition p and a world w, and asserts that p does not hold in w,
but does in some world w’ accessible to w via the cLOSE relation. There are various ways one could
spell out this intensional similarity. Nouwen (2006), for example, does so in terms of the number
of (relevant) propositions that are shared between worlds. Two worlds w and w’ are identical for
a given purpose if all relevant propositions are true in those worlds. If they differ only in terms
of one relevant proposition, they are 1-removed; if they differ in terms of two propositions, they
are 2-removed, and so on. Whether or not a world is close enough to verify the truth depends on
the context: sometimes, a world that is 3-removed will be an appropriate verifier for almost, and
other times it might not be.

An alternative takes almost to convey scalar, rather than modal, closeness. Penka (2006), fol-
lowing work by Hitzeman (1992) (see also Amaral 2007), takes almost ¢ to express not that ¢
is true at some world close to, but distinct from, the world of evaluation, but rather that some
scalar alternative to ¢ is true in the world of evaluation. The modal entry for almost above doesn’t
make explicit the inferences about the truth of some proposition in the world of evaluation. That
is, while (34) conveys that it’s false in the world of evaluation that one hundred people lost their
lives, it also conveys that the amount of people who did in fact perish in the world of evaluation
is close to one hundred. There being a ‘close’ world where a hundred people perished doesn’t

guarantee that close to one hundred did.
(34) Almost one hundred people died of the disease. Penka (2006:279)

This suggests that almost ¢ asserts the truth of some proposition ¢ which is a weaker scalar
alternative to ¢. Setting aside how the alternatives are generated for the moment, this leads to

the following semantics for scalar almost.
(35)  [almostycar |8 = Ap(sy Aw. —p(w) & 3q[q € ALT(p) & q(W)] SCALAR CLOSENESS

This entry takes a proposition p and a world w and returns truth iff p is not true in w, and if

there is some proposition g, in the set of alternatives to p, and q is true in w. Now, as Penka notes,
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this kind of an entry merely needs to require that the alternatives are ones which are ‘close’—the
alternatives to p aren’t required to be stronger or weaker than p. So, considering (35), the relevant
alternatives are the propositions expressed by ninety-eight people died of the disease, ninety-nine
people died of the disease, one hundred and one people died of the disease, and so on so long as they
are ‘close. If the alternatives entail p, then they cannot be the propositions that verify almost, i.e.
the close q proposition. This is because almost asserts the falsity of p at the world of evaluation
in this semantics, and so any stronger alternative cannot be true at that same world; the only
possible verifying alternatives are those that are weaker.

These two camps do not exhaust the logical space of possible characterizations of closeness.
In fact, we’ll ultimately turn to something a little different later on. That said, this closeness is
indeed something that is intuitively central to the meaning of almost and barely, and it must be
a part of any adequate analysis thereof. It is also, generally, a source of vagueness: what counts
as close in one context very well might not in another, and certainly the scale on which we’re
approximating matters. Almost one hundred people died of the disease could be true because ninety-
five people died, and that’s close enough to one hundred. Almost ten people died feels funny to
say generally, even if nine people died. In the latter case, the raw number of exceptions is smaller,
but it’s percentage wise greater than the former case. Closeness, however it’s encoded, must be

flexible enough to capture for these distinctions. Using the term ‘exceptions’ is a good transition.

2.1.2 Exceptives and subtraction

Many of the examples above featured almost and barely appearing to modify a quantificational

determiner, e.g. an expression like every, no, or any. Here are a few more.

(36) a.  Almost every member of the Scooby Gang has lived at 1630 Revello.
b.  Xander has had romantic feelings for almost every friend he has.
(37) a.  Barely any members of Cordelia’s former clique speak to her anymore.

b.  Willow left barely any spellbooks untouched in her thirst for knowledge.

They are not the only modifiers of quantificational determiners, however, and in fact, almost in
particular shares selectional restrictions with so-called exceptive but (Hoeksema 1987; von Fintel

1993; Crni¢ 2018).

(38) a.  Every spellbook but The Brekenkrieg Grimoire is worth reading according to Willow.
b.  No book but The Brekenkrieg Grimoire is worth reading according to Willow.
c. # Some book but The Brekenkrieg Grimoire is worth reading according to Willow.

d. Anyrgc; book but The Brekenkrieg Grimoire is worth reading according to Willow.
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(39) a.  Almost every book is worth reading according to Willow.
b.  Almost no book is worth reading according to Willow.
c. # Almost some book is worth reading according to Willow.

d. Almost anyycr book is worth reading according to Willow.

What we see here is that exceptive but is compatible with universal every and negative existential
no, but not simple existential some (Horn 1989; von Fintel 1993, a.0.); furthermore, both are com-
patible with free-choice any, arguably a universal quantifier (Eisner 1994; Dayal 1998, a.o0.). That
almost is compatible with universals and negative existentials, but not simple existentials, is also
well-known; compatibility with almost has in fact been used as a diagnostic for universality (Carl-
son 1981; Zanuttini 1991, a.0.), though the validity has been debated (Partee 1986; Btaszczak 2000;
Penka 2006, a.0.). Regardless, intuitively the two modifiers make similar contributions. As von
Fintel (1993:141) says, we can understand both exceptive but and almost in these constructions
as “marking the existence of exceptions to a generalization” But overtly marks the exception(s)
in question, as we see in (38), but almost leaves it open just who or what the exceptions are. Let’s

call this idea VON FINTEL’S CONJECTURE.

(40) VON FINTEL’S (1993) CONJECTURE'

Almost and but mark the existence of an exception to a quantificational generalization.

Barely completes the paradigm in a way. We have already seen that, unlike almost, barely licenses
NPI quantificational expressions like any and ever. What’s more is that barely’s distribution with

respect to the quantificational determiners above seems complementary to that of almost and but.

(41) a. # Barely every book is worth reading according to Giles.
b. # Barely no book is worth reading according to Willow.

. # Barely some book is worth reading according to Willow.

o

d.  Barely anyyp; book is worth reading according to Willow.

Barely really only seems to be compatible with anyyp; the other examples are quite odd. Taken

all together, the parallels and complementarity are striking. Let’s add another conjecture.

'von Fintel himself attributes, in his 1991 UMass generals paper, this idea to a term paper by Paul Portner (“Non-
partitive Determiner Combinations”):

“One likely possibility is that [adverbs like almost or nearly] specify that the sentence may have only
a small number of exceptions. That is, Almost all 100 people were killed should mean something like All
100 people, except a few, were killed”.

Perhaps, then, we should call this the Portner-von Fintel conjecture.
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(42) OUR CONJECTURE

Barely marks the existence of an exception to a quantificational generalization

What comes now is a compositional implementation of this idea, but first, there are even more
parallels to note.
The inferences that quantificational sentences containing but give rise to also parallel those

containing almost. Consider first (43).
(43) Every spellbook but The Brekenkrieg Grimoire is worth reading according to Willow.

What (43) conveys is that, in Willow’s view, every spellbook that isn’t The Brekenkrieg Grimoire
(BG) is worth reading, and that BG is not worth reading. In other words, BG is the only spellbook

not worth reading. Now consider (44).
(44) No book but The Brekenkrieg Grimoire is worth reading according to Willow.

This conveys just the opposite of (43): in Willow’s view, BG is the only spellbook worth reading,
no other spellbook is. Each of these sentences carries a negative polar inference: from (43) we
infer than in Willow’s views it’s false that every spellbook is worth reading, and from (44), we
infer that there is some spellbook worth reading.

We saw environments where the polar inferences of almost and barely were invisible to cer-

tain adverbials; but shows similar properties.

(45) Good news! Every student of mine but Xander passed the test.

(46) Every student of mine but Xander passed test...

a.  because they studied hard enough.
b. # because he didn’t study hard enough.

In (45), the good news is that the vast majority of my students passed the test, not that Xander
didn’t. In the same vein, we can’t use the continuation (46b) as justification for why Xander didn’t
pass; we can, however, use (46a) to justify why everyone else did pass. The polar inference in but
sentences is invisible in some sense to the because-clauses.

There are even environments where the polar inferences of all three expressions can disap-
pear. Nouwen (2006) shows that, in the consequents of conditionals, the polar inference of almost
is “backgrounded,” in a non-technical sense, or else wholly absent; we can show this, too, for but

and barely.

(47) a. If Willow wants to get an A on the test, she has to answer every question but the

last one.
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b.  If Willow wants to get an A on the test, she has to answer almost every question.

c.  If Willow wants to fail the test, she has to answer barely any questions.

(47a) does not convey, at least not necessarily, that getting an A on the test requires not answering
the last question, nor does (47b) convey that there are a small number of questions she must not
answer in order to get an A. Of course, it’s entirely possible that those are the requirements for
passing, but that requires a special context. The negative polar inference doesn’t seem obligatory
here. Similarly, the positive polar inference typically conveyed by barely is absent in (47¢); Wil-
low needn’t answer any questions if she wants to fail, she merely can answer a very small number
at most. The consequents of conditionals aren’t the only environments that can make these in-
ferences disappear; antecedents of conditionals, too (Kilbourn-Ceron 2016 on almost) and under
modals in ellipsis contexts (Crni¢ 2018 on both but and almost?).

There is something of the proximal inference in but, too, though this hasn’t, to my knowledge,
been discussed in the literature on exceptives prior. Assume that there are ten students in my class
taking an exam—Anya, Bufty, Cordelia, Dawn, Ethan, Faith, Giles, Harmony, Kendra, and Larry.
Next, assume that Faith and Larry are the only students who failed the test.

(48) Every student but Faith and Larry passed.

This is perfectly acceptable. Two of my students failed, but all eight others passed. Now imagine
that Anya, Bufty, and Cordelia are the only students who passed the exam.

(49) # Every student but Dawn, Ethan, Faith, Giles, Harmony, Kendra, and Larry passed.

This is extremely odd. While we’ve not yet given an explicit semantics for but, let’s simply assume
for a moment that its contribution is to say its complement is the totality of exceptions to the
quantificational claim it modifies. That is, when we set aside Dawn, Ethan, Faith, Giles, Harmony,
Kendra, and Larry, all remaining students passed, and those students did not. This context is one
that should verify (49), but the sentence is quite odd. It seems like but in these cases requires
that the actual number of passing students be close to the total number of students taking the
test. This, if we’re characterizing it correctly, is a kind of proximal inference, just like almost and
barely give rise to.

Taken together, the parallels between almost, barely, and exceptive but are striking. Almost
and but appear to have quite similar distributions with respect to quantificational determiners,

and barely’s appears to be complementary. They all seem to give rise to both polar and proximal

’It’s possible to derive the weaker inference for (47b) (and the others) by having the DP take wide scope with
respect to the modal has to. This weakens his argument. However, Crni¢ (2018) pushes this further by showing that
the inference disappears in environments where you can’t rely on scope; we’ll discuss this in more detail in §2.3.
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inferences, the former of which can disappear depending on the syntactic and semantic environ-
ment. Our analysis of almost and barely, then, should be closely related to that of but. Unlike
the entries for almost and barely above, though, but is typically taken to be either a determiner
modifier (von Fintel 1993, Crni¢ 2018) or else to simply denote a subtraction operation (Gajewski
2008, 2013).

A quick note on the distribution of almost, barely and but. The distribution isn’t exactly parallel
when we look beyond the quantificational determiners discussed. For example, almost and barely

can modify numerals, whereas but cannot.

(50) a. {Almost/barely} one hundred students attended graduation.
b. # One hundred students but Willow attended graduation.

This is unexpected on two counts. First, almost and barely were complementary in the data dis-
cussed above, but here they are both perfectly acceptable. Second, if almost and but are really
exactly the same, it’s not clear why we don’t get but as a modifier here. Set aside these questions
for now. Numeral constructions are the topic of Chapter 4, and there, we’ll argue that there’s
good reason to think these contrasts are perfectly expected. So, for the remainder of the chapter,
we’ll focus on quantificational determiners every, some, and no throughout the remainder of the

chapter.

2.1.3 Summary and roadmap

As we said above, most analyses of almost and barely take as their starting point the idea that
these are clausal modifiers, that they operate semantically at the level of the proposition. Most
analyses of exceptive but take it to operate as a determiner modifier or encode subtraction. The
analytical starting point for our analysis of almost and barely is the striking parallels between
almost and barely on the one hand and but on the other, taking very seriously the idea that
almost and barely are in fact modifiers of quantificational determiners. We’ll propose that they
all share a common semantic core, encoding the proximal inference as a matter of their truth
conditional import, and the polar inference derived as a kind of scalar implicature. From there,
we’ll turn to the core contribution of this dissertation: subtractives in degree constructions. We’ll
show how this analysis extends to other occurrences of almost and barely, and what we learn
from those extensions.

§2 gives the basic proposal for almost and barely. Building on an influential analysis of excep-
tive but due originally to von Fintel (1993), we propose treating almost and barely as modifiers of
quantificational determiners, and take them to encode set subtraction, removing elements from

the restrictor of the quantifier. This, with the addition of a constraint on just how much can be
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removed from the restrictor (novel for exceptive but) comprises the proximal inference encoded
by all three operators. We take the polar inference to be derived as a kind of scalar implicature,
derived through exhaustification (Gajewski 2008, 2013; Spector 2014; Hirsch 2016; Crni¢ 2018).
We explain how the distribution of the modifiers naturally falls out of our analysis as a result
of the ingredients above, alongside facts like NPI licensing and the disappearance of the polar
inference. §3 shows how facts like NPI licensing and the disappearance of the polar inference
work on our analysis. §4 compares our analysis to others on the market. §5 concludes.

A note on synonyms and nomenclature. Almost is (almost) synonymous with expressions
like nearly, practically, just about; barely is close to only just, hardly. Quirk et al. (1985) (1985:597)
call almost an APPROXIMATOR, expressions which “serve to express an approximation to the force
of the verb, while indicating that the verb concerned expresses more than is relevant” Other
such expressions include the synonyms listed above, but outside of the verbal domain, it likely
includes expressions like approximately and roughly. They call barely a MINIMIZER, what they
term a “negative maximizer,” alongside expressions like little and a bit. Both classes are subsumed
by the class of DOWNTONERS, which have a “general lowering effect” These characterizations, of
course, readily apply to verbal uses of the modifiers, but all the same they make sense enough for
uses of the expressions as quantifier modifiers. Exceptive but is often called, well, an EXCEPTIVE,
i.e. an expression marking an exception to some quantificational claim; other than, except for,
and other such expressions also are in this class. Work that assumes almost is quite like but in
semantic contribution might call the modifier an exceptive as well; we’ll use something slightly
different. We’ll refer to this expression, alongside barely and but, as SUBTRACTIVES, since their
core semantic contribution is set subtraction. In the end, then, the theory developed and defended
here might indicate that some of the categories above are inappropriate for our quarry. We also
should discuss, at least a bit, the differences between almost and barely and their kin, which,

though subtle, are nonetheless important. We’ll worry about these finer details later.

2.2 Subtractive but, almost and barely

Developing an analysis of almost and barely as subtractives operators, modeled after but, requires

a semantics for the latter. This is where we’ll start.

2.2.1 The meaning of but sentences

The semantics of but sentences is our starting point. (51a) conveys that The Brekenkrieg Grimoire
is the only spellbook not worth reading, and (51b) that it is the only one worth reading. In both

cases, it is the only exception to the unmodified quantificational claims, i.e. their versions without
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‘but BG’.

(51) a.  Every spellbook but The Brekenkrieg Grimoire is worth reading.
b.  No spellbook but The Brekenkrieg Grimoire is worth reading.

There are two key components to but sentences. First, but removes an EXCEPTION, the entity or
entities denoted by its complement (here, BG), from a set (here, the set of spellbooks). Second,
the exception must be the smallest non-empty set removable such that the resulting modified
quantificational claim is true. That is, {BG} is the smallest set X you can subtract from the set
of spellbooks and claim that {every/no} (remaining) spellbook is worth reading is true. Schemati-
cally, for any quantifier A with a denotation &, and expressions «, f, and x whose denotations
characterize the sets A, B, and X, respectively:
(52) [Aabuty BJEc=1iff 2(A-X)(B) &YX [X L X — ~Z(A—K')B)]

~
Subtraction Uniqueness/Leastness

These are the truth conditions from von Fintel (1993). The first conjunct in (52) is (domain) sub-
traction: when we remove X from A, the retrictor of &, we get truth. The second conjunct is
Uniqueness (von Fintel 1993) or Leastness (Gajewski 2008)—for every set X’ that is not a superset
of X', subtracting X’ from A makes the modified quantification false, or equivalently, every X’ that
makes the modified quantification true must be a superset of X. That is, X must be the smallest,
non-empty exception that makes the quantification true. Now, non-emptiness doesn’t actually
follow; if Z(A—X)(B) = 1 because X = () and Z(A)(B) = 1, then Uniqueness is trivially satisfied,
since every X' is a superset of (). We’ll say more on this later, but take it as an assumption for the

moment. We define set subtraction as follows.

(53) SET SUBTRACTION ‘—’

a. For arbitrary sets A, B: A—B := {X |xeEA&x & [B}.
(A is the minuend and B the subtrahend; the set C such that A—B = C is the difference

or remainder.)

b. For any arbitrary expressions o, f, of type (e,t), let A and B be the sets characterized
by [a]#€ and [B]#*¢, and let ‘e — B’ be a wellformed expression of type (e,t) such that

[oo — B]#€ is a function characterizing the set A—B

Now, to see how this all works applied to (51a), we need some entries. We’ll utilize a set-based se-
mantics for quantificational determiners, and we’ll take NPs like spellbook to be world-dependent

expressions.

(54) [every[®® =AAyABy. ACB
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(55) [spellbook]®¢ = AwAx. SPELLBOOK,(X)
Set characterized by [spellbook]®<(w): Sy

(56) [be worth reading]®¢ = AwAX. WORTH-READING(X)

Set characterized by [be worth reading]|®(w): WRy,
Putting these pieces together with the truth conditions above:

(57) [(512)]8(w) =1 iff SW—{BG} CWRy & VX’[{BG} X —S,—X ¢ W[RW}

Subtraction Uniqueness

Suppose that The Brekenkrieg Grimoire is a spellbook. The first conjunct, Subtraction, requires that
when {BG} is removed from the set of spellbooks, the remainder is a subset of all things worth
reading. Hence, every non-BG spellbook must be worth reading. The second conjunct, Unique-
ness, requires that every set X’ that does not contain BG makes the modified quantificational
claim false. Consider that for every non-superset X’ of {BG}, there is something in {BG} that is
not in X’. Since {BG} is a singleton, none of these X’ is a supertset of {BG}, and since {BG} -
Sw, for all such X', the definition of subtraction guarantees that BG € 5;,—X'. Note that wnothing
requires any such X’ to be a subset of S, or even overlap with it—it simply must not contain BG.
Now, for each such X', Uniqueness requires that there is some y € 5, —X' that is not in WR,.
Since Subtraction requires that every non-BG spellbook be worth reading, the culprity € S;,—X’
not in WRy, must be BG. This, of course, requires that BG is a spellbook not worth reading, that
it is the only such spellbook, and hence that not every spellbook is worth reading. This last bit is
especially relevant when considering the similarities between but and almost: that (51a) requires
that not every spellbook be worth reading is an instantiation of the polar inference. Here, we
derived it through Uniqueness. This can be made even clearer: an X’ such that {BG} Z X is ().
Uniqueness thus requires that S, —() € WR,,, i.e. 5, € WRy,. These truth conditions thus assert
the polar inference, albeit indirectly.

The case of but with no is not all that different from every.

(58) [no]® =AAryABey. ANB=1
(51b) No spellbook but The Brekenkrieg Grimoire is worth reading.

a. [(51b)]#<(w) = 1 iff
Sw—{BG} NWR,, =0 & VX' [{BG} Z X' — Sy—X N WR,, # 0]

For the first conjunct to be true, every non-BG spellbook must be such that it’s not worth reading.
For the second conjunct to be true, every set X’ that doesn’t contain BG must leave in S;,— X’ some
spellbook that is worth reading. This can only be BG. Therefore, there is some spellbook that is
worth reading, and BG is the only such spellbook; everything else is trash. As before, Uniqueness

entails the polar inference.

31



The discussions above assumed that The Brekenkrieg Grimoire was a spellbook. If it weren’t,
intuitively (51a) and (51b) would be quite odd. Consider an example that presupposes less niche

fictional lore.
(59) # Every novel but the Mona Lisa by da Vinci is worth reading.

The Mona Lisa, of course, is a painting, not a novel, so but’s subtraction is in a sense vacuous

here. The analysis predicts (59) is false if in w, as in our world, the painting is a painting.
(60) [(59)]&(w) = 1 iff Ny—{ML} C WR,, & VX' [{ML} € X' — Ny—X' € WR,]

Since the Mona Lisa isn’t a novel, the remainder of Ny, — {ML} is just Ny, so the first conjunct re-
quires that every novel be worth reading. However, then there can be no X’ that satisfies Unique-
ness. For N, —X' & WR,, to be true, there must be some element in N, —X’ not in WR,,, but by
Subtraction Ny, € WR,,. Set subtraction cannot add elements to N,,! Ny, is therefore an X’ that
always falsifies Uniqueness. Of course, falsity alone doesn’t guarantee the oddity of the sentence.

Let’s add a presupposition, then, to but sentences.

(61) [A o but x B]®* is defined only if X C A; where defined:
A o but & =1 iff D(A—XR)(B) & VXX L K — -9(A—X')(B
[A o but x B] iff P(A—R)B) & VX [X & (A=X)(B)]

. Vv
Subtraction Uniqueness

This presupposition thus predicts (59) is infelicitous, allowing us to rule it and similar cases out
on these grounds.

Now, let’s return to an odd case we noted in §2.2. It seems that the exception introduced by
but can’t be too big. Assume that there are ten students in my class taking an exam—Anya, Bufty,
Cordelia, Dawn, Ethan, Faith, Giles, Harmony, Kendra, and Larry. Anya, Bufty, and Cordelia are

the only students who passed the exam.
(62) # Every student but Dawn, Ethan, Faith, Giles, Harmony, Kendra, and Larry passed.
This is odd, but nothing in the semantics predicts this.

(63) [[(62)]#°(w) is defined only if {D, E,F, G HK, L} C S,; where defined:

[(62)]#(w) = 1 iff
Sw—{D,E,F,G,H,K,L} CA, & VX' [{D,E,F,GH,K,L} ZX — S,—X Z A,]

The first conjunct requires that Anya, Buffy, and Cordelia all passed the test, true in the context;
the second requires that {D, E,F, G H, K, L} be the smallest exception. This is also true in the
context. Every non-superset of the exception lacks at least one element of the exception, and
since that element is a student, it is in the remainder of S, —X’. By assumption, those students
didn’t pass, and hence for all such X', 5, — X’ Z A,,. What accounts for the oddity of (62), then?
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Intuitively, we use but when a quantificational claim is false, but not false by much, and so we
save it by naming the exception(s). The idea is that (62) is odd because the exception takes us too
far away from the bare universal claim—there are just too many exceptions. The situation we’re
in isn’t close enough to a situation in which the bare universal claim is true. This characterization
is quite like the ‘closeness’ of the proximal inference encoded by almost—almost every student
passed only seems true if the failers are few in number. For but, the proposal is to add a constraint

on the size of the exception. It must count as ‘small’ in the context of utterance.

(64) [A o but x B]®* is defined only if X C A; where defined:
[A abut x B]E° =1 if Z(A—X)(B) & sMALL(X) & VX' [X € X' — = D(A—X')(B)]

Vo
Subtraction Size constraint Uniqueness

Is this really part of the truth conditions? Given how the intuitions about (62) were characterized,
it perhaps should be something more like a presupposition or an implicature. Either alternative is
ultimately compatible with the final analysis, as far as I can tell. We’ll not worry too much about
that for the moment, and simply leave it as truth conditional.

How should we define the function smALL? When is an exception too big? That depends. First,
the size of an exception X, relative to the size of the set A from which it is subtracted, matters. In
the context of count nouns like students in my class or spellbooks, the size of the sets intuitively
corresponds to its cardinality. The size of {D, E.F,G HK, L} is thus the cardinality of the set—
here, seven. In the context described, the set 5, has ten members, and so {D, E, F,G H K, L} is
70% of S,. One way sMALL could operate, then, is by requiring that exceptions X be no more than,
say, 20% of the set A from which they’re subtracted. Context matters, too, though. We might allow
(65a) to be acceptable if I have ten students, but (65b) sounds a little worse in a context where I

have one hundred students, even though the ratio of exception to subtrahend is the same.

(65) a.  Every student of mine but two passed the test.

b. ?Every student of mine but twenty passed the test.

It seems like stipulating smallness in terms of a cut-and-dry percentage won’t quite work—the
context plays a huge role here, and the boundary of smallness is fuzzy. That said, it seems intuitive
that to count as small, the size of an exception X must be less than half the size of the set from
which it is subtracted. If five of my ten students passed, I cannot say Every student of mine but five

passed the test, because the exception is at least half the size of the restrictor. Here’s a definition:

(66) THE SIZE CONSTRAINT
Let ¢ be a context of utterance, X be an arbitrary set, p, be a measure function, deter-
mined by the context, mapping sets to numerical values representing their size, and n. be

a contextually determined numerical threshold for size.
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SMALL:(X) = 1 iff p(X) < n,

(67) MAXIMAL SIZE OF n,
Let ¢ be a constituent with subconstituent y such that y = [A [(x [Z X]H, where X is a
subtractive operator, A is quantificational determiner, and o and y be expressions whose
denotations characterize A and X, respectively.

For any context c, an utterance of ¢ in c is felicitous only if n. < %(pC(A))

The measure function p is left unspecified here. In the kinds of cases we’re discussing in this
chapter, i.e. quantificational determiners taking as argument functions with atomic entities in
their domain, we can construe this as a cardinality function; we posit a constraint on the maximal
size of the exception relative to the argument from which it is subtracted. Applied to perhaps the
most minimal case, this means that if the cardinality of some set A is less than 3, then in no
context is there a small, non-empty X that can be subtracted from A. All substantive non-vacuous
subtraction from such a A would subtract, well, too much.

One final case: but with an existential quantifier, some. This always sounds odd.

(68) # Some spellbook but The Brekenkrieg Grimoire is worth reading.

a. [(68)]%(w) is defined only if {BG} C S.; where defined: [(68)]&“(w) = 1 iff
Sw—{BG} NWR,, # 0 & sMaLL({BG}) & VX'[{BG} Z X' — S,—X' N WR,, = 0]

First, assume that the subset presupposition is met. Subtraction requires that at least one of the
non-BG spellbooks is worth reading; the size constraint requires that {BG} be considered small
in c. Assume both are true: given the formulation of the size constraint, if {BG} counts as small, it
must contain less than half the spellbooks. For a singleton set to count as small, there must there-
fore be at least three spellbooks in w. Uniqueness requires that subtraction of all non-supersets of
{BG} from S, yield an empty intersection with WR,. Whether or not BG is worth reading, we’ll
get falsity here. Suppose BG is worth reading: there will be a non-superset that doesn’t contain
BG, but which leaves BG in the set of spellbooks, and so the second conjunct will be false. Now
suppose BG isn’t worth reading, then there are at least one of the two remaining spellbooks must
be worth reading. If both are worth reading, either singleton will do to make the second con-
junct false. If only one is worth reading, then a singleton set that contains a non-BG spellbook
not worth reading will make the second conjunct false. The conclusion, therefore, is that (68) can
never be true.

Let’s take stock for a moment. Here are the truth conditions of but-sentences that we assume.

(69) [A o but x B]®€ is defined only if X C A; where defined:
[A o but x BIE° =1 iff Z(A—X)(B) & sMALL(R) & VX' [X L X' — ~D(A—K')(B)]

Vo
Subtraction Size constraint Uniqueness
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At this point, we’ve mostly recapped the meaning of but sentences, largely following the tradition
started by von Fintel (1993) and taken up by Gajewski (2008, 2016), Crni¢ (2018), and others. But,
in this view, encodes first set subtraction: it removes a set from the restrictor of the quantifica-
tional determiner that it modifies. We’ve added two additional constraints. First, a presupposition
that the exception is a subset of the set from which it is subtracted, i.e. the restrictor of the mod-
ified determiner, and second, a requirement that an exception introduced by but be small in the
context of utterance. The size constraint, in tandem with set subtraction, looks quite a bit like the
proximal inference we see in almost sentences. We also saw that but requires the exception to be
the smallest such exception, and that this ultimately entails that the unmodified quantificational
claim is false. This is quite like the polar inference in almost sentences. In the next section, we’ll

extend a particular version of this analysis to almost and barely alongside but.

2.2.2 Set subtraction and exhaustification
2.2.2.1  Composition

The core of our analysis of subtractives comes from Gajewski (2008, 2013) and Crni¢ (2018). We
are assuming a DISTRIBUTED analysis of subtractives, in Crni¢’s terminology, in proposing that
the meanings of subtractive sentences are derived from the contributions of two distinct opera-
tors. We’'ll assume that the proximal inferences encoded in but sentences—both set subtraction
and the size constraint—are contributed by but directly. We split off the calculation of the polar
inference, deriving it through the application of a separate operator responsible for generating

scalar implicatures.
(70)  [but]®® = AXAAAD (¢ ety AB: X C A. Z(A—XK)(B) & sMALL(X) (et,(et,((etett),(et,t))

This high-type semantics ultimately allows but to modify the quantificational determiner by sub-
tracting from its restrictor the exception X; it then feeds the determiner its normal nuclear scope.
The size constraint is novel, and requires that X count as small in the context of utterance. We’ll
simply assume that expressions like The Brekenkrieg Grimoire denote sets; plausibly they are lifted
by a type-shifting operator. It’s not really important for us here to decide this matter.

Almost has the same truth conditional import that but does: it removes from the restrictor
of a quantificational determiner an exception X (Crni¢ 2018) and requires that X be small. This
comprises, of course, the proximal inference almost sentences give rise to>. Our novel proposal

for barely is that it has the exact same function as almost and but, modifying a quantificational

*McKenzie & Newkirk (2019) also propose a similar kind of size constraint as a part of the derivation of almost’s
proximal inference.
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determiner via set subtraction, but additionally contributes negation. Reflecting the fact that al-
most and barely linearly precede the quantificational determiners they modify, they take their

arguments in a slightly different order from but.

(71) a. [almost]®* = KX(e,t)xg(et,ett> A ey ABey: X C A D(A—X)(B) & sMALL.(X)
b. [[barely]]g’c = )\X(e,t)}\@(et,etw 7\A<e,t> 7\B<e’t>: X - A. ﬁ.@(A—X)([B) & SMALLC(X)
(et,(et,((et.ett),(et,t))

Unlike but, almost and barely have no overt exception, so what saturates this argument, what
is the exception? We’ll take it to be a covert pronoun of type (e,t), receiving its value from the
assignment function g. We’ll represent this pronoun as y,,, where n is an index that the assignment
function maps to a set of individuals. It is crucial that the exception be specific; we’ll discuss why
in a little while, but grant for now that the precise identity of the exception needn’t be known to
the utterer of some true almost sentence.

These contributions constitute the proximal inference in almost and barely sentences on this
analysis. For some determiner A, and arbitrary expressions «, B, and y, [almost x A o f]®° con-
veys that all that separates us from the truth of [A o B]®€ is that small exception X. Similarly,
[barely x A o B]#° conveys that that small X is all that separates us from the falsity of [A a B]®°.
These entries give us license to state some truth conditional equivalences between the subtrac-
tives. Let a, 3, and Y, be arbitrary expressions whose denotations characterize the sets A, B, and

X, respectively; let g be such that g(i) = X.

(72) [|every [o [but x]]]]&° = [[[[almost x;] every| a|]&c =
AB: X C A& X #0. (A—X) C B & SMALL(X)

(73) [[[some [oc [but X]H]]g’c = [[H[almost Xi] some} oc]]]g’c = [[H[barely Xi} no] oc]]]g’c =
AB: X C A& X #0. (A—X) N B # 0 & sMALL(X)

(74) [[[no [oc [but X]H]]g’c = [[[Halmost Xi] no] oc]]]g’C = [[H[barely Xi} anyNPI] oc]]]g’C =
AB: X C A& X#D. (A—X) NB =0 & sMALL.(X)

(75) [[[[[almost ;] some] o] B]]&<and [[[[[barely x;] every] a] [not B]]]&* are defined only
if X C A & X # (); where defined,
[[[[[almost x;] some] o] B]]&< = [[[[[barely x;] every] a] [not B]]]&c
= 1iff (A—X) N B # () & sMALL:(X)

(76) [[[[[almost x;] no] a] B]]& and [[[[[almost x;| every]| o] [not B]]]& are defined only
if X C A & X +# (); where defined,

[[[[[almost x;] no] a] B]]&¢ = [[[[[almost x;] every| a] [not B]]]e*
= 1iff (A—X) C B & sMALL(X)
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These equivalences allow us to streamline the discussion by focussing primarily on almost sen-
tences of this form. That is, conclusions drawn on the basis of almost x every o will extend to
every o but x, and so on following the equivalences above. Note, though, that it should be clear
why barely, but not almost or but, licenses NPI determiners: its negation makes it a Downward
Entailing operator, and NPIs like any and ever are licensed in the scope of such operators (Ladu-
saw 1979); neither almost nor but themselves are Downward Entailing, and hence, can’t license
NPIs in and of themselves.

The polar inference for all three subtractives will be derived separately from the proximal
inference now. The exhaustivity operator ExH, commonly utilized in the derivation of scalar im-
plicatures (Fox 2007, i.a.), is posited as the operator deriving these inferences. A necessary condi-
tion for the licensing of all three subtractives is their being in the scope of this operator (Gajewski

2008, 2013% Spector 2014; Crni¢ 2018). The meaning is syncategorematically given below.

(77) For any ¢, and any admissible g, c:
[Exm o]*(w) =1 iff [o]*“(W) =1 & VY [¢ € ALT(p) & []*° # st [Y]*< — [Y]*(w) # 1]
(78) STRAWSON ENTAILMENT ‘=57’ von Fintel (1999)

For any ¢ and { of type (s,t), and any context ¢ and assignment function g:

[l =st [W]E* iff Yw[[o]#<(w) = 1 & [Y]E(w) # # — [¥]5(w) = 1]

The sister of EXH, ¢, is called the prejacent of EXH. ¢ is a logical form, and implicit in the def-
inition is that ¢ denotes a proposition, a function from worlds to truth values. [ExH ¢]®°(w)
requires that ¢ be true at the world of evaluation w, and that all { in the set of alternatives to ¢
(i.e., ALT(¢)) that are not Strawson entailed by ¢ are not true in the world of evaluation®. We’ll
furthermore adopt the following constraint on the distribution of ExH, which blocks its presence
in Downward Entailing environments (Spector 2014; see also Chierchia et al. 2012; Fox & Spector

2009, 2018).

(79) ECONOMY CONSTRAINT ON THE DISTRIBUTION OF EXH

Let ¢ be an arbitrary expression containing an occurrence of the EXH operator. EXH is
not licensed in ¢ if eliminating this occurrence leads to an expression { such that for any

admissible g, ¢, [V = [o]&*.

*Gajewski’s (2008) operator is closely related to ExH, but crucially not equivalent to it. It is LEAST:
(1) [LEAST]EC = AXALerr. 2(X) & VX [2(X) — X C K]

It will become clear that in most situations, this operator yields the same results as ExH. Gajewski (2013) revisits his
earlier work and tries to utilize EXH in lieu of LEAST, but runs into some issues. We’ll discuss this in more detail in
§2.3.3.

*Strawson entailment is necessary for our purposes because of the presuppositions encoded by subtractives.
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This condition bars occurrences of ExH where it doesn’t add anything to the meaning of the
sentence it modifies. If, for example, all alternatives to some ¢ are entailed by [¢]®€, then [@]&*°
will entail [ExH ¢]®°, and ExH will not be licensed.

The connection between ExXH and subtractives will be made tighter. We’ll take subtractives

to be licensed only if they are within the scope of an ExH operator.

(80) EXH AND THE LICENSING OF SUBTRACTIVE OPERATORS

Subtractive operators are only licensed in the scope of an EXH operator.

This, obviously, blocks the occurrence of a subtractive should they occur in a LF sans ExH. Such
a constraint has been posited by Gajewski (2008, 2013), Hirsch (2016), and Crnic¢ (2018) for but,
and Spector (2014) for almost®, taken up by Crni¢ as well’. One might reasonably ask why some
operators should only be licensed in the scope of an ExH operator. Gajewski (2008) ties it to focus,
with but focus-marking its exception and introducing focus alternatives; EXH then operates on
those alternatives. Perhaps the presence of focus marking forces the presence of ExH. This is
an important question, but one we’ll set aside for now, and simply assume the condition above
applies.

One might reasonably balk at the very high types of subtractives, so a brief note on this subject
is necessary. For von Fintel, alow meaning is not possible, since Uniqueness is directly contributed
by but, and this requires access to the determiner and both its arguments. However, once we go
the ExH route, we have wiggle room. Gajewski (2008, 2013) takes the wiggle, proposing a lower

meaning for but:
(81) [but]®c = AXAA. A—X

This semantics makes crystal clear what subtractives are: modifiers encoding set subtraction, and
only set subtraction. This is appealing. There are, however, a few reasons we should consider the

higher-type route.

‘Spector’s main quarry is the contrast between French disjunctions soit...soit and ou; the former obligatorily
triggers exhaustivity inferences and is anti-licensed in globally Downward Entailing environments, whereas the
latter does not necessarily trigger such inferences, and is anti-licensed in locally Downward Entailing environments.
This, he argues, boils down to soit...soit necessarily being in the scope of ExH, itself not licensed in Downward
Entailing environments. He then extends the analysis to almost. We'll see in Chapter 5 that there are wrinkles to
almost’s being anti-licensed in globally Downward Entailing environments, and we’ll return to a discussion of this
licensing condition there.

"Some care is needed, ultimately, in claiming this is something all subtractives require. Crni¢ (2018) gives the
example of other than as a subtractive that does not require exhaustification.

) Every witch other than Willow passed the test.
(ii) Some witch other than Willow passed the test.

(i) doesn’t seem to require that Willow didn’t pass the test, though it’s certainly a viable interpretation. (ii), notably,
is perfectly acceptable, though of course but in place of other than is not. This can be tied to the absence of EXH in
(ii). Why there should be such a distinction, and what drives it, is left for future investigation.
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The first is linear order. But, at the level of the surface syntax, sits in between a predicate
and an exception. The low type semantics reflects that, but since almost and barely precede the
determiners they modify, the low-type semantics is less plausible. If we take the surface syntax
to directly reflect LF, the lower types cannot compose properly. That’s a big if, though. There are
plenty of places where we don’t take surface syntax to directly reflect to LF—Quantifier Raising
for interpretability, for example, involves a disconnect between surface syntax and LF.

The second reason is the size constraint, which as is makes it difficult to square with the lower

types for all three subtractives depending on its status.
(82) [but]® = AXAA. A—X & sMALL(X) INCOHERENT!

The output of (82) is a set; the size constraint, given a set, returns a truth value, so if it is part of
the truth conditional import of but, composition won’t work. To save this, we’d have to treat the

size constraint as a presupposition, as in (83).
(83) [but]®® = AXAA: sMALL(X). A—X

This would allow appropriate composition for all three subtractives, so whether this is viable
depends on what we think the appropriate status is of the size constraint.

The final reason is perhaps the most compelling, although it only applies to barely. It is very
difficult to see how the negation contributed by barely on our analysis would be encoded if barely
has a low type. This requires access to the determiner, at least at first blush, and hence our higher
type meanings would be necessary. It’s possible that there is some way to make this work; perhaps
low-type barely cooccurs not only with ExH, but with a negation operator that does modify the
determiner itself. Should such a low-type analysis be made to work, for barely and the others, it
should be compared against the theory developed here. At this point, though, we’ll assume the

high-type semantics for all operators.

2.2.2.2 Alternatives and entailment

Let’s put some pieces together, starting with almost; note that the label for ExH’s sister is ¢.
Worlds are taken to be pronouns at LF, written as pro with an index and a type, and they are

bound by higher operators (Percus 2000).

(84) Almost every spellbook is worth reading.
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spellbook  proy;
b. [(84a)]#°(w) is defined only if g(2) C S,,; where defined:
[(Ba2)]Ew) = 1 iff () & (i) = 1
i. Sy—g2) € WRy, & smALL.(g(2))
ii. Yy [y € arT(e) & [o]*° # st [W]* — [Y]¥<(w) # 1]

worth reading

(84bi) are the truth conditions of [¢]&<(w). When g(2) is removed from the set of spellbooks in w,
everything in remainder must be worth reading in w; in the context ¢, g(2) must be considered
small. To evaluate (84bii), we need to know what the alternatives to ¢ are, and which ones are
Strawson entailed.

What are the alternatives for sentences containing our subtractive operators? We’ll take them
to be structural alternatives in the sense of Katzir 2007—that is, they are constructed by replacing
the exception x, with other expressions x’ of the same type. Crni¢ (2018) proposes this for but,

and we propose extending this to both almost and barely®”.

(85) suBTRACTIVE LFs
ALF ¢ is a subtractive LF just in case ¢ is a LF containing exactly one subtractive operator

Y introducing an exception ¥, and no other alternative-triggering expression, and ¢ is of
type (s,t).

(86) SUBTRACTIVE ALTERNATIVES (first version)

*Following Spector (2014), Crni¢ proposes treating the set of alternatives to ‘almost ¢’ to be merely ¢. We’ll see
in §2.3.4 why this cannot be so for barely, and in the following chapter why it cannot be so for almost.

*There certainly can be multiple subtractives in an LF, and other alternative trigger expressions, yet we restrict
ourselves to those with only one subtractive and no other alternative triggering expression. The reason for this is
simplicity. First, multiple alternative-triggering expressions raises questions about whether you have just a single
EXH operator, or one for every alternative-triggering expression. Second, regardless of whether we deal with one
EXH or more, the logic of multiple alternative-triggering expressions is far more complicated and intricate than just
a single one, and a discussing such complexities is beyond our scope here. Restricting ourselves to subtractive LFs
as defined is expository, but it also allows us to make statements about what the alternatives are to a particular
subtractive LF. See Gotzner & Romoli (2022) and references therein for discussion of the alternatives of sentences
with multiple alternative-triggering expressions.
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For a subtractive LF ¢, with an exception ¥,

aLx(g) == {o[x/x'] | X C D¢}
(p[x/x'] is identical to ¢ except y is replaced by x’)

The idea is that when we say Almost every spellbook is worth reading or Every spellbook but The
Brekenkrieg Grimoire is worth reading, the alternatives under consideration are derived by sub-
stituting different expressions x’ of the same type as the actual exception for that exception. It is
important for us that the alternative x’s are not expressions whose extensions are dependent on
the assignment function for their value. For but, they must be overt exceptions, i.e. expressions
that pick out different sets of entities. For almost and barely, they must be covert expressions
also picking out different sets of entities. Let ), be the ‘actual’ exception in a subtractive LF. If
the alternative x’s were pronouns bearing distinct indices from Y, it’s entirely plausible that the
assignment function wouldn’t have a value for those indices, and they would be undefined. We
could instead, perhaps, define those alternative x’s in terms of different values for the index on
Xn; as far as I can tell, this would be equivalent to what we propose'®**.

We might not want to let all expressions denoting sets of individuals into the fray; we con-

sider requiring that the alternatives be grammatical. That is, since almost doesn’t permit overt

exceptions, so for Almost every spellbook is worth reading, if we restrict ourselves to grammat-

*This general idea of subtractive exception ‘substitution’ could also be treated in a perhaps more traditional way,
in terms focus and a structured meaning analysis of focus alternatives (Rooth 1992, e.g.) Such an approach has been
pursued before for but by Gajewski (2008), who takes but to introduce focus alternatives to its complement. With
almost, it’s clear that focus plays some role. (i), with focus on direct object, conveys that he sprinted throughout the
majority of the race, and then didn’t towards the very end; (ii), with focus on the verb, suggests the manner in which
he ran the whole race was quite like a sprint, but wasn’t, in fact.

i.  Ozalmost sprinted [THE WHOLE RACEg|.

ii. Oz almost [sPRINTEDE| the whole race.

These cases are outside the purview of this chapter, but they motivate more generally a better incorporation of focus
and its semantics in a theory of almost (and barely). We’ll set them aside for now, as well as a structured-meaning
approach. As far as I can tell, the essential contributions of the theory could be couched in terms of such an analysis
without much change to the rest of the theory.

*Some facets of this proposal require clarification. First, Katzir takes alternatives { to some ¢ to be formed, in
part, by substituting expressions in ¢ for other expressions of the same ‘category’ from the lexicon of the language
of ¢. So, we would need to define ‘categories’ for replacement in such a way that allowed exception pronouns and
covert expressions of type (e,t) to be in the same category, and thus that the latter can be substituted for the former.
We also need to grant that there are such covert expressions x as part of the lexicon. Now, these questions apply
not only here, but for a structural alternatives theory when overt pronouns are the loci of alternative construction.
Marty (2017) is the only discussion of which 'm aware that discusses this particular question; a fuller investigation
must be left for future work.

Second, the alternatives to but-sentences in particular would be much more restricted than discussed here, since on
Katzir’s theory, alternatives { to some ¢ cannot be more structurally complex than ¢. This means, more or less, that
alternative exceptions can be no bigger, structurally speaking, than the actual exception. These issues are important,
and a more complete theory invoking structural alternatives would need to address them, but we will make the
simpler assumptions above throughout the rest of the dissertation.
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ical alternatives, then all alternatives will be formed with a covert expression. Similarly, Every
spellbook but The Brekenkrieg Grimoire is worth reading couldn’t have as an alternative Every
spellbook but smokes is worth reading, since it isn’t a grammatical string. We’ll adopt this assump-

tion.

(87) SUBTRACTIVE ALTERNATIVES (final version)
For a subtractive LF ¢, with an exception ¥,

ALT(p) = {(P[X/X/] | X C D & @[x/x] is grammatical}

Now, since all we’re varying across alternatives is the exception, the question of which alter-
natives some subtractive ¢ containing an exception x Strawson entails reduces to whether, for
some ', [¢]®€ Strawson entails [¢[x/x’][#°. We can thus rewrite the contribution of ExH a little

bit to suit our purposes.

(88) For a subtractive LF ¢,
[exm p]e<(w) = 1iff [p]e(w) =1 &Vx'[[o]# # s [o[/x'TIE = [olx/x1]¥<(w) # 1]

This will be how we write the contribution of ExH generally in what follows.

The determiners that our subtractives can modify are important to the determination of Straw-
son entailed alternatives. Quantificational determiners generally give rise to particular inference
patterns as a matter of their semantics. For both every and no, if (89a) is true, then (89b) must also

be true, but from (89a) we cannot conclude that (89c¢) is true.

(89) a. {Every/no} spellbook is worth reading.
b. {Every/ no} long spellbook is worth reading.
c.  {Every/no} book is worth reading.

These inferences arise because of the relationship between the three sets (the set of long spell-
books is a subset of the set of spellbooks, in turn a subset of the set of books), and because every

denotes a function with the following property (Barwise & Cooper 1981; Keenan & Stavi 1986).

(90) A determiner meaning Z is LEFT DOWNWARD ENTAILING iff for any A, A/, and B:
If 2(A)(B) =1& AN C A, then Z(N')(B) = 1.

Neither determiner is Left Upward Entailing:

(91) A determiner meaning & is LEFT UPWARD ENTAILING iff for any A, A', and B:
If 2(A)(B) =1& A C N, then Z(A')(B) = 1.

Some, on the other hand is Left Upward Entailing, but not Left Downward Entailing. If (92a) is

true, then (92¢) must also be true, but from (92a) we cannot conclude that (92b) is true.
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(92) a.  Some spellbook is worth reading.
b.  Some long spellbook is worth reading.

c.  Some book is worth reading.

Other operators can affect these monotonic inferences: negation, for example, itself is Downward

Entailing, and inverts the derived inferences.

(93) a.  It’s not the case that {every/no} spellbook is worth reading.
b.  It’s not the case that {every/no} long spellbook is worth reading.
c.  It’s not the case that {every/no} book is worth reading.

(94) a.  It’s not the case that {some} spellbook is worth reading.
b.  It’s not the case that {some} long spellbook is worth reading.

c.  It’s not the case that {some} book is worth reading.

If (93a) is true, then (93c) is true, but not necessarily (93b); if (94a) is true, then (94b) is true, but
not necessarily (94c). The monotonic inferences flip. Whereas the whole of (89a) is Downward
Entailing with respect to spellbook, in (93a), it is Upward Entailing; we can state a more general,
syntactic notion of entailment that allows us to capture the interplay of operators like negation

and every on monotonic inferences in terms of substitution.

(95) CONJOINABLE TYPES

a. tis a conjoinable type.

b. If T is a conjoinable type, then for all types o, (o, 1) is a conjoinable type.
(96) CROSS-CATEGORIAL ENTAILMENT ‘=’

a. Forp,qoftypet:p=qiffp=1—q=1.

b. For f, g of conjoinable type (o, 1): f = g iff for every x of type o, f(x) = g(x).
(97) CROSS-CATEGORIAL STRAWSON ENTAILMENT ‘=1

a. Forp, qof type t: p =7 q iff [p: 1&q# #] —q=1.

b. For f, g of conjoinable type (c,1): f =1 g iff
for every x of type o, f(x) =51 g(x).

(98) SUBSTITUTION-BASED STATEMENT OF (STRAWSON) ENTAILMENT (after Gajewski 2011)

For a constituent ¢ and some subconstituent a:

a. ¢ is (Strawson) Downward Entailing with respect to o iff

VB{[B]E = 1) [ac]® — [@]&° = sty [p[o/BI]E<}
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b. ¢ is (Strawson) Upward Entailing with respect to o iff
VB{lal® = (1) [BIE = [9]#° =) [olov/pll*<}

Set subtraction is also Downward Entailing with respect to the subtrahend, the exception; a formal

proof can be found in the appendix, but this is also intuitive.

(99) SUBTRACTION IS DOWNWARD ENTAILING WITH RESPECT TO THE SUBTRAHEND
Let X, Y, and A be arbitrary sets; X C Y — A—Y C A—X.

Taking these facts all together, let’s consider the following pair.

(100) a. EXH [q, every spellbook but BG and The Writings of Dramius is worth reading}
b. # ExH [q, some spellbook but BG and The Writings of Dramius is worth reading}

Given how we’ve defined but, alternatives to ¢ in (100a) formed by replacing {BG, WoD} with
a small superset will be entailed. This is because the largest constituent ¢ within the scope of
EXH (‘the whole shebang’) is Downward Entailing with respect to the restrictor of every, and
subtraction is Downward Entailing on the exception—within the scope of ExH, ¢ is Upward
Entailing with respect to the exception. Now, for (100b), where the whole shebang is Downward
Entailing with respect to the restrictor of some, because that determiner is Upward Entailing with
respect to its restrictor, alternatives formed with subsets of {BG, WOD} will be entailed. ¢, in this
case, is Downward Entailing with respect to the exception. These facts are generalize, and we can

state some relevant theorems below.

(101) SUBTRACTIVE ENTAILMENT THEOREMS FOR DETERMINERS
Let ¥ be a subtractive operator, A a quantificational determiner, and o and x be arbitrary
expressions of type (e,t). Let ¢ be a constituent with subconstituent y such that y =

[A [oc [Z X] H or [HZ X] A] oc}. Let g be an assignment function in context c.

a. If ¢ is Upward Entailing (and not Downward Entailing) with respect to the constituent
o, then for all x’ such that X' C X, then [@]&° = [o[x/x']]®*.

b. If ¢ is Downward Entailing (and not Upward Entailing) with respect to the constituent
o, then for all " such that X C X’ & X’ is small in c, then [¢]& = [o[x/x']]®*.

These theorems are proven in the appendix more thoroughly, and we will utilize them in the
remainder of the dissertation. However, it’s important make a few comments on these theorems.
First, note that they are not exhaustive: for a given quantificational determiner, there very well
could be additional entailments, so we’ll need to consider those alternatives not already covered
by the theorems when necessary. Second, the size constraint plays an important role where su-

persets are entailed. For our subtractive operators, which require their exception to be small, it’s
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not just any old supersets that can be entailed—it’s small supersets'®>. This will come up later.
Finally, note that for any ¢, V, if ¢ strictly entails {, ¢ certainly Strawson entails {. If ¢ doesn’t
Strawson entail |/, then ¢ doesn’t strictly entail ¢, either. So, the entailment theorems above,

defined in terms of strict entailment, imply Strawson entailment.

2.2.2.3 Some assembly required

Now let’s put the pieces together.

(102) Almost every spellbook is worth reading.
a. TN
EXH ®
11
o Proiys

worth reading
ever
almost  xo Y N

spellbook  proj; ¢
b. [(102a)]#¢(w) is defined only if g(2) C Sy; where defined:
[(r02a)]E(w) = 1 iff (i) & (i) = 1
i. Sy—g2) € WRy, & smALL.(g(2))

ii. Vx'[[o]& # st [olx2/x'11E — [o[x/x'1]&(w) # 1]

(102bi) is true just in case g(2) is small in ¢ and if every spellbook in w, less g(2), is worth reading
in w. Now we need to know which alternatives are entailed. Since ¢ is Downward Entailing
with respect to a, the restrictor of every, we know that alternatives that are formed with small
supersets of g(2) will be entailed, and therefore Strawson entailed, given the theorems in (101).
Are alternatives formed with any other x’ Strawson entailed?

Suppose that being a spellbook entails being worth reading, i.e. in all worlds w’, S,y C WR,,.
In such a situation, [@]®¢ entails [ExH ¢]®°. Here’s why. [@]®<(w), i.e. (102bi), is true just in case
g(2) is small. (102bii) is true necessarily, since for all X', if X’ is small, then the antecedent is false,
and if it’s not small, the consequent is true. [EXH ¢]®* is thus entailed by [¢]®(w), and so by the
Economy Constraint, ExXH is not licensed, and by almost is not licensed, either! So, almost cannot
be licensed when modifying a necessarily true quantificational claim*. Let’s make the following

assumption:

?0f course, a subset of any small subset is itself small.
*Here’s another, perhaps more intuitive case that reflects the kind of situation we’re describing:
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(103) TRUTH VALUES FOR UNLICENSED SUBTRACTIVES

For all worlds w, if a subtractive operator present in some ¢ is not licensed in ¢, then

[p]&c(w) = #.

Ideally, we’d have a compositional system that allows us to derive this result. At this point it’s
just stipulative, but it’s meant to reflect that an LF that is ill-formed cannot receive a truth value.

Now let’s assume, as is perhaps reasonable, that being a spellbook doesn’t entail being worth
reading. So, there is a world w’ where Sy» Z WR,,. Alternatives formed with y’ such that g(2) C
X’ and which are small in ¢ are entailed, given our entailment theorem; any x’ such that X" isn’t
small in ¢ isn’t entailed, but it will not falsify (102bii). All X’ that have an empty intersection with
Sy also will not falsify (102bii).

What about small non-supersets X'—are they entailed? No. To show this, given a context c,
we need to find a world w’ such that 5, —g(2) C WR, & smALL.(g(2)) is true, but for an arbitrary
x" such that X Z X’ & sMALL(X), Sy —X’ C WRyy is not. A world w* where X = S, N WRy, is
such a world. Since every X’ such that X € X’ lacks an element in X, call it a, Sy+—X’ contains
a, but since a € WRy, Sy« —X € WRy«. Non-supersets are not entailed (as with other proofs, a
fuller version can be found in the appendix). We can rewrite the truth conditions in (102b) as in

(102b").

(102b')  [(102)[®¢(w) is defined only if g(2) C S,,; where defined:
[(02)]Ew) = 1 iff (i) & (i) = 1
i S54y—g2) € WRy & sMALL.(g(2))
i VX’Hg(Q) Z X & sMALL(X') & X' C SW] —Sy—X & W[RW]

These are just the truth conditions proposed in von Fintel (1993), with the additional contribution
of the size constraint and the subset presupposition. (i) & (ii) thus both hold iff the exception,
g(2), contains all and only the spellbooks not worth reading in w, and is small in the context of
utterance.

First, assume everything in g(2) is a spellbook; (102b’) is undefined otherwise. (i), of course,
requires that every other spellbook be worth reading, and that g(2) is a small-enough exception
in the context. This alone doesn’t require that everything in g(2) is not worth reading, but (ii)
does. For each small X’ that isn’t a superset of g(2), S,,—X’ contains at least one element in g(2),
and for (ii) to be true, all such X’ must leave in S, some spellbook not worth reading. Since (i)

requires that every spellbook not in g(2) be worth reading, the unworthy spellbook must be in

(1) # Every novel but Anna Karenina is a book.

In all worlds, every novel is, of course, a book. Subtraction here contributes nothing; the logic described above thus
applies. See the appendix for a fuller proof.
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g(2). (i) & (ii) thus require that not every spellbook is worth reading (the poLAR inference) but
that the small size of the exception means we’re not far from the truth of every spellbook is worth
reading (the PROXIMAL inference).

Note that we predict falsity if every spellbook is in fact worth reading in w, even though being
a spellbook doesn’t entail being worth reading. Assume that every spellbook is worth reading
in w: (102b'i) is true, but then all small X’ that don’t contain everything in g(2) make (102b'ii)
false—they would need to add elements to 5, to satisfy the consequent, but that’s simply not in
subtraction’s power to do. So, if (102bi) is true in w because every spellbook is worth reading,
(102b'ii) is false, and therefore their conjunction is false.

Now let’s try no.

(104) [no] = [AAAB.ANB=0] = [AAAB. A C B]
(105) Almost no spellbook is worth reading.

a. /\

EXH 0]
114
a Pproyis
no worth readin
almost  xo T &

spellbook  proj s
b. [(1052)]#¢(w) is defined only if g(2) C S; where defined:

[(1052)]*(w) = 1 iff (i) & (i) = 1
i. Sy—g(2) NWR, = 0 & smALL.(g(2))
ii. Vx'[[9]#¢ =st [olxo/x11% — [olx2/x"1]#(w) # 1]

For arbitrary o, B, and x, [[[[[almost x] no| a] B]]&¢ = [[[[[almost ] every] a] [not B]]]&*.
So, the logic for almost every applies here; we won’t rehash it.
Exceptive but doesn’t modify existential some, as we’'ve seen. What does our analysis predict

for almost?

(106) # Almost some spellbook is worth reading.
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EXH ¢

11

roq1
S brous

some
almost  y» N

spellbook  proy;
b. [(106a)]#¢(w) is defined only if g(2) C S,; where defined:

[(1062)]&(w) = 1 iff (i) & (ii) = 1
i Sy—g(2) NWRy, # ) & sMaLL.(g(2))
ii. Vx'[[o]®¢ % st lolx2/x118¢ = [olxa/x'1]E (W) # 1]

worth reading

As we might expect, if being a spellbook entails being worth reading, (106bi) is true just in case
g(2) is small, i.e. it contains less than half the spellbooks. Grant that this is the case. Every small
X' is entailed, then, and any big X’ satisfies (106bii). The truth of (106bi) guarantees the truth of
(106bii) if being a spellbook entails being worth reading, and so ExH is otiose, and isn’t licensed.
Therefore, almost isn’t licensed here.

Setting aside such an entailment between spellbooks and worthwhile reading, then, (106bi) is
true in worlds where some non-g(2) spellbook is worth reading, as long as g(2) is small in c. Sets X’
that are too big aren’t entailed, but that’s just fine—they’ll satisfy (106bii). ¢ is Upward Entailing
with respect to o, since some is Upward Entailing on its restrictor, and given the entailment
theorems, those x’ denoting subsets of g(2) will yield entailed alternatives. What about small,
non-subsets of g(2)? These include proper supersets and wholly disjoint sets'*. For such sets X/,
all we need to do is construct a world w where S,/ —g(2) N WR,, # () and X’ O S,y N WR,,
are both true in order to show that such X’ are not entailed; see the appendix for proofs of their
existence. Only subsets of g(2) are entailed, then. The truth conditions above are equivalent to

the following:

(106b")  [(106a)]#(w) is defined only if g(2) C S,;; where defined:
[(ro6a)JE<(w) = 1 iff () & (i) = 1
i. Sy—g(2) NWR, # 0 & sMALL:(g(2))
i VR [[X € g(2) & sMALL(X)) & X' C Sy] = Sy—% NWR,, = 0]

“If the exception X is larger than a singleton, such sets would also include those that merely overlap X.
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These truth conditions can never be true, provided that g(2) is non-empty. We’ll return to this
non-emptiness assumption momentarily, but make it now.

Now, suppose that in w, every spellbook is worth reading. This is, of course, distinct from the
case of spellbookhood entailing worthiness, but a reader’s suspicion that this won’t turn out well
for the truth conditions would be justified. In such a situation, (106b’i) will be true just in case
g(2) is small. This means that there must be at least three spellbooks, given the felicity conditions
imposed by the size constraint. Since only subsets of g(2) are entailed, subtraction of any small X’
that does not contain an element in g(2), will make (106b'ii) false. Call one of the other spellbooks
a: SW—{a} contains an element in g(2), by assumption a member of WR,,. We’ll predict falsity,
then, if every spellbook is worth reading, in w.

Let’s grant, then, that not every spellbook is worth reading in w. Given (106b’i), S, must
include one spellbook that is in WR and is not in g(2). Call it a. The size constraint means that S,
must include at least two spellbooks not in g(2); that means there is at least one other spellbook
in Sy, not in g(2), call it b. Let X' = {b}: this is not a subset of g(2), and so satisfies the antecedent
of (106b'ii), but that alternative is false, since S, —X’ includes a, a spellbook worth reading.

It is important to note that the size constraint does crucial work here in restricting us to
worlds where there are least three spellbooks. Suppose now that the size constraint didn’t exist;
we actually predict these truth conditions to be coherent if there are exactly two spellbooks, one
of which is worth reading, as Gajewski (2013) noticed"™. In such a world w*, where g(2) contains
the unworthy read, (106b’i) is true, and there are two alternatives that are subsets of S.: the
set containing the worthy read, and the empty set. The latter is entailed, and the former is not,
but it does not falsify (106b'ii), since it removes the only spellbook worth reading from Sy.. So
we’d predict truth without the size constraint, and hence that this should be acceptable. Note
that this issue arises from the fact that EXH negates non-entailed alternatives. The monotonicity
of the determiner crucially changes the entailed alternatives, and hence which alternatives ExH
requires are not true—here, they are non-subsets. The Fintelian semantics is static: his but, and an
analogous almost, always quantifies over non-supersets of the exception, so the empty set always
causes falsity for existential quantificational determiners modified by subtractives, even in when
the restrictor has a domain of two. It’s a function of the move to ExH in the end, so it’s good that
we already have independent motivation for the size constraint’s role.

Now we need to address that non-emptiness assumption. It turns out that it is crucial. Suppose
that g(2) is empty. If there is exactly one spellbook, and it’s worth reading, we can expect truth
here, in spite of the small domain. The empty set has no cardinality, so plausibly its size is 0. That

is small in any context given our definitions.

(107) THE SIZE CONSTRAINT

Gajewski’s solution is different, and discussed in §2.2.3.3.
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Let c be a context of utterance, pi . be a measure function, determined by the context, map-
ping sets to numerical values representing their size, and n. be a contextually determined
numerical threshold for size.

sMALL:(X) = 1 iff p.(X) <n..

(108) MAXIMAL SIZE OF n,

Let ¢ be a constituent with subconstituent y such thaty = [A [oc [Z )d ]] or H[Z X} A} oc],
where X is a subtractive operator, A is quantificational determiner, and o and x be expres-
sions whose denotations characterize A and X, respectively.

For any context c, an utterance of ¢ in c is felicitous only if n. < %(pC(A))

This means, though, that there is only one alternative X’ that is a subset of 5, and which sat-
isfies the antecedent in (106b'ii), and because it is not Strawson-entailed, its subtraction must
remove all worthy reads from the set of spellbooks, which it does, of course. We predict truth,
unfortunately*!

Here’s how we’ll rectify this. First note that some requirement like this is probably natural
anyways—to utter Almost everyone is here is odd if you know that everyone is, in fact, here, and
it can naturally elicit a response of Who isn’t here?, which suggests that a hearer should infer
the existence of exceptions from the original statement. If we were more careful, we would take
time to investigate the status of this requirement further, but for now, we’ll simply take it to be
a presupposition on our subtractive operators. It would have been nice to derive this, instead of

stipulate it, but here we are.

(109) [almost]|# = AXAZAAAB: X C A & X # (). Z(A—X)(B) & sMALL(X)
~——
NEW!

Barely and but will change accordingly. Now, this changes the logic of our analysis in two ways.
First, obviously, we don’t need to reason about empty exceptions anymore. That saves us some
work! Second, we no longer can point to the empty set as the alternative exception that gets us
the polar inference for almost every a p and almost no o 3, for example. On either option, it’s
hard-wired in that such an exception yields falsity or undefinedness, and we don’t derive that
that’s the case. Instead, then, the analysis generates the polar inference even more indirectly—
the negation of all non-entailed alternatives, conjoined together, requires that the polar inference
holds.

We gave almost some the best shot, but on this analysis, we cannot generate truth. Either al-

most is not licensed, in the event that being a spellbook entails being worth reading, or it yields

“This is, as far as I can tell, only an issue for almost some/some...but, and only where there is exactly one element
in the restrictor and the exception is empty, but it’s an irksome problem nonetheless, and the solutions will extend
should it arise with other determiners.
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falsity across the board. The latter occurs precisely because of the way the monotonicity of some
affects entailments. With every and no, the analysis requires that the exception X must be the
smallest exception because (small) supersets X’ of that exception are entailed, and because EXH
requires that all non-supersets, must yield falsity when swapped out for the exception. In particu-
lar, substituting subsets of X—smaller sets—must make the subtractive sentence false. With some,
we can find no such smallest exception. Entailments are reversed, so subsets of X are entailed,
but then there are a good too many small, non-entailed X’ that work just as well as X, but which
muck up ExH. For almost some, there is no smallest non-empty exception, and there couldn’t be
any.

Let’s turn to barely. Its distribution is complementary to almost and but with respect to quan-
tificational determiners. It doesn’t modify every or no, and while it doesn’t modify some, it does
modify NPI any, an existential quantifier (Kadmon & Landman 1993, a.o.). This distribution, as
we’ll see, falls naturally from the idea that barely is a subtractive operator just like almost and
but. The central difference is that barely further contributes negation (note the addition of the

non-emptiness presupposition).

(110) [barely]®¢ = AXAZAAAB: X C A & X # (). ~D(A—X)(B) & sMALL(X)
——

NEW!

Barely, on this view, modifies a quantificational claim by encoding that the small exception is
all that prevents the quantification from being false. Intuitively, (112) is true just in case some
spellbook, maybe a few, are worth reading, but if we set aside those, no spellbook is'’. Putting the

pieces together, we’ll derive the truth conditions in (112b).

(111) [anynpr] = AAeyABey. ANB# ()

(112) Barely any spellbooks are worth reading.

a. /\

EXH ¢
115
proi1is
~ worth reading
barely x2 any T

spellbooks  proy;

"Plural morphology seems to be necessary for some speakers, but those that admit both singular and plural have
not reported any intuitive difference; we’ll ignore it for now, but will return to it when we discuss numerals in
Chapter 4.
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b. [(112a)]#(w) is defined only if g(2) C S,, & g(2) # 0); where defined:
[12a)]E(w) = 1iff () & Gi) = 1
i Sy—g2) NWR,, = ) & sMaLL(g(2))
ii. V' [[o]# =sr [olxa/x'T1¥ — [olx2/x11B<(w) # 1]

These truth conditions are equivalent to those we derived for Almost no spellbook is worth read-
ing! Because barely contributes negation, when it modifies an existential quantifier, the result
is equivalent to almost no. This equivalence makes sense intuitively. (105) and (112) might have
different pragmatic effects, or contexts where one is more felicitous than the other, but more or
less they seem to convey the same thing: precious few spellbooks are worth reading. The logic of
the truth conditions follows that of almost no, which, as we discussed above, follow the logic of
almost every. As the reader might reasonably thus expect, if barely any is semantically equivalent

to almost no, then barely no is equivalent to almost some. This is borne out.

(113) # Barely no spellbook is worth reading.

a. /\

EXH ®
11,
o proll,s
barely ys no /\ worth reading

spellbook  proy;
b. [(113a)]#(w) is defined only if g(2) C S,, & g(2) # 0); where defined:
[(1132)]8(w) = 1 iff (i) & (i) = 1
i. Sy—g(2) N WRy # () & sMALL.(g(2))
ii. VX [[X Z g(2) & sMALL(X) & X' C Sy ] = Sy—X' N WR, = 0]

Barely’s negation reverses the monotonicity of no, and a is now in an Upward Entailing environ-
ment with respect to ¢. As with almost some, then, these truth conditions are contradictory, and

necessarily so, but we leave it to the reader to verify this.

This analysis has no problem predicting the across-the-board infelicity of barely every, as we

should expect.

(114) # Barely every spellbook is worth reading.
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EXH ¢

11

Proiis

o

barely xs every s

spellbook  projy s
b. [(114a)]#¢(w) is defined only if g(2) C S,& g(2) # 0; where defined:
[(1aa)]E¢(w) = 1 iff () & (i) = 1
i Sy—g2) € WR,, & smALL.(g(2))
ii. VX[[X € g(2) & sMALL(X) & X' C S| = Sy—X' C WR]

worth reading

These truth conditions are equivalent to Almost some spellbook is unworthy of reading, where
[unworthy of reading]#¢(w) = WR,,. As such, these truth conditions cannot yield truth.

A key thread running through this discussion is monotonicity. In a subtractive LF ¢ that is
sister to ExH, the monotonicity of ¢ with respect to the restrictor o from which the exception is
subtracted constrains which alternatives to ¢ are entailed, as we’ve seen. This tells us something
essential about where we might expect subtractives to occur—that is, which determiners our
subtractives can modify—as a function of entailed alternative exceptions. We can find a smallest,
non-empty exception when (small) supersets of an exception are entailed, and this is the case
when ¢ is Downward Entailing with respect to a. This obtains, as we’ve seen, when almost and
but modify every and no, and barely, entailment-reversing operator that it is, modifies NPI any.
When subsets of an exception are entailed, i.e. when ¢ is Upward Entailing with respect to «,
we have no luck finding a smallest, non-empty exception. This is the case when almost and but

modify some, and barely modifies every and no. The generalization seems to be the following:

(115) A subtractive operator ¥ can modify a quantificational determiner A in an LF ¢ only if ¢

is Downward Entailing with respect to the constituent a such that « is the restrictor of A.

Now;, this is a stronger generalization than some readers might find warranted—after all, we’ve

ignored non-monotonic determiners, like exactly one hundred. Let’s take a brief look.

(116) [exactly one hundred]® = APAQ. |P N Q| = 100

(117) a. # Exactly one hundred vampires but Spike attacked the high school.
b.  Almost exactly one hundred vampires attacked the high school.
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These data are, at first glance, perplexing. First, we’ve claimed that for all intents and purposes,
almost and but are equivalent, so why is there a contrast in their acceptability here? Second,
since exactly one hundred is non-monotonic, why are we seeing almost compatible at all? We
won’t have a complete answer to this question in the dissertation, but we can give a partial
answer. First, note that in a subtractive LF ¢, if ¢ is non-monotonic with respect to the restrictor
a of a determiner modified by a subtractive operator, then we can’t conclude that any alternative
exceptions are entailed prima facie. Now, if the determiner is exactly one hundred, it is easy to see
that subtraction of a particular exception set X from the restrictor does not allow us to conclude
that any alternative exceptions in particular are entailed. That’s not inherently a problem, but
rather, just a fact.

Now note that exactly one hundred is a complex determiner. There are two parts: exactly
and the numeral. The entry above obscures that, and treats exactly one hundred as an unanalyz-
able whole. That’s probably not right, even without thinking about subtractives. Furthermore,
non-monotonicity seems to be a property of compositionally complex determiners—other cases
include some but not all, between two and four, and an even number of —though I'm not sure I
would defend this in a court of law at this juncture. However, the point I'd like to make is that
there is more than enough on the surface to suggest that we need to be more careful when we
think about non-monotonic “determiners” The compositional structure of exactly one hundred
might lend itself to modification by almost, but not but. We’ll discuss numerals in more detail in
Chapter 4, and we’ll have some cursory thoughts about exactly towards the end of the disser-
tation. The reader of this brief, woefully insufficient discussion of non-monotonicity will be left
with a challenge: find a true, mono-morphemic determiner that is non-monotonic, and then see
if almost or but can modify it. We’re going to assume this is not possible, and go ahead with the

generalization above.

2.2.3 Further details
2.2.3.1  How do we get unacceptability?

So far, we’ve not actually stated how we get the unacceptability, the # judgement, for some o
but x B, almost x some a. 3, barely x no a B, and barely x every a . As we’ve seen, they simply
cannot be true; either the subtractive operators themselves aren’t licensed, in which case we
call them undefined, or else they generate falsity necessarily. Necessary falsity alone doesn’t
guarantee ungrammaticality, though, and Gajewski (2002), aiming to explain precisely why on
von Fintel (1993)’s theory of exceptives that some o but x P is ungrammatical, proposes that when
we abstract away from world-dependent expressions, the LF of such a sentence is false under all

possible replacements of a, 3, and y. It is what he calls ‘L(ogically)-analytic, and he proposes the
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following principle.

(118) L-ANALYTICITY (first version)
A LF constituent o of type (s,t) is L-ANALYTIC iff for all worlds w’/, o’s logical skeleton

receives the denotation 1 under every variable assignment in W/, or it receives 0/#.
The logical skeleton of an LF is derived through the following algorithm.

(119) a. Identify the maximal constituents containing no logical items.

b. Replace each such constituent with a distinct variable of the same type.
Finally, the following principle links L-analyticity and ungrammaticality.

(1 20) L-ANALYTICITY IMPLIES UNGRAMMATICALITY

A sentence is ungrammatical if its Logical Form contains a L-analytic constituent.

This would allow us to more formally connect the fact that the relevant combinations of subtrac-
tive operators and quantificational determiners yield ungrammaticality, rather than just simply
falsity across the board. However, the size constraint is problematic for an appeal to L-Analyticity.
The contextual, world-dependent information we need to know in order to evaluate whether the
size constraint is satisfied means that more than just logical facts are necessary to determine the
infelicity of Almost some spellbook is worth reading. It’s not necessarily true or necessarily false
in virtue of its logical skeleton—it’s concrete facts that make it infelicitous. So, while there are
perhaps some cases where we can appeal to L-Analyticity, this is not one of them. We’ll have to
accept, for now, that Almost some spellbook is worth reading isn’t ungrammatical, but rather, that

it simply cannot be true on any assignment or in any context. Perhaps that’s enough for now.

2.2.3.2 The covert exception pronoun

In our proposal for almost and barely, the exception is taken to be a covert pronoun, and in
particular, a free pronoun. Free pronouns, like she below, require a context that makes a particular

referent salient.
(121) She killed the vampire.

One might think, then, that the utterer of (122) must know precisely which students skipped out
on the pep rally.

(122) Almost every student at Sunnydale High attended the pep rally.
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While it’s entirely possible that the speaker of (122) knows who is missing, it’s obviously not a
requirement. One can imagine looking out onto the bleachers where the students sit and noticing
that some pockets aren’t completely packed; this is enough to warrant uttering (122). The same

goes for barely, in exactly the same context.
(123) Barely any students at Sunnydale High skipped the pep rally.

These considerations might push us to treat the exception as existentially quantified, rather than
pronominal. Should this work, such a proposal would capture the intuition that one needn’t know
the identity of the exception in an almost or barely sentence to utter it, though of course one
could. In what follows, we’ll show that some initially plausible versions of such an alternative are
untenable, and where they are, they’re functionally equivalent to our proposal. We’ll then suggest
that, following work in the literature on tense, it’s reasonable to assume that at least some kinds
of pronouns don’t require the precise identity of their extensions to be known in order to use
them appropriately.

What does an existential alternative to our proposal look like? Well, almost itself could exis-
tentially quantify over exceptions, or else it could be closed within the scope of ExH. Let’s start

with the first option™®.

(124) [almost]®® = AZAAAB. IX [.@(A—X)([B) & SMALLC(X)}

(125) Almost every spellbook is worth reading.

a. /\

EXH ¢
115
proi1is
almost every spellbook proj worth reading

b [(125)[#(w) = 1 iff (i) & (i) = 1
i IR[Sw—X C WR, & SMALL:(X)]
ii. VY[ € aLx(e) & [o]* # s [W]* — [w]E(w) # 1]

(125bi) says there is some small set X exception such that, once it is subtracted from S, every

remaining spellbook is worth reading. A problem arises, though, with (125bii). It’s not clear that

®*Qur presuppositions are suppressed here for simplicity’s sake.
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we can form alternatives in the way we have so far, since there is no constituent x that can be re-
placed if the exception is existentially introduced by almost itself. Our alternatives are structural!

We defined them in terms of substitution of expressions x; for some subtractive ¢ containing x:

(126) aLT(p) = {¢[x/x'] | X' € D. & ¢[x/x/] is grammatical }
(p[x/x’] is identical to ¢ except yis replaced by x’)

There simply is no constituent we can substitute. If we want to hold onto this formulation for
alternatives—we’ll see in the next section why we need to—we’ll have to do something else.
So what happens if instead, we had existential closure higher, but within Exa? We’ll revert

to our earlier almost, and let’s assume that the index on Jy acts as a binder for x» below it.
(127) RN

EXH o)

11,

Proiis

every spellbook proj; worth reading

almost  xo
(128) [(127)]5°(w) = 1 iff (a) & (b) = 1
a. X [SW—X CWRy & SMALLC(X)]
b. VY [y € aLT(p) & [p]#° # st [W]E — [W]e(w) # 1]
It is, I think, still rather difficult to reconcile (128) with our proposal for subtractive alternatives.
The exception ¥ is ultimately bound by Jx, but it’s still an expression at LF that can be substi-

tuted. If it is substituted all on its own, leaving Jx, to quantify vacuously, then we can use our

subtractive alternatives. Essentially:

(129) (128b) = Vx'[[9]e° Z [o[x2/x'1]E — [olx2/x'][¥(w) # 1]

Now the task is to figure out which y’s, substituted for ¥, yield entailed alternatives. The propo-
sition denoted by ¢—given in (130a)—doesn’t give us access to anything about X beyond its exis-
tence. The vacuity of 3x» when we move to the alternatives means that for any y’, the substitution

of 2 for ¥/, the proposition denoted by ¢[x2/x’] is as in (130b).

(130) a. [o]#c = {w | EIX[SW—X C WRy & SMALLC(X)]}
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b. For any x/, [¢[x2/x']]#¢ = {w | Sv—X' C WR,, & sMALL(X) }

It seems that in fact for each x’ such that (130b) is true, (130a) is true, but not vice versa. It’s
actually not clear, though, that we can conclude anything from the existential quantification to
the specific x’'s—in fact, it’s the reverse. Each alternative in (130b) entails (130a). It seems that
(130a) doesn’t entail any alternatives, and since no alternatives are entailed, we’ll have to negate
them all. We’ll derive a contradiction, then: there must be some X such that its removal from S,
yields a subset of WRy, by (130bi), but no X’ is such that its removal from S, yields a subset of
WRy, by (130b). This cannot work.

What does work is existential closure above ExH; X in (132a) and (132b) is within the scope
of AX.

(131)
ElXQ

11,

PV011,s

every spellbook proj; worth reading

almost o
(132)  [(131)]#(w) = 1 iff FX[(a) & (b) = 1]
a. 5,— X C WR,, & sMALL.(X)
b. VY[ € aLt(p) & [p]# 7 st [Y]¥° — [y]e(w) # 1]

Here our subtractive alternatives work. Within the scope of ExH, entailment is checked for some

particular X, and everything else proceeds as if we merely had the pronoun. So,

(133)  [(131)]#°(w) = 1 iff 3X[(a) & (b) = 1]
a. S5,— X CWR,, & sMALL.(X)
b. VX' [X Z K & sMALL(X') — Sy—X' € WRy]

These truth conditions, of course, are just what we derived on the pronominal view of the excep-
tion, but we’ve just bound the pronoun outside the scope of ExH. Not much else seems different.

At the end of the day, what’s the difference between choosing between such high existential
closure and assuming there’s a pronoun, as we have? Really, it doesn’t appear that there’s much

of any. There are parallels in other domains. Consider this:
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(134) Buffy killed the vampire.

To utter (134), presumably there is some salient window in which we know she did the deed,
but we needn’t know precisely when any such an event occurred. Shockingly, there are both
quantificational and pronominal theories of tense that allow us to capture these intuitions®. Both
take the past tense, encoded by a mopheme PAsT, to relate the time of the utterance to some past
time at which a predicate held. Here are two entries for such a morpheme, quantificational and
pronominal, with a temporally-sensitive meaning of the tenseless kill the vampire given as well
(let’s be vague about which preposition is most appropriate for reading the denotation; if you're

really worried about it, assume it’s ‘at’). The semantic type of times is i.

(135) [PASTR & =AAgy. [t <t. &t € R &t € A (it,t)
(136) [pAsT;]®C is defined only if g(i) < t.; where defined:
[pasTi[< = g(i) i

(137) [Bufty kill the vampire]#° = At;. KiLL(vampire)(Buffy)(t)

Both proposals require that the time of Buffy’s killing precede the time of the context for (134).
The quantificational theory requires that some time t’ that is before the time of the context (t.)
and within the contextually-determined restricted set of times (R.) such that t' € A. The pronom-
inal view restricts times via the presupposition, and given its sensitivity to the (contextually-
determined!) assignment function, it is plausibly contextually restricted as well. Does either pro-
posal ultimately require explicit knowledge of the precise time, down to the moment? It would
seem not—all that’s required on either view is that the speaker know there is some past time
when the killing occurred, or some time window in which it did.

Even personal pronouns don’t always require that we be able to identify with precision their

extension in order to use them®. Consider an utterance of the following.
(138) Many vampires attacked Sunnydale High. Now they regret their decision.

We needn’t be able to identify the attacking vampires in a lineup in order for the use of they to

be felicitous. We can, incidentally, identify them with a definite description:

(139) Many vampires attacked Sunnydale High. Now the vampires that attacked the school

regret their decision.

It seems reasonable, then, when considering exceptions in almost and barely sentences, to assume

a pronominal view without it requiring utterers to know the exact identity of the pronoun. It

Prior (1962) is an early proponent of the first view; Partee (1973) for the latter. The literature on the semantics of
tense is dense, and I won’t be able to do it any kind of justice here; see Ogihara & Kusumoto (2020) for an overview.
**Thanks to Roger Schwarzschild for this argument.
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suffices that the pronoun does have an identity, and we can reason well enough based on that
assumption. Perhaps this is, in tandem with the size constraint, is what gives us the vagueness
of almost and barely—if we have one hundred students, almost every student attended graduation
could be truthfully uttered if, looking out onto the masses, we see the vast majority of them.
Some are missing, sure, but granting that there is some small group of them (four or five, maybe)
missing, we can reason based on the assumption that there is a definite group missing. We just

don’t know precisely what the group is.

2.2.3.3 The utility of the size constraint

In this section, we will address a useful contribution the size constraint makes as part of the
meaning of but and almost to rule out a potentially strange case. This case arises because of some
particular assumptions made by two alternative versions of our proposal—Gajewski (2013) and
Hirsch (2016)—and we submit that the most parsimonious way to solve this problem is assume
the size constraint is active.

Recall our proposal that but imposes contextually-determined constraints on the size of the

exception was motivated in part by the oddity of (140a).

(140) CONTEXT: Anya, Buffy, Cordelia, Dawn, Ethan, Faith, Giles, Harmony, Kendra, and Larry
are the ten students in my class; Anya, Bufty, and Cordelia are the only students who

passed the exam.

a. # Every student but Dawn, Ethan, Faith, Giles, Harmony, Kendra, and Larry passed.
We proposed that but encodes in addition to set subtraction the size constraint below.

(141) THE SIZE CONSTRAINT
Let c be a context of utterance, pi be a measure function, determined by the context, map-
ping sets to numerical values representing their size, and n. be a contextually determined
numerical threshold for size.
SMALL:(X) = 1 iff p.(X) < n..

(142) MAXIMAL SIZE OF n,
Let ¢ be a constituent with subconstituent y such thaty = [A [oc [Z X} H or H[Z X} A} oc],
where ¥ is a subtractive operator, A is quantificational determiner, and o and y be expres-
sions whose denotations characterize A and X, respectively.

For any context c, an utterance of ¢ in c is felicitous only if n. < %(pc(/&))

The size constraint requires that the size of X be less than half the size of A. When considering

sets of atomic entities, the size is plausibly determined by cardinality; if the cardinality of A is 10,
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then in order to count as small, X must contain 4 or fewer atoms. This, of course, is the largest
the set can be—the context, we presume, can require it to be even smaller.

Gajewski (2013) solves the problem of domains of two by restricting the subtractive alterna-
tives over which ExH quantifies further than we have assumed. Gajewski takes but to have the

following denotation, of a lower type than ours™.
(143) [butg]#® = AXAA: X C A. A—X

This entry presupposes that the exception is a subset of the set from which it is subtracted, just like
our entry, and the rest of the composition proceeds as ours did up until ExH. Gajewski restricts

possible alternatives to those formed with subsets of the exception.

(144) SUBTRACTIVE ALTERNATIVES (Gajewski’s version)
For a subtractive LF ¢, with an exception x, aLT(¢) = {¢[x/x] | X' € X}
(p[x/x’] is identical to ¢ except y is replaced by ')
(145) # Some spellbook butg BG is worth reading.
a. [(145)]8¢(w) is defined only if {BG} C Sy; where defined:
[(145)]&<(w) = 1 iff (i) & (ii) = 1
i Syv—{BG} NWR, #0
ii. VY [y € arT(e) & [o]*° # st [W]# — [Y]*<(w) # 1]

The contribution of ExH is different: given that the alternatives are restricted to subsets of the
actual exception, it reflects that the presupposition encoded by but projects for each alternative.
If we grant that this is a viable alternative, it’s entailed, in which case there are no alternatives to
negate. If we don’t allow it as a viable alternative, then still, there are none to negate. Note that
for any exception larger than a singleton, all alternatives will be entailed, simply as a matter of
the monotonicity of some in ¢. This holds, too, even when the restrictor has a cardinality of two,
since all that matters is the exception and its subsets. So no matter what, when we’ve got some,
there will be no non-entailed alternatives. So, since [¢]#€ entails [EXH ¢]®* in this case, EXH is
not licensed, and we predict infelicity. Gajewski’s explanation, of course, relies essentially on the
strong restriction to alternatives. Since we take the size constraint to be independently relevant
and active, we don’t find the additional restrictions to alternatives necessary at this junction.
However, adopting it would indeed allow us to appeal to L-Analyticity in order to claim (145) is
ungrammatical.

Hirsch (2016) also aims to solve the problem of domains of two via the following constraint

on existential quantifiers.

*!See the discussion in §2.2.2.1.
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(146) ANTI-SINGLETON
Existential quantification is infelicitous when the speaker and hearer can know that the
restrictor of the existential is necessarily a singleton without knowing the extension of

the restricting NP or the conversationally determined domain of quantification.

I have nothing terribly insightful to say about this principle. It does what it should: when the
restrictor of some has a cardinality of two, then subtractives cannot modify it, because the re-
sulting existential quantification would range over a singleton. Our size constraint is, as we’ve
claimed, independently warranted, and takes care of the problem that is created by domains of
two without needing any additional restrictions on the alternatives or constraints on the kinds
of domains over which we can quantify, however, so we’ll continue to assume that it is relevant

and useful.

2.2.3.4 Subtractive alternatives are necessary for barely

In proposing a semantics for almost and barely modeled after that of but, we took the alternatives
to be constructed just as they are for but, structurally, by replacing the exception with other

expressions of the same type.

(147) SUBTRACTIVE ALTERNATIVES
For a subtractive LF ¢, with an exception ¥,

ALT(p) := {(P[X/X/] | X C D & @[x/x] is grammatical}

This is a crucial component of the analysis; this is precisely how we derive the polar inference
for all three subtractive operators, and derive that the exception is the smallest (non-empty!)
exception. This is absolutely necessary for but, as shown by von Fintel (1993), but it is novel to
propose for almost and barely, and needs defending.

In their analyses of almost, both Spector (2014) and Crnic¢ (2018) propose that the lone (rele-
vant) alternative to some ¢ containing almost is formed by eliminating that subtractive modifier
from the structure. Let’s call this a classical view of the modifier’s alternatives. It’s essentially
what the literature has generally assumed about almost, and it is intuitive in a sense—part of
why we say almost ¢ is to convey that ¢ is false. We simply use ExH to derive that inference.
In the context of our current proposal, we’ll assume the classical view requires eliminating the

exception pronoun as well. That is, the alternative to ¢ in (148) is just { in (149).
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(148) /\

EXH ¢

11,

proll,s
every spellbook projq worth reading
almost  y» :
(149) "
11,
every pro1s

spellbook  projy s worth reading

EXH, of course, requires non-entailed alternatives to be false or undefined, and since [¢]# doesn’t

entail [{]#¢, the latter must not be true. For almost sentences, this proposal works just fine.

(150) [(148)]®°(w) = 1 iff Sy—g(2) € WR,, & sMALL.(g(2)) & Sv £ WRy,
lole<w) = 1 [W]E<w) # 1

These truth conditions seem adequate. The same result obtains for almost no:

(151) [ExH Almost xo no spellbook is worth reading]|®(w) = 1 iff
Sv—g(2) N WRy, = 0 & smarLc(g(2)) & Sw N WRy, # ()
lol#<w) = 1 [9J<() # 1

For almost some spellbook is worth reading, the alternative is just simply the the existential claim
that some spellbook is worth reading, but that is entailed. By assumption there are no other

alternatives to negate, so:

(152) [ExH Almost xo some spellbook is worth reading]®¢(w) = 1 iff
Sw—g(2) NWR,, # () & smaLL.(g(2))

o]e(w) = 1

EXH is vacuous here, so it is not licensed, but then neither is almost. This predicts unacceptability.
The problem is barely. Part of our goal to analyze almost and barely is to treat them as closely

connected in that both contribute set subtraction and imposing restrictions on the size of that
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subtrahend, but barely additionally contributes negation. The classical view of its alternatives is
a little less intuitive, since barely ¢ has standardly been taken to convey ¢, not its negation, but
still, parity between the two operators seems plausible (and classical, too!). However, the classical
view fails on two counts: it cannot derive the positive polar inference for barely any, and it doesn’t

predict unacceptability for barely every or barely no.

(153) /\

EXH ¢
11,
Pprois
worth readin
barely x> any spellbook proj; &
(154) Y
11,
any pronis
spellbook  proyy worth reading

Any is an existential quantifier, and [@]®° doesn’t entail [{/#°—the emptiness of the intersection
of Sy, —g(2) and WR,, doesn’t mean there has to be some spellbook worth reading. EXH negates

the existential alternative, then, deriving the following truth conditions.

(155) [(153)[*“(w) = L iff
Sw—g(2) N WR,, = 0 & sMALL.(g(2)) & Sy NWRy, = 0
lole<w) = 1 [WIE<w) # 1

These truth conditions hold in w just in case g(2) is small in ¢ and there are no spellbooks worth
reading in w. This is perfectly coherent, but not the meaning of barely any spellbooks are worth
reading. It would seem that this proposal doesn’t work for barely.

One problem might arise with this argument: the lone alternative to Barely any spellbooks
are worth reading is plausibly not grammatical, and therefore that the sentence doesn’t have any

alternatives.

(156) ?? Any spellbooks are worth reading,.
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Granting that the any in barely any is an NPI, it’s not clear what licenses any in (156) above.
This can actually be understood as an argument for our proposal. If (156) is not a grammatical
alternative, then there are in fact no alternatives to (153), and EXH isn’t licensed. We therefore
would expect Barely any spellbooks are worth reading to be unacceptable, but it’s perfectly good.

We can further show that the classical view doesn’t make the right predictions for barely every

and barely no.

(157) # Barely every spellbook is worth reading.

a /\

EXH ¢

11,

proi1is
worth reading
barely s every spellbook proj; s
b. Y
11,
every Ppro1is
spellbook  proj; s worth reading

c. [(157)]E(w) = 1 iff

Sw—8(2) € WRy & sMALL:(g(2)) & Sw € WRy,
loJes(w) = 1 [W1E<(w) # 1

(158) # Barely no spellbook is worth reading.

a /\

EXH ¢

11,

proiys
no  gpellbook projy ¢ worth reading

barely x2
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11,

no proll’s
spellbook  proyy worth reading

. [assa)lEcow) = 1 iff
Sw—g(2) N WRy, # 0 & smarLc(g(2)) & Sw N WRy, #
o) = 1 [¥]e) # 1

In neither case does [@]#€ entail their respective [{/]#€, and so they’re negateable; both nega-
tions are coherent. (157) is true if not every spellbook is worth reading, and (158) is true if some
spellbook is. These are not the right meanings, and it is hard to see how we’d get ourselves out of
this. However, we saw that structuring our alternatives in terms of substitution of the exception
led to the right results, and uniformly. Subtractive alternatives appear to be necessary?*

The arguments above apply to barely; what about almost? At this point, we’ve seen no defini-
tive evidence in favor of assuming the exceptive alternatives for the modifier. It just works, and
quite well! While we will see in the next chapter that the classical view fails in a way that the
exceptive view does not, right now it’s simply parsimony that drives the extension. Almost and
barely are taken to be identical in all respects save negation in the latter, so why shouldn’t their
alternatives be constructed in the same manner? If but needs these kinds of alternatives, too, then
why shouldn’t almost, which is, so far, identical in all important respects save the lack of an overt

exception?

2.2.4 Summing up: the essentials of the analysis

Let’s do some summarizing of what we’ve seen so far. To develop an analysis of the modifiers
almost and barely, we started by looking at the exceptive modifier but, and its parallels with
almost. They were striking: both are are capable of modifying universal every and negative exis-
tential no, but not positive existential some or NPI any. We adopt the proposal originating with
von Fintel (1993) and further developed by Gajewski (2008) that but is a modifier of quantifica-

tional determiners, and following Crnic (2018), we take almost to be the same. Both operators take

**This discussion doesn’t go into other ways we could define ExH, or alternative alternatives. To the former, we
could try and go the route of Fox (2007) and Bar-Lev (2018), i.a., and incorporate Innocent Exclusion and Inclusion. To
the latter, we could adhere more strictly to Katzir’s theory of structural alternatives, which would allow substitution
of almost for barely and vice versa, different determiners for other determiners, etc. As far as we can tell, these routes
are not promising, but a fuller discussion would take us too far afield, and frankly, might be a little tedious. We leave
that for future work.
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‘exceptions’ x, but overtly and almost covertly, and remove them from the restrictor of the deter-
miner they modify. The covert exceptions are taken to be pronominal in nature, receiving their
value from the assignment function. We additionally propose a novel requirement: the exception
x must be small relative to the context of utterance. For almost, these contributions together—set
subtraction and the size constraint—comprise what in the literature has been called the proximal
inference,almost ¢ conveying, in part, that ¢ is ‘close’ to being true. For but, the observation that
the exception y must be small is, as far as I can tell, novel.

Furthermore, we extended this style of analysis to barely, which hasn’t, as far as I'm aware,
received an analysis as a modifier of determiners before. Its distribution with respect to the de-
terminers listed above is complementary to but and almost—it is only compatible with NPI any
of that set. Barely also gives rise to a proximal inference; barely ¢ conveys that ¢ was ‘close’ to
being false. It is reasonable, then, to think of almost and barely as sort of mirror images of one
another: barely is just the ‘negative’ variant of almost.

All three operators are taken to be licensed only within the scope of an operator generating
implicatures, ExH, which quantifies over alternatives to its sister, requiring that they all be en-
tailed or not true in the world of evaluation. We take the proposal for but from Crni¢ that the
relevant alternatives are generated structurally, by replacing the exception with other expres-
sions of the same type; we additionally propose that both almost and barely make use of these
alternatives as well (for the latter, we’ve shown this is necessary, but the former not quite yet).
EXH is ultimately responsible for the derivation of the polar inference for almost and barely,
and where all three modifiers are acceptable, their exceptions x must be the smallest, non-empty
exceptions to the quantificational claims they modity.

Monotonicity, in tandem with ExH, tells us why this is the distribution we see: subtractives
are only acceptable when the monotonicity of the ¢ in which they occur is Downward Entailing
with respect to the constituent o from which they subtract their exception, i.e. the restrictor of
the determiner they modify. When a subtractive in some LF ¢ subtracts an exception y from an
argument a in a Downward Entailing environment, the entailed alternatives ¢ are formed with
(small) supersets of the exception x. EXH then requires all other alternatives to be not true. This
means x must be the smallest, non-empty exception. When « is in an Upward Entailing environ-
ment in @, alternatives formed with subsets of x are entailed, and nothing else. This doesn’t allow
us to find a smallest, non-empty exception—the smallest exception is the empty set, and above
that, if there is one true x there is at least one more ¥’ that is also true, but not Strawson entailed.

Every and no are both Downward Entailing on their restrictors, and absent any other entailment-
reversing operators, we predict that they should be compatible with almost and but. They ought
not be compatible with some or NPI any, since these are Upward Entailing on their restrictors,

and contradiction ensues. Barely is different precisely because it contributes negation—the modi-
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fier itself is an entailment-reversing operator. So, when it modifies NPI any, Upward Entailing on
both its arguments, in fact, the net result is that its restrictor is in a downward entailing environ-
ment; some is presumably unacceptable because it is a PPI. When attempting to modify every or
no, barely’s contribution makes their restrictors Upward Entailing environments, and therefore
the exception it introduces cannot be the smallest, non-empty exception.

A few final facts are helpful to recall. We saw that when some quantificational claim is neces-
sarily true, modification by a subtractive operator was not possible. That is, almost every spellbook
is a book is infelicitous because being spellbook entails being a book. In such a situation, the sub-
traction contributed by almost doesn’t do anything substantive, and the sentence with ExH, call
it ¢, is entailed by the sentence { identical to ¢ except that EXH is eliminated. In such a situation,
EXH isn’t licensed, and hence the subtractive isn’t, either. We also saw that when a quantifica-
tional claim is true independent of subtraction in a particular world, ExH generates falsity. That
is, if in w every spellbook is worth reading is true, then almost every spellbook is worth reading is

false in w. Subtractives must do some real semantic work in order to be licensed and yield truth.

2.3 Why ExnH?

The question isn’t really “Why ExH?” but rather, why is something like it necessary? Our analysis
is a DISTRIBUTED one, and we assumed it without argument. Why should we separate out the
means by which we derive the polar inference for almost and barely, Uniqueness for but (for they
really are one and the same), from the meanings of these modifiers? We began the analysis by
coming to some conclusions about the meanings of but sentences, but we might wonder what
goes wrong if we pack all that meaning into but, as originally proposed by von Fintel (1993), and

likewise almost and barely (suppressing the subset and non-emptiness presuppositions for space).

(150) . [but]E* = AXAALZAB. Z(A—X)(B) & SMALL,(X) & VX' [A L K — D (A—X')(B)]
b. [almost]&® = AXAZAAAB. Z(A—X)(B) & SMALL(X) & VX' [X € X' — = ZD(A—X')(B)]
c. [barely[& = AXAZAANB. ~Z(A—X)(B) & sMALL,(X) & VX' [X & X' — D(A—X')(B)]

These are INTEGRATED entries for the subtractives. It makes at least some intuitive sense to put
the burden of all the complex meanings of subtractive sentences into the subtractive operators
themselves. When thinking about almost and barely, it would capture, for example, the difficulty

of cancelling the polar inference without much work:

(160) a.  Every student but Willow failed the test; in fact, #every student did.
b.  Almost every student failed the test; in fact, #every student did.
c.  Barely any students failed the test; in fact, #no student did.
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Of course, we saw that our analysis predicted this too—the continuations are contradicted by the
entailments of the first sentences, so maybe an integrated analysis isn’t justified quite yet. It turns
out there is concrete reason we shouldn’t even bother with such a view.

One of the starting points for Gajewski’s (2008) revision of von Fintel’s (1993) theory of ex-
ceptive sentences is the fact that but is licensed in certain environments that are unexpected on
the latter’s theory. Supposing NPI any is an existential quantifier, it must take narrow scope with

respect to negation in (161).

(161) There aren’t any girls but Cordelia in the auditorium.

(cf. There aren’t any girls in the auditorium.)

As Gajewski points out, an integrated semantics for but as in (159a) will predict trivial truth
conditions for this sentence: applying this but to NPI any existential determiner yields necessarily

false truth conditions, and the negation licensing the NPI yields triviality from that.

(162)  [(60)]=(w) = 1 iff
—[Gw—{C} NIA, # 0 & smALL({C}) & VX' [{C} € X' — —Gy—X N A, # 0]]
= Gy—{C} NIA, =0V —smaLL({C}) V IX[{C} € X' & Gy—X N 1A, # 0]

These truth conditions cannot be false, but (161) certainly can be; it’s only true if Cordelia is in
the auditorium, and no other girl is.

We can construct a (perhaps marginal) parallel example for almost.
(163) There aren’t almost x» any girls in the auditorium.

While some speakers don’t like (163), others report this to be acceptable (see also Horn 2005,
2011%). If we straightforwardly apply the integrated semantics for almost above, we’ll make the

same predictions we did for (161), i.e. that (163) cannot be false.

(164) [(163)[*“(w) =1 iff
= Gy—g(2) N 1A, = 0 V —sMALL(g(2)) V IX'[g(2) € X' & Gy—X' N 1A, # 0]

This doesn’t tell us anything for speakers that reject (163)—we’ll have to leave this open for now.
There are more problems of this kind for an integrated approach to the meaning of subtrac-

tives.

**Horn’s (2011) discussion presumes this kind of case to involve wide-scope almost, and thus on our proposal,
wide-scope any, too. In this case, any would have to be its free-choice, universal variant, even though this is a there-
insertion context. If this were plausible, we’d still need to explain why some speakers reject (163). In the end, this
data point is helpful, but the argument for separating out Uniqueness from the meaning of subtractives doesn’t hinge
on this.
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(165) a.  If she wants to get an A on the test, Willow has to answer every question but the

last one.

b.  Ifshe wants to get an A on the text, Willow has to answer almost x» every question.

(165a) doesn’t require that Willow skip (i.e. not answer) the last exam question in order to get
an A; she merely can skip it and still pass. Nouwen (2006) points out the same fact for (165b).
However, if but and almost have an integrated semantics, and are interpreted within the scope of
the universal necessity modal in the consequent, we predict that the requirements are she skip
at least the last question in the case of (165a), or at least one question in the case of (165b). Let’s
make this more concrete. We’ll adopt the standard assumption that if-clauses serve as restrictors
to modals in the consequent (Kratzer 1986; see von Fintel 2011 for an overview on conditionals),
and we’ll give the modal a very simple semantics, taking it to denote a universal quantifier over
worlds where particular requirements are met. For any w, w/, let REQ,,(W’) be read as (and mean!)

w’ is compatible with the laws and regulations in w.

(166) a. [have to]®° = AWAps Qs . {W’ | REQy (W) & p(W') = 1} C {W’ | q(w') = 1}
. [Willow get an A on the exam]® = Aw. GAA(the exam)(Willow)

o

c. Gy= {X | x is a question on the exam in w}
d Ay = {X | Willow answers x in W}

e. {L} = {the last question on the exam}

If almost every question and every question but the last one have an integrated semantics, and are

within the scope of has to, we derive the following meaning for (165a).

(167) [(1652)]&<(w) = 1 iff {W' | REQ(W)(W') & GAA(the exam)(Willow)} C
{w|By—{L} C Ay & smaLL({L}) & VX'[{L} Z X' — By—X C Ay]}

These truth conditions hold in w if, for all w' compatible with the rules and regulations in w and
where Willow gets an A on the exam in w’, Willow answers every question that isn’t the last one,
and does not answer the last one. The requirements are stronger here because the subtractive is
caught within the scope of the modal. The same holds for (165b), relevant changes made, of course.
That these aren’t the immediately intuitive truth conditions—though indeed, one can felicitously
utter these two sentences if the requirements were a bit more odd—is a problem for the integrated

semantics®®.

*It’s plausible that we could scope just the quantifier above the modal; we’d derive the right meaning:

(@) [G65a)]&(w)=1iff SMALLC({L}) &
Gw—{L} C {y | {w | REQ(W)(W) & GAA,(the exam)(Willow)} C {w' |y € Ay} } &
VX’[{L} XK — [GW—X’ ¢z {y \ {W’ | REQ(W)(W') & GAA (the exam)(Willow)} - {W’ ly € Awf}}]]
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Crnic (2018) sharpens the problem by showing similar facts hold in ellipsis contexts, where

crucially the wide-scope route described above isn’t available.

(168) a.  Willow answered every test question but the last. To get an A, she had to.

b.  Willow answered almost every test question. To get an A, she had to.

For both examples, while requirements certainly could dictate that Willow skip at least one ques-
tion to receive an A, intuitively these cases are compatible with her answering every question
and still passing. The trouble is that we can’t derive that with an integrated semantics for the
subtractives.

It is well known that VP ellipsis is taken to be subject to (something along the lines of) the
following condition (Rooth 1992; Fiengo & May 1994; Heim 1996; Fox 2000).

(169) CONDITION ON VP ELLIPSIS:
If a quantificational expression is interpreted in the antecedent VP, a semantically equiv-
alent expression must be interpreted in a parallel position in the elided VP.

Crni¢ (2018:746)
Now consider the following.
(170) Every girl in the class passed a test. Every boy did, too.

There are two admissible scopal configurations in the antecedent: V>3, and 3>V. While both are
possible in (170) under ellipsis, both in antecedent and in the ellipsis site, they must be identical.
That is, if the antecedent conveys that there was a particular test passed by every girl in the
class, the continuation could not convey that for every boy, that boy passed a distinct test. The
Condition describes this restriction. When we go to the almost and but cases, the LFs of the
antecedent clauses in (168) both lack a modal, and so in the ellipsis site, we couldn’t scope the

modified quantifiers above the modal—that is, it can only have the LF in (171), not (172).

This says Willow had to answer every question that wasn’t the last one to get an A, and she didn’t have to answer
the last one to get an A. Good! Now, the pronoun saturating the world argument of question has changed so as not
to be totally wild and free. Allowing pros with indicies to denote worlds, and letting them be free, is a simplification
and possibly an incorrect one, and here we potentially run into de dicto and de re issues that we are not prepared to
deal with. We hope this won’t do too much damage.
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(171)

124

have to  projo
11

question  proy; but
answer proj;

(172)

every

have to projas 11,

the last one Willow

question projas but

t3e
answer projqs

The truth conditions we’ll derive for (171) are equivalent to those we did for (165a), less the

contribution of the if-clause. The integrated approach faces serious problems, then!

Gajewksi’s and Crnic¢’s solution to this problem is precisely what we’ve been assuming all
along: Uniqueness/the polar inference for the subtractives is derived separately, for us through
ExH. For the Gajewski cases, EXH can scope above negation. In general, this makes sense—ExH
is commonly taken to be banned from occurring in downward entailing environments anyways
(Spector 2014, e.g., though see §4.1 and §4.2 for some further discussion). Crni¢ proposes that
EXH doesn’t originate within the VP at all, but rather, higher in the clausal structure of these
cases; it can scope immediately above or below the modal. Where EXH scopes above negation in
(161), the new LF of which is given below; ¢ is Downward Entailing with respect the restrictor of
any, and our usual entailments hold. We assume there is vacuous, and omit it from the structure.

we derive the truth conditions in (173b).

(173) There aren’t any girls but Cordelia in the auditorium.
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EXH 0]

11,
NEG

any tiis

in the auditorium
girls pro;;s but Cordelia

b. [(173)]% (W) = 1 iff (i) & (ii) = 1
i Gy—{C}NiA, =0 & smarL({C})
ii. VX [{C} Z X & sMALL(X') — Gy—X' N 1A, # 0]

These truth conditions are just what we should expect, equivalent to No girls but Cordelia are in
the auditorium. We also derive the right truth conditions for Crnic’s cases; ¢ is again Downward

Entailing with respect to the restrictor of every, so entailments follow as they should.

(174) (Willow answered every question on the exam but the last. To get an A,)

she had to answer-every-question-but-thelast:

124

have to proja;
11

question  proy; but the last .

answer projq s
b. [(1742)[*“(w) = 1 iff (i) & (i}) = 1
i {W’ | REQ(W)(W') & GAA,(the exam)(Willow)} C
{w|Bw—{L} C Aw & smaLL({L})}
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ii. VX[{L} € X & smaLL(X)) —
{w' | REQ(W)(W') & GAA,(the exam)(Willow)} Z
{w’ | By —X' C Ay & SMALLC(X’)H

(175) [Willow have to answer almost x» every question]®‘(w) = 1 iff (a) & (b) =1

a. { w' | REQ(W)(W') & GAA(the exam)(Willow)} C
{w’ | By —g(2) C Ay & SMALLC(g(Q))}

b. VX [g(?) Z X & sSMALL(X') —
{ w' | REQ(W)(W') & GAA(the exam)(Willow)} Z
{w’ | By —X' C Ay & SMALLC(X’)}]

No surprises here—these truth conditions capture that the requirement is Willow answer every
question but the last, leaving open that she could answer it. The same goes for almost; simply
substitute an exception pronoun for the last one and the logic will be the same. The distributed
theory makes the right predictions for these cases precisely because its separability allows us to
negate here the modal claim for each alternative, sufficiently loosening the interpretation from
what it would be if ExH scoped below the modal.

Our main contribution now is that barely also requires this severance.
(176) Willow skipped barely any questions on the exam. To get an A, she had to.

This is naturally interpreted as saying Willow skipped few questions, and the requirements are
such that she couldn’t skip more than a few. The distributed theory derives this, whereas the

integrated analysis doesn’t.

(177) INTEGRATED THEORY
a. [(x76)]&(w) = 1 iff {W’ | REQ(W)(W') & GAA,, (the exam)(Willow)} C
{w'|By—{L} NSy =0 & smaLL({L}) & VX'[{L} € X' — By —%X' N Sy # 0}]
(178) DISTRIBUTED THEORY
a. [(176)]E4(w) = 1 iff () & (i) = 1
i {W’ | REQ(W)(W') & GAA,(the exam)(Wﬂlow)} C
{w'|Bw—{L} NSy =0 & smarLL({L})}
ii. VX [{L} Z X & sMALL (X)) —
{W’ | REQ(W)(W') & GAA,/(the exam)(Willow)} Z
{W | By—%X NSy =0 & sMaLL(X') }]

It should be clear that the integrated truth conditions require Willow’s skipping at least the last
question in order get an A, whereas the distributed truth conditions do not; this indicates that

barely, too, requires a distributed semantics.
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This section essentially provided support for the particular division of labor we assumed in the
§2. Except for the novel observation that barely is like but and almost in requiring this, everything
else has been discussed previously (Gajewski 2008, 2013; Nouwen 2006; Crni¢ 2018). The obvious
conclusion is that other analyses of almost and barely—regardless of their fine details—fail to
capture the data discussed above. This applies to many analyses out there, e.g. Amaral (2007),
Hitzeman (1992), Penka (2006), Rapp & von Stechow (1999), Sevi (1998), and on.

The Uniqueness inference that but-sentences carry is sensitive to scope. Since we’ve tied the
derivation of the polar inference in almost and barely sentences to the exact same mechanism, it
is sensitive to scope, too. These are obligatory inferences, derived by ExH, but their precise shape
depends on the location of ExH with respect to subtractives and any other possible intervening
operators. Now, when we think about what is in the literature called the polar inference for
almost and barely, it should be clear that the name is misleading on our analysis. almost ¢ doesn’t
explicitly or directly convey —¢, and barely ¢ doesn’t directly or explicitly convey ¢. The scalar
implicatures generated by negating subtractive alternatives ultimately entails that inference, but
the ‘classical’ polar inference isn’t a part of the meaning of almost sentences. When we move
away from monoclausal declaratives, this is even more clear; the weakening or disappearance of
the ‘classical’ polar inference naturally falls out of our theory—it ‘disappears’ in syntactic contexts
where EXH has non-local scope with respect to almost and barely. That scalar implicature is still

generated, but crucially it has a different shape in such contexts.

2.4 Closing words and moving forward

This chapter has developed an analysis of almost and barely that builds on an analysis of the
subtractive modifier but. This analysis has two key components. First, all three operators are
taken to be modifiers of quantificational determiners, removing elements from those determiners’

restrictors, and requiring that what is removed be small relative to the context®.
(179) [but]®® = AXAAADAB: X C A & X # (). 2(A—X)(B) & sMALL(X)
(180) [almost]&® = AXAZAAAB: X C A & X # (. Z(A—X)(B) & sMALL(X)

(181) [barely]®® = AXAZAAAB: X C A & X # (). ~D(A—X)(B) & sSMALL(X)
(et,((etett),(et,(et,t))
(182) THE SIZE CONSTRAINT
Let ¢ be a context of utterance, X be an arbitrary set, p, be a measure function, deter-

mined by the context, mapping sets to numerical values representing their size, and n. be

a contextually determined numerical threshold for size.

*The formulation of the size constraint now reflects the syntax not only of but, but also almost and barely.
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SMALL:(X) = 1 iff p(X) < n,

(183) MAXIMAL SIZE OF n,
Let ¢ be a constituent with subconstituent y such thaty = [A [oc [Z X} H or H[Z X} A} oc],
where ¥ is a subtractive operator, A is quantificational determiner, and o and  be expres-
sions whose denotations characterize A and X, respectively.

For any context c, an utterance of ¢ in c is felicitous only if n. < %(pC(A))

Second, all three subtractive operators are required to be within the scope of ExH, which oper-
ates on the alternatives { to the LF ¢ containing those operators. The alternatives are derived
structurally, by replacing the exception with other expressions of the same type. EXH requires

all non-Strawson entailed alternatives be false or undefined.

(184) [xm p]&(w) = Liff [p]#“(w) =1 &V [y € aLT() & [9]*° 7 st [W]# — [Yy]*(w) # 1]

For expository purposes, we restricted our attention to ‘subtractive’ LFs and to ‘subtractive’ al-
ternatives, as defined below, which allow us to more succinctly state the contribution of ExH

given such LFs and alternatives.

(185) sUBTRACTIVE LFs
A LF ¢ is a subtractive LF just in case ¢ is a LF containing exactly one subtractive operator
3 introducing an exception Y, and no other alternative-triggering expression, and ¢ is of
type (s.t).

(186) SUBTRACTIVE ALTERNATIVES
For a subtractive LF ¢, with an exception ¥,
aLr(e) == {o[x/x'] | X C Dq & ¢[x/x'] is grammatical }

(187) For a subtractive LF ¢,
[Exm g&<(w) = 1iff [p]e<(w) =1 & Vx'[[9]# # st [o[x/x'I1# — [ lx/x1¥<(w) # 1]

We saw that monotonicity affects which alternatives are entailed.

(188) SUBTRACTIVE ENTAILMENT THEOREMS FOR DETERMINERS
Let ¥ be a subtractive operator, A a quantificational determiner, and a and y be expres-
sions whose denotations characterize A and X, respectively. Let ¢ be a constituent with
subconstituent y such that y = [A [oc [Z XH} or [HZ X} A} oc}. Let g be an assignment
function in context c.

Let aLt(9) = {@[x/x'] | X C De & ¢[x/x'] is grammatical }.

a. If ¢ is Upward Entailing (and not Downward Entailing) with respect to the constituent
o, then for all ¥’ such that X’ C X, then [@]®° =51 [o[x/x]]&¢.
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b. If ¢ is Downward Entailing (and not Upward Entailing) with respect to the constituent
o, then for all " such that X C X’ & X’ is small in c, then [¢]& = [o[x/x']]®*.

We saw that these facts come together to predict why almost and but can modify every and no
but not some, and why barely can modify NPI any but neither every nor no. A subtractive can
felicitously modify some determiner A in ¢ only if the exception it introduces is the smallest,
non-empty exception to the quantificational claim that is made in ¢. This is possible only if ¢ is
Downward Entailing with respect to the restrictor of A. Where no entailment-reversing operator
intervenes between EXH and X, this just boils down to the monotonicity of A for almost and
but: every and no are both Downward Entailing on their restrictors. Some is not; there will never
be a smallest exception in such a case. Barely, itself a downward entailing operator, reverses the
monotonicity of NPI any, and as a result, its restrictor is in a Downward Entailing environment.
For the other determiners discussed, its negative contribution creates problems.

This particular division of labor between ExH and subtractives has been argued in the liter-
ature previously; we showed that it was necessary for barely, too, and furthermore showed that
barely requires subtractive alternatives as defined above. We don’t yet have an argument for the
necessity of such alternatives for almost—it is merely adequate. Such an argument will come in
the next chapter. The split between subtractives and ExH allows us some flexibility in predicting
why the classical polar inference typically assumed to be encoded by almost and barely seems
to disappear in certain environments—the flexibility of the scope of ExH means that in certain
environments, the inference is weakened, but the mechanism by which it appears is necessarily
present. We’'ll discuss this more in Chapter 5. As we move forward, we’ll take this analysis as a
given. We'll show how it naturally extends to other domains, in particular degree constructions
and numerals, and the consequences and payoff of such an analysis.

Let’s end this chapter with some open questions that won’t be addressed in the rest of the dis-
sertation, at least not in any satisfactory way. First, as we’ve discussed, we’ve restricted ourselves
to LFs with one subtractive and no other alternative-triggering operator. At this point, we have

no way of dealing with stacking of subtractive operators, for instance, on a single determiner.

(189) a.  Almost {every/no} vampire but Spike attacked the school.
b.  Barely any vampires but Spike attacked the school.

I’'m not sure what my own judgments are of these cases, but if they are good, we need to figure
out how to integrate them into our analysis. That means taking a deeper dive into questions about
the nature of alternatives to such sentences. We’ll have to leave this open for the future.

A second question is a bit deeper. We’ve claimed that almost is just but with a covert exception.
If that’s right, then does barely have a parallel operator, a negative version of but? I'm not sure. A

more careful investigation into English, as well as other languages, might find such an operator.
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I have no good reason to think one shouldn’t exist, so if we cannot find one, then we have to

explain why.
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Chapter 3

Comparatives, equatives, and the positive

construction

3.1 Introduction

In the previous chapter, we investigated the semantics of the almost and barely through the lens
of the quantificational determiners every, no, some, and any. We proposed that almost and barely
are subtractive operators that modify quantificational determiners by subtracting elements from
the restrictor of those determiners. Those elements are supplied by a covert exception, and both
modifiers require that exception to be small in the context of utterance, the PROXIMAL inference.
Almost then says that were it not for the exception, the unmodified quantificational assertion
would be true, and barely says that were it not for the exception, the unmodified quantificational
assertion would be false, the PoLAR inferences. Both operators must be within the scope of an ExH
operator; EXH, of course, requires that the alternatives to the LF ¢ it takes as argument be either
entailed or not true in the world of evaluation. Our attention is restricted for simplicity’s sake to
what we’ve called subtractive LFs—those LFs ¢ containing exactly one subtractive operator and
exception X and no other alternative-triggering expressions—and the alternatives over which
EXH quantifies are restricted to those { where the exception is replaced by an expression of the
same type.

In this chapter, we’ll bring this analysis to bear on another area in which subtractives surface:
degree constructions. In particular, we’ll look closely at the distribution of almost and barely with
respect to comparatives, equatives, and the positive construction. We’ll argue that the analysis
developed in the previous chapter allows us to quite neatly account for the distribution of almost
and barely in these constructions when we assume that degree morphemes are quantificational

expressions. We'll learn quite a bit more from this investigation, too. We saw earlier that barely
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requires alternatives formed by replacing the exception with expressions of the same kind in or-
der to derive the inferences it gives rise to intuitively, and for reasons of parsimony, we made the
assumption that almost invoked such alternatives, too. We'll see that the distribution of almost
with respect to comparative and equatives justifies that assumption. Subtractives also provide
a novel argument for the idea that all measurement scales in natural language semantics must
be dense, the Universal Density of Measurement hypothesis of Fox & Hackl (2006). Barely equa-
tives show us that our meaning for barely hasn’t been quite right, and that almost and barely
aren’t the “duals” purported sometimes in the literature. We’ll see that we need to make some
assumptions about the relationships between positive and negative antonyms in order to main-
tain maximality in the semantics of the comparative. Finally, we’ll see what the semantics of the

positive construction has to look like in light of the contribution of subtractives.

3.1.1 Parallels

Quantificational determiners are not the only expressions which are subject to modification by
almost and barely—the modifiers are often found in degree constructions. Almost and barely sur-

face in equatives and comparatives, but with apparently complementary distribution.

(190) a.  Bufty is almost as old as Willow is.

b. # Bufly is barely as old as Willow is.

(191) a. # Willow is almost older than Buffy is.
b.  Willow is barely older than Bufty is.

Almost appears to go with the equative, and not the comparative, whereas barely goes with the
comparative and not the equative. Intuitively, (190a) almost is true where Buffy isn’t as old as
Willow is (the polar inference), but the difference between their ages is small (the proximal).
Paraphrasing: were it not for the small difference between their ages, it would be true that Bufty
is as old as Willow is. (191b) is also true where Willow is older than Bufty is (the polar), but only
just so (the proximal). Again, paraphrasing: were it not for the small difference between their
ages, it would be false that Willow is older than Bufty is.

We see similar complementarity in distribution with certain kinds of adjectives.

(192) a.  Dawn’s room is almost clean.
b. # Dawn’s room is barely clean.

(193) a. # Buffy’s room is almost dirty.
b.  Buffy’s room is barely dirty.
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Almost can modify adjectives like clean, safe, and impossible, so-called TOTAL (Yoon 1996) or MAX-
IMUM STANDARD (Kennedy & McNally 2005) adjectives, but not their PARTIAL or MINIMUM STAN-
DARD adjective counterparts. Barely is the opposite. (192a) is true if Dawn’s room isn’t clean, but
the difference between Dawn’s room and a clean room is minimal; (192b) if the difference be-
tween Buffy’s room and a non-dirty room (i.e., a clean room), is likewise minimal, and her room
is indeed dirty.

The almost facts—that it can modify the equative but not the comparative, and that it can
modify total but not partial adjectives—are relatively underexplored, save by Rotstein & Winter
(2004). The barely facts, as far as I can tell, are novel. They require explanation. However, intu-
itively, the contributions made by almost and barely in these constructions are quite like their
contributions as when modifying quantificational determiners; our goal in this chapter is to show
that the subtractive analysis predicts these facts. We're motivated to pursue this not only by the
distributional complementarity and parallel interpretive contributions of the subtractives: we saw
in the previous chapter that sometimes the polar inference was “absent” in certain constructions,

like the consequents of conditionals, and this persists in degree constructions.

(194) a.  If Spike wants to defeat Bufty, he has to be almost as strong as Buffy is.
b.  Spike was almost as strong as Buffy was in their fight. To win, he really had to be.

Intuitively, (194a) doesn’t require that Spike actually be weaker than Buffy if he wants to succeed,
which is exactly the meaning one would derive if almost encoded both subtraction and exhaus-
tivity itself. (194b) is the same. We also saw in the previous chapter that the polar inference is
invisible to certain operators, like speaker-oriented adverbials and because; again, this is true in

degree constructions as well.

(195) Unfortunately, Sunnydale is barely cooler than Los Angeles is.

a.
b.  Unfortunately, Sunnydale is almost as warm as Los Angeles is.

(196) a.  Buffy left Sunnydale because it was barely inhabitable.

b.  Bufty left Sunnydale because it was almost uninhabitable.

In (195a) and (195b), what’s intuitively unfortunate is that the difference between the climate in
Sunnydale and Los Angeles is negligible, not that Sunnydale is cooler than (or not as warm as)
Los Angeles. The polar inferences these modifiers give rise to as a result of exhaustivity is outside
the semantic scope of unfortunately. Similarly, a reason for Buffy’s departure in (196a) and (196b)
is that Sunnydale is nearing uninhabitability—she didn’t leave because it was inhabitable. These
operators only have access to the proximal inferences.

Our goal is to extend the analysis of subtractives as modifiers of quantificational determiners

to the degree domain. We’ll claim that in comparatives, equatives, and the positive construction,
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almost and barely modify expressions that denote relations between degree predicates, i.e. expres-
sions of type (dt,dtt). Let’s call these expressions degree quantifiers. The comparative and equative
morphemes themselves are often analyzed as degree quantifiers, and we’ll posit a novel analysis
of the positive construction that works in just the same way. Almost and barely’s meanings are
generalized just a bit to allow modification of degree quantifiers, as a first step in accounting for
their cross-categorial distribution.

Pursuing an analysis of almost and barely that unifies the treatment of degree quantifiers with
that of (nominal!) quantificational determiners in the previous chapter is already an improvement
on piecemeal analyses. It is also notable that we pursue the analysis in the direction that we do—
that is, analogizing degree constructions to nominal quantifiers. There are very few analyses in the
literature on almost that deal in adjectival semantics generally; with the exception of Hitzeman
(1992) and Rotstein & Winter (2004), what is out there has largely not investigated in detail the
interaction of almost with positive adjectives. The syntax and semantics of the comparative and
equative cases have also not been covered in any serious detail, though Rotstein & Winter (2004)
discuss almost with comparatives and equatives briefly. Hitzeman (1992) and Rotstein & Winter
(2004), which we will cover in more detail later on, suggest the opposite generalization strategy.
What we will see is that our analysis requires comparatively little in order to generalize, whereas
it’s less clear that their proposal would generalize without major stipulations.

Before we get to explaining the data above, we need to introduce the semantics for degree

constructions we’ll use throughout the chapter.

3.1.2 Formal preliminaries
3.1.2.1 Degrees, scales and adjectives

Adjectives like old, young, beautiful, and intelligent—GRADABLE adjectives—intuitively describe
properties that hold of entities to certain amounts. These amounts are called degrees, and we
add to the our semantic ontology the type d, with the domain D,. Degrees are points, and they
represent measurement along some dimension—age, height, and beauty are all such dimensions.
Dimensions of measurement are conceptual, and we can utilize measure functions as their formal
correlates. Measure functions are relations between entities and degrees: AGE, HEIGHT, and beauty
are measure functions. Adjectives are taken to denote relations between individuals and degrees

on a scale.

(197) Let S be a set of degrees, p be a measure function, and <, be an ordering on S relative to

. S is a scale just in case Vd,d’ € S:

a. d<,dvd <, d total order
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b. d<,d —3d"[d"eS&d<,d" <, d] density

For some measure function p, we’ll write ‘S, for the scale associated with p. For example, S . is
the age scale, the set of all possible ages; every age degree is totally ordered with respect to every
other on that scale’. The assumption that a set of degrees is a scale only if it is dense, i.e. (197b), is
not uncontroversial, but we follow Fox & Hackl (2006) in adopting this assumption, the Universal
Density of Measurement hypothesis (UDM). We'll see in §3.2.2.1 that subtractives provide a novel
argument for the UDM, but for now, take it for granted.

The scales associated with certain adjectives, the RELATIVE adjectives like old and tall, have
been claimed to be ‘open’ in the following sense: they do not include any upper or lower bound
(Kennedy & McNally 2005, i.a.). The intuition about upper bounds is that, in principle, there is no
limit to how tall, how old, how intelligent, etc., an entity can be, i.e., there is no maximal height,
age, or degree of intelligence. The measure functions HEIGHT, AGE, and intelligence, then, must
be able to map entities in a world to any degree, no matter how high. The intuition about lower
bounds concerns the fact that there are some kinds of entities for which it doesn’t really make
sense to say they have any height at all, even 0—ideas, rays of sunshine, and the calling of being
a Vampire Slayer are not things that have height. We don’t want HEIGHT in any world to map
these objects to degrees. We can do this by stipulating that Sycnr does not include its lower
bound—the measure function is undefined for objects that lack a physical extent. We define the

shape of these relative scales in the following way.

(198) RELATIVE ADJECTIVE SCALES
Let A be a relative adjective, and p, be the measure function A encodes.

SPA is the scale associated with A; SHA = {d | 0 <y, d <i. oo}

Now we can spell out a meaning for adjectives.

We’ll make the common assumption that gradable adjectives denote degree-individual rela-
tions; we’ll add in world-dependence as well. Adjectives encode, in part, measure functions. Mea-
sure functions p take a world w and an entity and return its unique measurement on a particular
scale. The measure function AGE, in a world w, maps entities to the degree d on S ,¢; corresponding

to their age in w?.

(199) a. [old] = AwAdAx: d € S,ge- AGEy(x) > d (s,det)
b. [tall] = AwAdAx: d € Supigur- HEIGHT,(x) > d (s,det)

'We’'ll assume degrees are primitive objects in our ontology, but there are alternative views that construct them
via, for example, equivalence classes of individuals (Cresswell 1976; Bale 2008, 2011; Schwarz 2010) or sets of possible
individuals (Schwarzschild 2013).

*Minimally, I'm using the same notation for a dimension of measurement and a measure function, i.e. small caps.
The distinction doesn’t really matter here.
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c. [beautiful] = AwhdAx: d € Sgpaury- BEAUTY(x) > d (s,det)

All adjectives carry definedness conditions restricting the degrees they take as argument to par-
ticular scales; in general we will take this to hold for all adjectives, but will suppress it nonetheless.

The denotations above have an important property: they are degree (downward) monotone.

(200) A function A of type (s,(d,et)) is degree downward monotone just in case

YwVxVvdvd’ [A(W)(d)(X) =1&d <, d— AW)d)(x) = 1} Heim (2000:2)

This property affects the shape of the set of degrees that an adjective A characterizes given an in-
dividual x and a world w, i.e. {d | [AJ(w)(d)(x) =1 }—given the scale structure for S,; discussed
above, for any x, w, {d | [old](w)(d)(x) = 1} is the set of degrees containing every degree on S g
from x’s age in w downwards. The same goes for tall and beautiful.

Now we can turn to an analysis of the comparative and equative.

3.1.2.2 Semantics and syntax for the comparative and equative

The comparative can be analyzed as expressing a strict ordering between degrees, so that (201a)
is true just in case (201b) is true; the equative expresses a weaker ordering, so (202a) is true just

in case (202b) is.

(201) a.  Willow is older than Buffy is.
b. Willow’s age > Buffy’s age

(202) a.  Willow is as old as Buffy is.
b. Willow’s age > Buffy’s age

As we mentioned, we’re going to assume that the comparative morpheme -er/more and the equa-
tive as denote functions that relate predicates of degrees, i.e. (dt,dtt) functions. Syntactically, we
assume that degree quantifiers and their subordinate clauses originate in the degree argument po-
sition of the adjective A in the matrix clause, and move for interpretability (Heim 2000, et seq.).
They leave behind an indexed trace of type d and drop a coindexed binder just below their landing
site; this is just Quantifier Raising for generalized degree quantifiers, of course. The subordinate
clause is essentially structurally parallel to the matrix clause: it contains a copy of the adjective,
ultimately elided by Comparative Deletion (Bresnan 1973, 1975). Within the subordinate clause,
an operator originating in the degree argument position of the adjective moves to the edge of the
clause, leaving a trace of type d and binding it.

On this proposal, (201) has the structure below.

(203) Willow is older than Buffy is eld.
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(204)

dt t
/\ />\
/>\ Willow (et)
OP1 4 /\

Buffy (e,t) (det)
/\ T
t g (d,et) proiis old
RN
proy1s old

A parallel structure is assumed for equatives.

(205) Willow is as old as Buffy is old.

dtt dt)

/\ />\
o Willow (e,t)

(206)

Buffy (e;t) (d,et)
/\ /\
tia (d,et) proi1s old
/\
prois old

Than is typically taken to be semantically vacuous in comparatives, and we’ll simply omit it at

LF. The world argument of the matrix adjective is bound by a coindexed binder at the top of the

clause; we assume that the subordinate clause contains a pronoun coindexed with this binder, as

before.

Old, as stated just above, denotes a degree downward monotone function, so for every degree

on S, below Bufty’s age in a world w, the above function returns true. Such a set of degrees is
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an interval: a convex set of degrees”.

(207) INTERVALS

Let D be a set of degrees and S be a scale; D is an interval of S iff D is a convex subset of

S.

(208) CONVEXITY
Let S be a scale totally ordered by <,andlet D C S.
D is convex just in case Vd,d’,d” [d,d” eD&d eS&d<d <d"—=d e ID].

In general, intervals may or may not include their endpoints. An interval is lower-closed if it
includes its greatest lower bound, lower-open if it does not; it is upper-closed if it includes its
least upper bound, and upper-open if it does not. An interval that is lower- and upper-closed
is (totally) closed, and an interval that is lower- and upper-open is (totally) open. We’ll use the

following notation for intervals.

(209) For some points m, n, such that m < n:

a. {x |m<x < n} = [m,n} (totally) closed interval
b. {x |m<x< n} = [m,n) lower-closed, upper-open interval
C. {x |m<x < n} = (m,n} lower-open, upper-closed interval
d. {X | <x < n} = (m,n) (totally) open interval

Square brackets mark that a boundary is included in the interval, and curved brackets mark that
that boundary is not included.

The intervals supplied to -er and as...as via their arguments are upper-closed, initial intervals.

(210) For any interval D and scale S such that D C S:
D is an initial interval of S iff Eld[d ceD& Vd’[[d’ cS&d < d} «~d e IDH

Certain operators, like the comparative and equative morphemes, might want to pull out the

endpoint of such an interval, so the function Max is recruited (von Stechow 1984a; Rullmann

(1995)%).

*Note that ‘interval’ is used sometimes to label both convex and non-convex sets of degrees, e.g. in Schwarzschild
& Wilkinson (2002). We will restrict ourselves to convex intervals, in general dropping the modifier, unless otherwise
indicated.

*Our MAX is stronger than the Max operator that Rullmann proposes; his requires neither convexity nor initiality.

(1) MAXRulmann(D) :==1d[d € D & Vd'[d' € D — d > d']]

Our version of Max affects how the reasoning proceeds when analyzing subtractive degree constructions. Let D and
X be arbitrary sets of degrees, let D’ = D—X, and let D’ include its upper bound. If D’ is not convex, or is not an
initial interval of a scale, Max(D’) will be undefined with our max, but not Rullmann’s. We make use of this stronger
version of Mmax for expository purposes. As we will see in §3.2.1.6, this is not necessary, but we want .
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(211) For any set of degrees D on a scale S:

max(D) :=1d[d e D& Vd'[[d € S&d < d] <> d € D]

This operator picks out from an initial interval on a scale the maximal degree in that interval,
should there be one; it is undefined otherwise. Two more notational notes. First, we'll use curly
brackets when utilizing interval notation for the argument of Mmax. Second, when it is clear in the
context which adjective/measure function is under discussion, we will use the following short-
hand: for an arbitrary world w, AGE(Bufty) will be written B,,, AGE,(Willow) will be written W,

and so on as necessary.
(212) max{ (0, By]} = By = acE(Buffy)

Now we’re in a position to define entries for the comparative and equative morphemes.
A reasonably standard analysis takes them, as we’ve said, to express relations between sets
of degrees; more specifically, we’ll posit that that relation holds between the maxima, as defined

above, of two sets of degrees (von Stechow 1984a; Rullmann 1995°).

(213) [-er/more] = ADgyAD'(gy. MAX(D) < max(D’)
(214) [as] = AD@yAD’ (4. Max(D) < max(D’)

To illustrate:

(215) Willow is older than Bufty is.

*This semantics for the comparative and equative will create well-known difficulties for deriving the right truth
conditions when quantifiers occur in the subordinate clauses. There is a host of recent literature on this matter; see
Fleisher 2016 for an overview. We will be able to provide neither an adequate account of either subtractive-modified
comparatives and equatives with quantifiers in subordinate clauses, nor an account of subtractive-modified quanti-
fiers within the subordinate clauses of comparatives and equatives. These are topics left for future investigation.

We'll see in §3.3 that this maximality-based analysis requires us to think hard about how we analyze negative
antonyms of relative adjectives anyways, and we’ll discuss those issues and some changes there.
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(dt,t)
/\ />\
/>\ Willow (e)t)
opy, /\

Buffy (e,t) (det)
/\ PN
tha (d.et) prons old
N
proiis old

b. [(215)a](w) = 1 iff MAX{ (O, BW] } < MAX{ (O, Ww} }
i.e. AGEy(Buffy) < AGE(Willow)

SHORTHAND: BB, < W,,
Now, putting this together with our syntax and semantics for equatives®:

(216) Willow is as old as Bufty is.

(dt,t)

/\

9

as...as B(d ¢ d
/>\W1110W <e,t>
OPy, /\
Buffy (e,t) (d,et)
/\ /\
t1 4 (d,et) proiis old
/\
proiis old

b. [(216)a](w) = 1 iff max{ (0, By]} < max{(0, W,]}
i.e. AGEy(Buffy) < A, (Willow)

SHORTHAND: B, < W,

‘We’ve omitted a discussion of the positive construction in this section; this will be the subject of §3.3.
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We predict truth just in case Willow is at least as old as Bufty is. These truth conditions allow for
Willow to be older, in fact; the general intuition, however, is that equatives convey, well, equality
between two measures. That is, (216) typically conveys that Willow and Buffy are exactly the
same age. This has been argued to be a scalar implicature (e.g. Horn 1972; see Rett (2015:19-20) for
discussion), plausibly generated through application of ExH, though this is not uncontroversial.
We'll have nothing to say on this particular issue, but will assume the entry above.

Now we can turn to comparatives and equatives with almost and barely.

3.2 Comparatives and equatives

Our semantics for almost and barely isn’t quite right to compose with the comparative morpheme
and the equative morpheme just yet, but it’s not hard to see that a minimal change is all that is

necessary. Here are the entries from the previous chapter.

(217) [almost]&® = AXAZAAAB: X C A & X # (). Z(A—XK)(B) & sMALL(X)

(218) [barely]#¢ = AXAZAAAB: X C A & X # (). ~Z(A—X)(B) & sMALL.(X)
(et,(et,((et,ett),(et,t))

The minimal switch should be obvious: we’ll swap individuals for degrees (and change the names

for A-bound variables).
(219) [almost]®® = AXAD (4t.aty AD gy AD (a,0: X € D & X # . 2(D—K)(D') & SMALLc(X)

(220) [barely]|#® = AXAZ 4t aty AD(ay AD'(q,09: X € D & X # 0. ~Z(D—R)(D') & sMALL(X)
(dt,(dt,((dt,dtt),(dt,t))

These operators will compose just as they did with determiner quantifiers, at least type-wise.
Terminological proposal: let’s refer to cases where almost directly modifies the comparative mor-
pheme almost comparatives, equatives directly modified by almost almost equatives, so on
for barely. The exception pronoun now must denote a set of degrees, rather than a set of individ-
uals. Of course, we’ll continue to assume that subtractives are only licensed within the scope of
an EXH operator, and we form alternatives structurally via substituting the exception for expres-
sions of the same type. We’ll continue to restrict our attention to LFs with exactly one subtractive

operator, and no other alternative-triggering expressions.

(221) [exH @]&<(w) =1 iff [p]#(W) =1 &Y [V € ALT(9) & [9]# 7 o1 [y]& — [Y]&(w) # 1]
(222) SUBTRACTIVE LFs

ALF ¢ is a subtractive LF just in case ¢ is a LF containing exactly one subtractive operator

3 introducing an exception ¥, and no other alternative-triggering expression, and ¢ is of

type (st).
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(223) SUBTRACTIVE ALTERNATIVES
For a subtractive LF ¢, with an exception Y,
aLx(e) == {o[x/x'] | X C Dy & ¢[x/x'] is grammatical }

(224) For a subtractive LF ¢,
[Exm @[<(w) = 1 iff [p]&(w) = 1 & VX' [[@]# # st [@[x/x']5 — [olx/x']E(w) # 1]

In §3.2.1 we’ll see that this semantics for almost (and its concomitant parts) predicts that it can
modify the equative but not the comparative. We’ll also discuss how even in intuitively discrete—
i.e. not dense—domains of measurement, the perhaps counter-intuitive assumption that all scales
referenced in natural language semantics are dense is necessary (Fox & Hackl 2006). Then, we’ll
discuss why some apparently good almost comparatives are misleading, and shouldn’t be an-
alyzed as almost comparatives at all. §3.2.2 will take a close look at barely comparatives and
equatives. We'll see that our semantics for barely needs a tweak: instead of subtracting from the
restrictor of the modified quantifier, we need to subtract from its scope, and we’ll discuss how

this does and doesn’t change the analysis of subtractives and why we didn’t notice it before.

3.2.1  Almost in action
3.2.1.1 Equatives work

Let’s put this to work with equatives. The semantics of the equative isn’t exactly universal quan-
tification, but it’s not too far—for any two (d,t) functions D, D/, [as...as](D)(D’) yields truth just in
case every degree d that makes D(d) true also makes D'(d) true. We’ve just added in maximality. It
makes sense, prima facie, that almost should go with the equative, but we’re in a new ontological
domain, so we ought to be sure that the analysis does work.

Intuitively, (225) is true just in case Willow is younger than Buffy, but the difference between
their ages is small. Another paraphrase: were Bufty a little less old, Willow and Bufty would be the
same age. Given our assumptions, (225) has the LF in (225a), and we derive the truth conditions
in (225b). (225bi) is the meaning of ¢ in w, and (225bii) requires that all non-entailed alternatives

to ¢ be false or undefined in w.

(225) Willow is almost as old as Bufty is.
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(dt,dtt) O

Bufty

as...as
almost  xo

Willow

t5.d
" projps old

b. [(225a)]%(w) is defined only if Mmax{(0,B,| —g(2)} is defined, max{ (0,Vy] } is de-
fined, g(2) C (0,B.], and g(2) # 0; where defined:
[(2252)]E5(wW) = 1 iff (i) & (i) = 1
1. MAX{ (O,BW} —g(2)} < Wy, & sMALL.(g(2))
i, VX' [[ol®< # st [olx2/x 115 = lolx2/x115<(w) # 1]

There are three main aspects of the meaning we need to work through to evaluate this properly:
(i) the definedness conditions; (ii) the entailments between ¢ and its alternatives; (iii) the identity
of g(2). In general, the logic proceeds as it did in the previous chapter, but let’s go through these

carefully in turn.

3.2.1.1.1 The definedness conditions of almost equatives The definedness conditions are
contributed both by almost and as...as. First, almost’s subset presupposition requires that g(2) C
(O,BW} ; no degree in g(2) can exceed B,,. It must also be non-empty. Let’s grant that these hold.
Second, given the semantics of the Mmax operator proposed, for some D, max(D) is defined only
if it is an initial interval of a scale that contains its upper bound. MAX{ (O,WW] } is defined, then.

For MAX{ (O,BW] —g(2)} to be defined, (O,BW] —g(2) must be an initial interval of S,¢; that
includes its upper bound. This means that g(2) must have the following properties, provided it’s

a non-empty subset of (O,BW}.

1. g(2) contains By,
2. g(2) does not include its lower bound

3. g(2) is convex

These are all necessary conditions. Let’s go through each in turn.
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Suppose [1} is false. (O,BW] —g(2) contains By, but then it is not convex, since g(2) removes
degrees lower than B,,. MAX{ (O,Bw} — g(2)} is undefined. Now suppose [2} is false. Assume the
lower bound of g(2) is n; its upper bound is By; g(2) = [n,BW}. (O,Bw} —g(2) is thus the totally
open interval (O,n), and MAX{ (O,BW} — g(2)} is undefined. Finally, suppose [3] is false. Since g(2)
is not convex, (O,BW] —g(2) is not convex, and so MAX{ (O,Bw} — g(2)} is undefined.

The net result is that if g(2) is not empty, it must be a final subinterval of (O,BW}, and must
not include its lower bound (i.e. it must be open at the bottom). This is a more general fact: if
D* is an initial interval of some scale S that includes its upper bound, and X is some non-empty
set of degrees on S, MAX{ID*—X} will only be defined if X removes a final subinterval of D
and X does not contain its lower bound. In the context of almost comparatives and equatives,
subtraction must, and indeed can only, lower the threshold set by the subordinate clause. This is
intuitively a good thing—(225) conveys that, were Buffy a bit younger, were we to lower her age,

Willow would be as old as her.

3.2.1.1.2 Entailments Here are the truth conditions of (225) again.

(225b)  [(2252)]¢°(w) is defined only if max{ (0,8, —g(2)} is defined, max{ (0,V,,] } is defined,
g(2) C (0,By], and g(2) # 0; where defined:
[(2258)[#“(w) = 1 iff (i) & (ii) = 1
i. max{(0,By]—g(2)} < W,y & sMaLL.(g(2))
ii. Vyx'[lo]#¢ # st [olxa/x'118¢ — [olxa/x'1]#(w) # 1]

We know from the previous chapter that if almost modifies a necessarily true quantificational
generalization ¢, EXH is vacuous, and therefore neither ExH nor almost will be licensed. This
pattern generalizes to degree constructions. If in all worlds w’, Buffy is at most as old as Willow
is, i.e. VW [ By < W], g(2) can pick out any small final subinterval of (0,8, that is lower-open
and (225bi) will be true; all other sets will make it false or undefined. This means that the truth of
(225bi) guarantees the truth of (225bii)—ExH adds nothing, and is not licensed. Neither is almost.

Let’s assume, then, that it’s not necessarily the case that Willow is at least as old as Buffy is.
For a given value for g(2) that makes (225bi) true, which alternative x’s are such that [¢]®¢, the
intension of (225bi), entails [¢[x2/x']]®? That depends, of course, on the entailment properties of
as...as. Because of the definedness conditions imposed by the degree quantifier, many alternatives
will be undefined; we need to find those alternatives whose presuppositions are satisfied in order
to know whether they’re entailed or not. [as...as] is Strawson Downward Entailing on the first,
Strawson Upward Entailing on the second. Modulo the presuppositions rendering it Strawson

entailing, this is just like every!
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Let’s show that this claim is right. Suppose first that for any world w, D, and D, characterize
initial intervals on a scale S, and that in world w* [as...as] (DW*)(D;V*) is true. Let MAX(D,,,) = n,
and max(D,,,) = m. Now suppose that D, characterizes an initial interval D,,, of S such that
[D;:,* is a proper subset of Dy, and MAX(ID;/V*) is defined. It must be the case that MAX([D:V*) <
n, and so if [as...as](Dy.)(D,,,) is true, then [as...as](D,,,)(D,,) is true, too. If D, characterizes
a set [D:v* that is a proper superset of Dy, and it still characterizes an initial interval of S, we
cannot conclude that [as...as](D.,)(D.,) is true from the truth of [as...as](Dy.)(D,,,). MAX(D

> m in this case, and it’s entirely possible that it is greater than n, too. When both its arguments

"
we)

characterize initial intervals on a scale, [as...as] appears to be Strawson Downward Entailing on
its first argument; it’s easy to see that it will be Strawson Upward Entailing on its second.

An important note is warranted now. When considering whether an exception is small or
not, because we’re dealing with dense sets of degrees, the relevant measure function we use to
determine the size of an exception cannot be cardinality. Any dense set of degrees has an infinite
cardinality. That’s fine, though; we never meant for cardinality to be the only measure used by

the size constraint.

(226) THE SIZE CONSTRAINT
Let c be a context of utterance, pi . be a measure function, determined by the context, map-
ping sets to numerical values representing their size, and n. be a contextually determined
numerical threshold for size.
SMALL:(X) = 1 iff p.(X) <n..

The contextually-determined measure function needs to be one with which we can check the
relative size of an interval with respect to another. Perhaps it’s something like LENGTH, measuring
an interval, mapping it to a new scale, that allows a crisp comparison of size. We can do some

revisions:

(227) THE SIZE CONSTRAINT

Let c be a context of utterance, X be an arbitrary set, and n. be a contextually determined

numerical threshold for size.
Where X is a dense set of degrees, SMALL.(X) = 1 iff LENGTH(X) < n;
Otherwise, SMALL.(X) = 1 iff |X| < n,

(228) MAXIMAL SIZE OF n,
Let ¢ be a constituent with subconstituent y such thaty = [A [oc [Z X} H or [HZ X} A} oc],
where ¥ is a subtractive operator, A is quantificational determiner, and o and y be expres-
sions whose denotations characterize A and X, respectively.

An utterance of ¢ in c is felicitous only if, for any context c:
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Where A is a dense set of degrees, n. < %(LENGTH(A));

Otherwise, n. < 1|A|

As far as I can tell, this should be sufficient for our purposes.

Now let’s get back to the almost equative we’re trying to analyze.

(225b)  [(2252)]#“(w) is defined only if max{ (0,8, —g(2)} is defined, max{ (0,V,,] } is defined,
g(2) C (O,BW} and g(2) # 0); where defined:
[(2252)]8¢(w) = 1 iff (i) & (ii) = 1
i. max{(0,8+]—g2)} < Wy & smaLL.(g(2))
i, VX' [[@]# % st [oxa/x11%¢ — [olx/x'11¥<(w) # 1]

Here’s the updated state of affairs.

1. g(2) must be a non-empty, lower-open, convex, final subinterval of (O,Bw} definedness
conditions
2. g(2) must be small truth conditions

3. [as...as] is Strawson Downward Entailing with respect to the subordinate clause; ¢ is, too

subordinate clause is an initial interval
Given these facts, here’s what we know about alternative x's.

4. For all x’ that lack at least one property in [1.] or [2.], [¢[x2/x/][&(W) # 1

5. For all x’ that have all properties in [1.] and [2.], and g(2) =>s1 X/, [9]®¢ C [¢[x2/x]]&*

[4.} should be obvious—the same properties that constrain appropriate values for g(2) constrain
alternative x's. [5.] follows from [3.]. Since ¢ is Downward Entailing with respect to the restrictor
of as...as, small supersets of the exception will be entailed, provided they yield definedness. (Those
supersets that aren’t small are covered under [4] .) Now, are those X’ that are non-supersets of
g(2), but which have all the properties in [1} entailed? We can exclude any non-subsets from
the non-supersets we’re investigating; none of them can be final subintervals of (O,BW], and so
none, when subtracted from will (O,BW} , yield an interval for which max is defined. All we need
to know, then, is whether or not subsets of g(2) are entailed.

The answer is no. For any non-empty g(2) that has all the properties in [1.}, there will al-
ways be a world w* where for some subset X’ of g(2) which also has all the properties in [1} ,

MAX{ (O,Bw*} —g(2)} < Wy is true and MAX{ (O,BW*} —g(2)} < Wi« is false. This is easy to see:
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let w* be such that g(2) = (O,Bw*} — (O,Ww*} ; a subset X’ of g(2) that yields definedness will have
a lower bound greater than the lower bound of g(2), and so MAX{ (O,BW*} —g(2)} > W.. For a
given g(2) that makes the pre-exhaustified meaning of an almost equative true, X’s that pick out a
proper subset of g(2) will not be entailed, and hence to know if the exhaustified meaning is true,

we must verify that all such subsets aren’t true. Everything else is already entailed or not true.

3.2.1.1.3 The exception is the difference Knowing all this, here’s what must be the case
in order for (225a) to be true. If non-empty, g(2) must be a small, final subinterval of (O,Bw*}
subtracting enough from (O,Bw*] so that MAX{(O,Bw*] —g(Z)} < Wy EXH requires that all
non-entailed alternatives make MAX{ (O,Bw*} X } < W,,~ false or undefined.

Suppose that g(2) = (). In such a context, if (225bi) is true, then (225bii) is true. All alternatives
X' are supersets of (), so if they’re small, they’re entailed, and if they’re not, they satisfy ExH.
If (225bi) is false, then of course (225b) is false. So, [@]®€ entails [ExH ¢@]®°—given the economy
constraint on ExH, the latter is not licensed, and neither is almost. So, g(2) must be non-empty.
Now, if By < Wi, every defined alternative is still true, but not every one is Strawson entailed.
In particular, subsets of g(2) will not be entailed, and so ExH will be falsified by those subsets.
Not only must g(2) be non-empty, then, but in the world of evaluation w*, it must be that By, >
Wk

In such a world w*, g(2) must contain the difference between (O,Bw*] and (O,Ww*], ie.
(Ww*,Bw*} , and that difference must be small relative to the context. (225bi) will then be true.
(225bii) requires that no subset of g(2) also make (225bi) true; this will only be the case if g(2) =
(Ww*,Bw*} .Should g(2) subtract more than that, i.e. g(2) picks out a proper superset of (Ww*,Bw*} ,
(225bi) will true provided it’s still small, but then there is a non-entailed subset that also makes
(225bi) true, namely (WW*,BW*] ExH will yield falsity, then. The exception must pick out the
difference between Buffy and Willow’s ages.

Let’s zoom out for a moment. The analysis, or at least the discussion of it, runs a little on
the technical side, but the key aspects should be clear. In an almost equative with the exception
introduced by the subtractive must be a small, final subinterval of the interval provided by the
subordinate clause. Anything else yields undefinedness. The exception must be equivalent to
the difference between the intervals supplied to as...as by subordinate and the main clauses; by
‘lowering’ the subordinate clause interval, we make the modified equative true. The exception,
that difference between two intervals, must be small, and it is all that stands between us and
the truth of the equative. So, almost says, get rid of it! Were we to remove any less than that
difference, it wouldn’t be enough; any more, and it’d too much. The difference is just right. As we
turn to almost comparatives, and then on to barely, these lessons are important. What matters in

subtractive-modified degree quantification is the difference between two intervals.
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3.2.1.2 Comparatives don’t work!

The almost comparative in (229) is extremely odd, and our analysis predicts this.

(229) # Willow is almost older than Bufty is.

a P

EXH ®
104
(dt)
(dt,dtt) (dt)
almost  y» ' ops, How to g
BUHY ’ P”010,s old
t5.d

proigs old
b. [(229a)]#(w) is defined only if Mmax{(0,B,| —g(2)} is defined, max{ (0,V,] } is de-
fined, g(2) C (O,Bw} , and g(2) # 0); where defined:
[(2292)[*“(w) = 1 iff (i) & (i) = 1
i max{(0,B8y]—g2)} < Wy & smaLL(g(2))
ii. VX' [[ol®< # st [olx2/x11%¢ = lolx2/x11¥<(w) # 1]

The key difference between this semantics and that of the almost equative discussed in the pre-
vious section is, of course, that the comparative requires a strict ordering between two degrees.
The exception must lower Buffy’s age to a point strictly less than Willow’s age. As it turns out,
that’s enough to make it impossible for (229b) to be true. Let’s see why.

The logic discussed in the previous section applies here, so we’ll go over it briefly. If it is
necessarily true that Willow is older than Buffy is, then the truth of (229bi) entails the truth of
(229bii), and therefore ExH, and by consequence almost, will not be licensed; we grant, then,
that there is no such necessity. Like as...as, -er is Strawson Downward Entailing on its first ar-
gument and Strawson Upward Entailing on its second, and so it will be Strawson Upward En-
tailing on the exception. As before, g(2) must be a lower-open, final subinterval of (O,BW] for
MAX{ (O,BW} —g(2)} to be defined; for a given assignment for g(2) that makes (229bi) true, alter-
natives formed with small supersets of g(2), provided they are also lower-open, final subintervals
of (O,Bw] for MAX{ (O,Bw} —g(2)} will be entailed. There are only subsets left once we consider
the definedness conditions, and they aren’t entailed. If g(2) = (), then again, all alternatives are

small and entailed, or not small and false. The truth of (229bi) thus guarantees the truth of (229bii),
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and ExH has nothing to add. It’s vacuous, not licensed, and neither is almost. The exception must
be non-empty.

What must be the case, then, is that Buffy is at least as old as Willow in the world of eval-
uation. g(2) must be small in the context, but still subtract a sufficiently large, lower-open, final
subinterval from (O,BW} so that the biggest degree in the remainder is strictly less than WW,,. Now,
if By, = Wy, then g(2) must remove By, but it can’t remove only B,,. The remainder would be an
open interval: (O,BW] — [BW,BW] = (O,BW). That won’t do for Max. g(2) must go further: for some
small e, g(2) = (BW—S,BW] . The same goes if By, > W,; it must remove W,, from (O,BW} ,and go
a little farther, for the remainder to be strictly lower than W,, and still defined.

That we have to go a bit farther than W, is the problem when we consider (non)-entailment.

We discussed in the preliminaries the assumption that scales are dense:

(197) Let S be a set of degrees, p be a dimension of measurement, and <, be an ordering on §

relative to p. S is a scale just in case Vd,d' € S:

a. d<, dvd <, d total order
b. d<,d —3d'[d"eS&d<,d" <, d] density

This is intuitive when we consider ages: age is dependent on time, and surely between any two
points in time is another point in time, so between any two ages is another, distinct age. This
is in fact the problem for almost comparatives. g(2) needs to remove enough from (O,BW] SO
that its maximal element is just below W,,. For some small ¢, g(2) = (WW—E,BW] This has a
proper subset that also removes enough from (O,BW} so that the maximal element is strictly less
than W,,: (WW—%,BW}, but since subsets aren’t entailed, the alternative formed with the X’ =
(Ww—g,Bw} one will falsify (229bii). For any assignment for g(2) that makes (229bi) true, there
will be a non-entailed subset that makes (229bii) false. (229b) is necessarily false, or else almost

is not licensed. The analysis cannot predict truth for the almost comparative.

3.2.1.3 The argument for Universal Density

While S, is intuitively a dense scale, that’s not necessarily the case across the board. Cardinal-
ities, for example, seem discrete: if one asks exactly how many vampires Bufty killed last night,
the answer comes from the set of natural numbers. We can’t say she killed 34.2 vampires. Fox
& Hackl (2006) argue that in fact, Scapomaunry 1S dense as well. More generally, they propose that
all measurement scales in natural language semantics are dense; this is the Universal Density of
Measurement hypothesis. (UDM). We’ll show now that if S¢arpmaury Were a discrete scale, we

should predict examples like (230) to be acceptable, contra to fact.

(230) # Willow killed almost more vampires than Buffy did.
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We’ll argue, then, our analysis of almost provides support for the UDM in a novel way.
We need to add into our compositional semantics a means of measuring cardinalities. Fol-
lowing Hackl (2000, i.a.), we’ll take the degree-introducing morphology in (230) to be the covert

operator MANY.
(231) [many] = AdAAAB. Ix[x € A& x € B & [x| > d] (d,(et,ett))

The cardinality function, let’s assume, counts the number of atomic elements in a plurality and
maps it an element in the set of the natural numbers N, i.e. {1, 2,3, } This scale is discrete. For
simplicity, we’ll be assume that kill expresses a world-dependent relation between individuals,

with its first argument being the killed and its second the killer.

(232) [kill] = AwAxAy. KILLy(x)(y)
(233) a. By = {d | Ix [VAMPIRE(X) & KILLy(x)(Buffy) & [x| > d] }
b. Wy = {d | Ix [VAMPIRE(X) & KILLy(x)(Willow) & [x]| > d] }

Now, putting this together with the comparative semantics assumed:

(234) Willow killed more vampires than Bufty did.
a. 0]

10

5d

t(6,q) MANY vampires  17.

t(5,q) MANY vampires 19

Willow t19,) kill t(17e)
Bufty Proqio,s) kill t15.e)

b. [o](w) =1 iff max(By,) < max(W,,)

i.e. the number of vampires Buffy killed < the number of vampires Willow killed
The truth conditions are straightforward. Now let’s add in almost.

(235) # Willow killed almost x5 more vampires than Buffy did.

a. [(235)]#(w) is defined only if Max(B,,—g(2)) is defined, max(Wy,) is defined, g(2) C
By, and g(2) # (); where defined: [(235)]&(w) = 1 iff (i) & (ii) = 1
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i. Max(By—g(2)) < max(W,,) & sMALL.(g(2))
i. VX' [[o]#< # st [olx2/x11%¢ = lolx2/x11%<(w) # 1]

All the now-familiar claims apply: if the number of vampires killed by Buffy is necessarily less
than that killed by Willow, almost isn’t licensed; if g(2) = ) and (235ai) is true, then almost isn’t
licensed, etc. Let’s assume, then, that Bufty killed more vampires. For concreteness, let’s say she
killed one hundred and two, and Willow killed ninety-nine; for max(B,,—g(2)) to be defined, g(2)
still be a final subinterval of By, even though it’s not a dense set. There is, in this context, a natural

candidate for g(2):
(236) g(2)={deN|[102>d>99}
(237) By—g2) = {d|98>d}

No subset of g(2) that is a final subinterval of By, is entailed, but because N is discrete, there are
no such subsets that falisify ExH, either. None of them will lower By, below 99. If the cardinality
measure function maps to N, a discrete scale, then we can’t rule out this almost comparative. If
the scale is dense, however, then we do predict this to be unacceptable—to yield an interval for
which max is defined, g(2) must be lower-open. It must ‘go below’ ninety-nine by some small
amount. Then, however, we'll run into the density issue again, but here, that’s a good thing.
Density allows us to rule out almost comparatives, even in intuitively discrete domains. To the
extent that this analysis of almost is independently correct, this serves as an argument for the

UDM-—even cardinalities must be mapped to a dense scale’.

3.2.1.4 Why are some almost comparatives okay?

Imagine that we’re hosting a potluck, and every guest brings a dish, maybe even two. When all
guests have arrived, and all the platters and casseroles and salads bowls are on the table, we think
to ourselves that this is quite a lot—it seems there is no more room on the table. So we say to our

guests:

"A careful discussion of Fox & Hackl’s arguments in favor of the UDM would take us too far afield, but we can
make some brief comments on it here. They are interested in part in explaining the contrast between (i) and (ii).

(i) # How many children does Giles not have?

(i1) How many children is Giles required to not have?

The basic idea is that how many questions ask for the maximally informative degree in a set. (i) is odd because there
is no such degree—negation takes an upper-closed, initial interval of a scale and yields a lower-open, final interval
of a scale. As a result, there is no maximally informative degree in the set of children that Giles doesn’t have. (ii) is
good because universal modals yield closed intervals from open ones; the resulting set has a maximally informative
member, the smallest number. This is all brought up because one might reasonably ask whether modals obviate the
density problem in almost comparatives. It’s not obvious that this is relevant: the locus of the density problem here
is not an open interval that can be closed by a modal, the issue is that we cannot find a unique exception. However,
more careful work is needed to show this; this is left for the future.
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(238) There is almost more food here than we can fit on the table.

This seems like a natural and felicitous sentence in this context, and our guests laugh and agree
and the potluck starts in earnest. What we’re saying is that were things different, if we had a bit
more food, or a bit less space on the table, the amount of food we have wouldn’t fit, but it does, in
the end, fit. It appears that almost is modifying the comparative morpheme more. Other natural

examples are given in (239).

(239) a.  This metal rod is almost longer than it can be to fit in this gap.
b.  Ozis almost taller than his father is.

(239a) conveys that, were the rod longer than it in fact is, it wouldn’t fit, but as it happens, it does
fit. (239b) conveys that Oz’s height is close to, but not actually taller than, his father’s. Again,
in both cases it seems that we have almost modifying the comparative. Nonetheless, our theory
predicts that this cannot be the case—almost modifying a comparative cannot yield truth on our
analysis. So what’s going on in these cases? Why are these almost comparatives acceptable?
What we’ll argue is that these are not genuine instances of almost comparatives. They are
the product of a misleading surface form. In each of these cases, we have a use of almost that is

structurally more akin to (240b) than (240a).

(240) a.  Bufty is almost as tall as Willow is.

b. Willow is almost a master of witchcraft.

Our analysis derives accurate truth conditions for (240a) through almost modifying, directly, the
equative morpheme. We don’t yet have an analysis of (240b). That said, there are good reasons to
think that in (238) and (239), almost cannot be modifying the comparative directly, but instead,
modifies something else—perhaps whatever it modifies in (240b). Certain contexts unexpectedly
eliminate the possibility of almost modification. Tense, too, can affect the felicity of the utterance
in a way that is not really expected. Perhaps most convincing is syntactic evidence suggesting
that almost is not directly modifying these morphemes. We will discuss these in turn.

For (238) we set up a potluck context; for (239), we can clarify the context a little. Imagine
we’re playing a game in which we compete with metal rods. There is a range of admissible lengths
for our metal rods—they must be, say, between 2 and 2.2 meters long. If the particular metal rod
under consideration is 2.2 meters long, it seems that (239) is true. The metal could be malleable;
we could stretch it just a hair and it would be longer than 2.2 meters. Now imagine that the metal
we are using to fit in the gap is not malleable at all—once cut, it cannot be stretched without
shattering. In this context, (239) is degraded, but this is unexpected if almost directly modifies
more. Such modification only cares about lengths—it should be true and felicitous simply because

the length of the rod is close to too long. It’s unclear how, or why, malleability should play a role.
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A parallel point can be made for (241a). At least one context in which it is true is if Oz is a
growing boy, and it’s looking like he’ll end up taller than his father. It seems like the fact that
he’s growing is quite relevant. If we remove this kind of possibility from these examples, they too

degrade. To see this, consider (241b).

(241) a. A growing boy, Oz is almost taller than his father is.

b. ?? No longer growing, Oz is almost taller than his father is.

(241a) is acceptable; a growing boy brings out the interpretation that Oz’s height could end up
exceeding his father’s height. However, when we use no longer growing, as in (241b), the sentence
is degraded. By eliminating the possibility that Oz could end up taller than he is currently through
the modifier no longer growing, we reduce the felicity of the examples. This is unexpected, though,
if almost taller only cares about a comparison—what bearing does the possibility or impossibility
of future growth have on that? These modifiers don’t disrupt almost across the board. Consider

the felicity of almost equatives.

(242) a. A growing boy, Oz is almost as tall as his father is.

b.  No longer growing, Oz is almost as tall as his father is.

Neither forcing nor eliminating the inference that Oz’s height could change in the future affects
the felicity of these examples; they do simply seem like a comparison of heights. This is what we
would expect if almost directly modifies the equative morpheme.

The acceptability of almost in a comparative is also degraded through tense manipulation.

(243) a. At 16 years old, Oz is almost taller than his father is.

b. ?? At 16 years old, Oz was almost taller than his father was.

Fixing Oz’s age through the modifier at 16 years old, (243) is acceptable. However, when we shift
to the past tense, suddenly it becomes degraded. Again, though, it’s not clear why this should

matter, and this effect doesn’t arise with the equative.

(244) a. At 16 years old, Oz is almost as tall as his father is.

b. At 16 years old, Oz was almost as tall as his father was.

Tense here doesn’t affect the acceptability of almost. It is unclear why this should be the case
with the comparative construction, but not the equative construction, if in all cases we have al-
most directly modifying a degree quantifier comparing particular intervals. It would be expected,
however, if tense does affect almost modifying a VP—McKenzie & Newkirk (2019) show that this

is borne out.
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(245) a. ?? Oklahoma is almost two states.

b.  Oklahoma was almost two states. McKenzie & Newkirk (2019:24-25)

Almost’s contribution in these cases is restricted by tense. (245a) is odd, except perhaps on an
interpretation where we’re discussing the sheer size or sociopolitical divides in Oklahoma. With
past tense, it improves, and it can mean that the land that is currently the state of Oklahoma
could have ended up as two distinct states. This pattern is different than the one we saw above,
but to the extent that its similar, it speaks to the possibility that almost doesn’t directly modify -er
above, but rather the entire clause. Deriving the interpretations that arise in these constructions,
and showing why they are blocked through certain modifiers and tense configurations, is a topic
for another chapter.

Here’s a final argument. Numbers can be compared in terms of size.

(246) a.  Eightis bigger than seven is.

b.  Seven is almost as big as eight is.
These both seem like felicitous comparisons, but almost cannot appear in the comparative.
(247) # Seven is almost bigger than eight is.

This strikes us as incredibly odd. The paraphrases above for the acceptable almost comparatives
relied on a notion of counterfactuality: were things different, the comparatives would (or could)
hold. It’s hard to imagine how seven could be bigger than eight. It’s a mathematical fact that it’s
smaller! Even though it is plausibly close in size to eight, there’s simply no way for there to be a
world in which seven is, in fact, bigger than eight.

Implicit in the discussions above is the idea that the syntax is misleading the syntactic position
of almost—its linear order obfuscates its structural position. Simplifying the structures, the claim

is that almost is modifying the entire VP, rather than more and too directly.

(248) Oz is almost taller than his father is.

a. [Oz; [is [almost [yp t; taller than his father]]]]
b. *[Oz; [is [vp t1 [[almost taller] than his father]]]]

Part of the problem is that the location of almost is obfuscated by the high position of the subject
and the presence of the auxiliary. In fact, the only time almost seems to precede an auxiliary

where it is present is when it directly modifies a quantificational determiner.

(249) Almost all the students are in the library.
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Here, almost modifies all. In this position, the only interpretation that is possible is that the vast
majority of the students are located in the library. This cannot mean that all of the students are
nearly in the library—for example, if they are en route and are practically there. That is interesting,

and it turns out that all-stranding patterns similarly.

(250) a.  The students are almost all in the library.
b.  All the students are almost in the library.

c. " Almost the students are all in the library.

(250a) can only mean that the majority of students are in the library. (250b), however, only has
the interpretation that every last student is nearly in the library—exactly the interpretation (249)
and (250a) lack. (250c) shows that you cannot move almost and the NP independent of all. If you
move all, almost must come with; if you leave it in situ, so must almost remain in situ. Of course,
when almost goes with all, it only allows the typical quantifier-modifier interpretation, including
in SpecTP.

This fact about almost and SpecTP is revealing. There-constructions are revealing as well. Both
almost more and more are permissible in there-constructions, but it turns out that while more can

surface in SpecTP, almost more cannot.

(251) a.  There are more people in my house than I invited.
b.  There are almost more people in my house than I invited.
(252) a.  More people are in my house than I invited.

b. # Almost more people are in my house than I invited.

Why should this be, then? Well, if almost directly modifies more, when the latter moves to SpecTP
in (252), almost should tag along, given what we’ve seen. However, this isn’t the case. Now, if
almost does not and cannot directly modify more, it’s no surprise that almost more cannot surface
in SpecTP given the data in (250). In (251b), then, it must be modifying the VP.

Locative inversion as in (251) and (252) isn’t necessary to make this point—where more people

can occur as the subject of an accomplishment verb, almost more people is degraded.

(253) a.  More people signed up for this course than I expected (so we’ll have to kick some

out).

b. ?? Almost more people signed up for this course than I expected (so we’ll have to stop

letting people enroll).

Here, again, almost more people is not a great subject, but it’s unclear why this should be if more

people can surface in this position. These data, then, are fairly striking evidence in support of the
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idea that almost doesn’t directly modify more. While we haven’t constructed similar examples
yet with the comparative, and further evidence is under construction, this points to the idea that
there is more than meets the eye is going on when we see almost more. Coupled with the effects
of context and tense on the acceptability of almost more, we make a strong case in support of our
theory, which in fact predicts that almost does not modify these degree operators directly, even

when it appears to.

3.2.1.5 Almost requires subtractive alternatives, finally

In the previous chapter, we argued that barely necessitated the ‘subtractive’ alternatives proposed

for exceptive but, as defined below.

(254) SUBTRACTIVE ALTERNATIVES
For a subtractive LF ¢, with an exception ¥,
aLx(g) == {o[x/x'] | X C Dy & ¢[x/x'] is grammatical }
aLr(p) = {¢[x/x'] | X' € D4 & ¢[x/x’] is grammatical }

Spector (2014) and Crnic (2018), though not dealing with barely, assumed that the lone alternative
to some ¢ containing almost was just that same ¢ without almost. That wouldn’t do for barely;
we needed these subtractive alternatives. We made the assumption that almost invokes the same
alternatives on the basis of parsimony, but there was no positive evidence at that time. Almost
did just fine without them.

Comparatives and equatives now provide that positive evidence. Without subtractive alter-
natives, we could not predict the contrast between almost equatives and comparatives. Suppose,
then, that the alternative to an almost equative is just the unmodified equative, and the same for
a comparative. Neither the almost equative nor the almost comparative entails their alternative,
S0 EXH requires that it not be true. The truth conditions are given below (presuppositions are

suppressed, but assumed).

(255) Willow is almost as old as Bufty is.
a. max{(0,By]—g@2)} < W, & smaLL(g(2)) & Max{ (0,B,]} > W,
(256) # Willow is almost older than Bufty is.
a. Max{(0,8,]—g2)} < Wy & smaLL(g(2)) & max{ (0.By]} > W,
Both sets of truth conditions are perfectly coherent. The almost equative requires that subtracting
g(2) from Buffy’s age yield a degree at least as low as Willow’s age, but Willow is in fact younger

than Buffy. That’s fine. The almost comparative requires that g(2) subtract enough from Buffy’s
age to yield a degree lower than Willow’s age, but Buffy is at least as old as Willow is. That’s fine,
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too, or at least, it’s not necessarily contradictory. It’s perfectly coherent! As we’ve seen, though,
subtractive alternatives do make a clear distinction between the two cases.

Another alternative might be to invoke Horn scale-mates for substitution: almost compara-
tives have almost equatives as alternatives and vice versa. This is essentially the “scalar” view
discussed briefly in the previous chapter. On the kind of view argued for by Hitzeman (1992),
Penka (2006), a.0. almost is a propositional operator; we know that won’t work given the argu-

ments by Gajewski (2008), et seq., and almost degree constructions make matters worse.

(257) [almostscatar] = Ap(sn Aw. —p(w) & Elq[q € ALT(p) & q(w)}

Now, the alternatives to Willow is almost as old as Buffy is would be generated by swapping the
equative for a Horn-scale mate, i.e. the comparative. However, since the comparative is logically
stronger than the equative, the negation of the equative entails the negation of the comparative,
and there is no weaker alternative that can be asserted true. Such an analysis would predict that
Willow is almost as old as Buffy is would be false necessarily. To make matters worse, it would
predict that almost comparatives are good across the board, since the comparative has a weaker
alternative—the equative—that can be substituted for it.

Amaral & Del Prete (2010) give a more flexible kind of meaning, one that is in ways more akin
to ours, and reject the appeal of Horn scales in determining alternatives, but the basic components
aren’t all that different from Hitzeman and Penka. Theirs is a focus-sensitive operator; its first
argument is a pair of the semantic value of almost’s associate (P) and the contextually determined
alternatives to the second argument (S), and its second argument (x) is the semantic value of the

part of the sentence not in focus.
(258) [almostagar] = APy 0.7 )Axy. “P(x) & 3Qy € 7 [Q <5 P & cLOsES(Q.P) & Q(x)]

All that this semantics does is loosen the requirements on what counts as an alternative, leaving
it up to the context to determine S. It’s not clear at all how this could be leveraged to predict the
distribution our analysis does. Subtractive alternatives are, in the end, necessary for almost. It
takes looking closely at degree constructions, and specifically comparatives and equatives, to see
that.

3.2.1.6 Mix ’n’ max

Our mAX operator is really quite restrictive when it comes to definedness.

(259) For any set of degrees D on a scale S:
max(D) :=ud[de D&V [[d € S&d' <d]| +»d € D]

This operator is only defined for a set of degrees D if D is an initial interval on a scale:
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(260) For any interval D and scale S such that D C S:
D is an initial interval of S iff 3d[d € D & Vd'[[d' € S & d' < d] +» d' € D]]

This is stronger than a more standard Mmax operator like Rullmann’s (1995).
(261)  MAXR(ulimann) (D) := 1d [d e D &Vd [d’ eD—d> d’”

This operator doesn’t require D to be convex or to be an initial interval of a scale, so it is defined
for many sets that our max is not. Like our max, though, maxy does require is that the upper
bound of D be included in D.

Utilizing maxy changes how we analyze subtractive degree constructions, so it’s good to
briefly go over this, utilizing almost equatives. Although the rationale for certain kinds of excep-
tions is different with this operator, the end result for our analysis is, fortunately, the same. Let’s
take a look.

(262) Willow is almost as old as Buffy is.
a. [(262)]#(w) is defined only if maXz{ (0,B,] —g(2)} is defined, maxg{ (0] } is de-
fined, g(2) C (0,B.]. and g(2) # 0); where defined: [(262)]&“(w) = 1 iff (i) & (i) = 1
i Maxp{(0,By]—g(2)} < Wy & smaLL(g(2))
ii. Vx'[[o]# # st [olxa/x' 11 — [olx2/x118<(w) # 1]

MAXR{ (O,WW} } is defined so long as W, is included in that interval, which it is, and the subset
and non-emptiness presuppositions are familiar. MAXR{ (O,BW] —g(2)} is what we need to think
about. Where before, g(2) had to be a final subinterval of (O,Bw} for its subtraction from the latter
to satisfy the definedness conditions on MaX, MAXg imposes no such requirement. For any set D
such that maxgz(D) < B, MAXR{ (O,Bw} —|D} is defined. Let D* be such a set. That means, then, if
g(2) =D, MAXR{ (O,BW] —ID} is just MAXR{ (O,BW} }, i.e. By, and so the truth of (262ai) depends
on whether B,, < W,,, and whether D* is small. Grant that both are true. Now, certainly small
supersets of g(2) will be entailed, as well as any set whose maximal degree is less than or equal
to the maximal element in g(2). If there are only other such sets that satisfy the presuppositions
of almost, then (262ai) entails (262aii), and neither EXH nor almost is licensed. Any set X’ whose
maximum is greater than the maximum of g(2) is not entailed, so if there are such sets X', they will
thus falsify (262aii) above, since the subtraction of X’ from (O,BW} cannot change the contingent
fact that By, < Wy,. So (262aii) will be false, and hence (262a) will be, too. maxy doesn’t really

change much, in the end.

3.2.2 Barely needs a change

Our analysis of almost works beautifully so far, accurately predicting the felicity of almost equa-

tives and ruling out almost comparatives. Barely’s distribution with respect to comparatives and
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equatives is complementary to that of almost: it happily goes with comparatives, but equatives

are unacceptable.

(263) a.  Willow is barely older than Buffy is.
b. # Bufty is barely as old as Willow is.

Now, we’ll want to check if our semantics for barely works just as well.
(264) [barely]* = AXAZADAD: X C D & X # (). ~P(D—X)(D') & sMALL(X)

As it turns out, we run into a problem right away with comparatives: barely subtracts from the
wrong set. §3.2.2.1 shows how, by altering the meaning of barely so that it subtracts from the
nuclear scope of the quantifier it modifies, we derive the right results for barely comparatives
and rule out barely equatives. §3.2.2.2 revisits quantificational determiners, discusses why it took
degree quantifiers to reveal to us this necessary change, and shows that the revised analysis still

works.

3.2.2.1 The problem and the solution

Intuitively, (265) is true where Buffy is older than Willow is, but the difference is rather small;

were we to eliminate that difference, Willow would be at least as old as Bufty.

(265) Bufty is barely older than Willow is.

EXH ¢

barely x2 g OPs5,
Willow
5.0 proios old
b. [(265a)]%(w) is defined only if Mmax{(0,W,]—g(2)} is defined, max{ (0,8, } is de-
fined, g(2) C (O,BW} , and g(2) # 0); where defined:
[(2652)](w) = 1 iff () & (i)

i MAX{ (O,WW} —g(2)} £ By & sMALL.(g(2))
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ii. Vx'[[o]#° % st [olxa/x' 1% — lolxo/x' 1 (w) # 1]

Right off the bat, we know these truth conditions aren’t right. First, barely is subtracting from
the wrong set—it’s requiring that we lower Willow’s age, rather than Buffy’s. Second, (265bi) can
only be true if in w Willow is at least as old as Bufty is, and g(2) subtracts less than the difference
between their two ages. In a world where Bufty is older than Willow, there is no assignment for
g(2) that can make (265bi) true. That’s a problematic state of affairs!

Our semantics for subtractives takes them to subtract from the restrictor of the quantifier they
modify; in comparatives and equatives, that means the subordinate clause. Intuitively, though,
subtraction needs to apply to the matrix clause in barely comparatives. Let’s make that change.
Instead of subtracting from the restrictor, it will now subtract from the nuclear scope of the

modified quantifier; the subset presupposition is changed accordingly.
(266) [barely]c = AXAZADAD: X C D' & X # (. =~ 2(D)(D'—X) & SMALL(X)
Plugged into (265a), we derive the following truth conditions.

(267)  [(265a)]8(w) is defined only if max{ (0,V,,] } is defined, max{ (0,8, —g(2)} is defined,
g(2) C (O,BW}, and g(2) # (); where defined: [(265a)]8(w) = 1 iff (i) & (ii)

i Wy £ max{(0,8,]—g(2)} & smaLL.(g(2))
ii. Vx'[lo]#¢ % st [olx2/x'11%¢ = [olx2/x'1]# (W) # 1]

Now the truth conditions say when we lower Buffy’s age a bit, Willow’s age is no longer strictly
lower than Bufty’s; it’s at least as big. Notice that this is quite like the meaning of Willow is almost
as old as Buffy is; that’s no accident! The two sentences convey essentially the same content. In
fact, they’re logically equivalent now. So, the logic of barely comparatives on our analysis reduces
to the logic of almost equatives. The exception must pick out the difference between Bufty and
Willow’s ages, i.e. (O,BW] — (O,Ww], for (267i) to be true in w. Anything smaller will make (267i)
false, and anything larger will make (267ii) false. Once again, the exception must pick out the
difference between the matrix and subordinate clauses, and that difference must be small, for
(265) to be true.

Nuclear scope-barely also makes barely equatives logically equivalent to almost comparatives.

(268) Buffy is barely older than Willow is.
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barely x» OPs5,
Willow

t5.4
" projps old

b. [(268a)]&(w) is defined only if Mmax{(0,W,]} is defined, max{ (0,B,,] —g(2)} is de-
fined, g(2) C (0,B.], and g(2) # 0; where defined:
[(2682)]5(w) = 1 iff () & (i)
i Wy £ MAX{ (O,Bw} —g(2)} & sMALL(g(2))
i, VX' ([l # st [olx2/x 115 = lolx2/x11%<(w) # 1]

The logic is exactly as it was for Willow is almost older than Buffy is; we won’t rehash it here. The

analysis will predict that barely equatives are unacceptable across the board.

3.2.2.2 Why didn’t we see this before?

We proposed altering the meaning of barely in light of its interaction with the comparative and
equative; we needed it to subtract from the nuclear scope rather than the restrictor. This move
raises a natural question: why didn’t we notice this before, why wasn’t this change necessary
earlier? It raises another natural question: does this do any violence to our analysis of barely
with nominal quantificational determiners?

The reason we didn’t see it before is simple: existential quantificational determiners are sym-

metric, and barely only went with (NPI) existential determiners.

(269) SYMMETRY
A type (et.ett) determiner & is symmetric just in case for all A, B of type (e,t):
If 2(A)(B) = 1, then Z(B)(A) = 1.

It is easy to see that any is symmetric. Barely, in modifying any, alters one of the arguments
that it then supplies to the determiner. It didn’t matter that our earlier analysis subtracted from

the restrictor, and the logic of barely any doesn’t change substantively. We are only confronted
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with the insufficiency of restrictor barely in the degree domain, specifically in the subtractive’s
incarnation as a modifier of the comparative morpheme, which does not express a symmetric
relation. It matters which set we subtract from there.

What happens with other quantificational determiners? No, like any, is symmetric, so the
logic of ruling out barely no is not altered in a deep way. Every is not symmetric, though, so we

ought to revisit barely every to make sure that nothing goes awry. Fortunately, nothing does.

(270) # Barely every spellbook is worth reading.

a. /\

EXH ¢
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barel every spellbook projgs Proios
arely X2 worth reading

b. [(270)]&¢(w) is defined only if g(2) C WR,, and g(2) # (); where defined:
7o) = 1 iff () & (i) = 1
i. Sy € WRy—g(2) & smALL.(g(2))
ii. Vx'[[o]# # st [olxa/x' 11 — [olx2/x118<(w) # 1]

Note that (270bi) is logically equivalent to WRy,—g(2) N Sy, & SMALL.(g(2)), which is the unex-

haustified meaning of Almost something worth reading is not a spellbook:

(271) [Almost something y» worth reading is not a spellbook]®“(w) is defined only if g(2) C WR,,
and g(2) # 0; where defined:

[e70)]ectw) = 1 iff () & (if) = 1
a. WRy—g(2) NSy & sMaLL.(g(2))
b. Vx/[[9]#€ # st [olx2/x'118¢ —= [olx2/x'1*(w) # 1]

We don’t even need to go through the logic here, then. Nuclear scope barely cannot yield truth!

While in the degree domain density prevents us from finding a unique exception, in the nom-
inal domain it’s the arbitrariness of what we have to subtract to satisfy the truth conditions. As
long as the exception contains everything in WRy, not in S, it doesn’t matter which additional
element is in the exception, there just needs to be one. But since any is good enough, none is

unique, and ExH will fail. More generally, we see that this change to barely makes it parallel,



though not identical, to how it operates in degree constructions. That’s a fun thing. Something
important to note, though, is that our move to nuclear scope-barely costs our analysis a particu-
lar understanding of the ‘duality’ of almost and barely. That is, barely is not definable as almost
not. This evidence converges on conclusions drawn elsewhere in the literature, for example, Atlas

(1997) on VP uses of almost and barely.
(272) It barely rained ¢4 It almost didn’t rain.

These are not equivalent statements, but we might expect that if almost and barely are interde-
finable®. Similar evidence is adduced by Amaral (2007), who investigates European Portuguese
counterparts to almost and barely.

Nonetheless, there is still clearly a close link between almost and barely on our analysis: they
have an exceptive semantics, and their polar implications are derived through exhaustification
over alternatives invoking different exceptions coupled with their basic, subtractive truth con-
ditions. Natural questions arise, including why these two operators should have such similar

semantics. These questions must wait for their answers.

3.2.2.3 A brief note on SMALL

Barely now subtracts from the nuclear scope of the quantifier it modifies. This raises the question
of whether the size of the exception is calculated with respect to size of the new minuend, i.e.
the set characterized by the nuclear scope, or if it is still calculated with respect to the restrictor

set. The contrast in perceived truth between the two following examples points us in the right

direction’.
(273) a.  Barely any Americans are active astronauts.
b. Almost no active astronauts are Americans.

The truth conditions we derive here, given the discussion in the previous section, will be logically
equivalent, yet these two do not feel equivalent. (273a) feels true, or at least more likely to be true,
than (273b) does. In both cases, since we're dealing with intersective quantifiers, the exception
picks out the set of active, American astronauts. (273a) requires that, discounting that set, there
are no Americans that are active astronauts, and that set is small; (273) requires the same. The
contrast, then, seems unexpected at first, but we can explain it by maintaining that, in spite of
the fact that it subtracts from the nuclear scope of any, barely still requires that we check the size

of the exception against the size of the restrictor.

®0f course, we have not yet given an analysis of these kinds of uses, but in Chapter 5 we’ll briefly discuss them.
*Much obliged to Roger Schwarzschild for pointing this out and providing this data.



(274) THE SIZE CONSTRAINT
Let ¢ be a context of utterance, X be an arbitrary set, p, be a measure function, deter-
mined by the context, mapping sets to numerical values representing their size, and n. be

a contextually determined numerical threshold for size.
SMALL:(X) = 1 iff p.(X) < n

(275) MAXIMAL SIZE OF n,
Let ¢ be a constituent with subconstituent y such thaty = [A [oc [Z )d ]] or H[Z X} A} oc],
where ¥ is a subtractive operator, A is quantificational determiner, and o and y be expres-
sions whose denotations characterize A and X, respectively.

For any context ¢, an utterance of ¢ in c is felicitous only if n. < %(pC(A))

The reason (273a) feels true is that the number of active American astronauts is small (there
are forty-four) relative to the set of all Americans (there are roughly three hundred and thirty
million); (273b) feels false because the number of active American astronauts is large relative to
the total number of astronauts (there are one hundred and twenty eight)*. Since forty four is

plausibly quite large relative to one hundred and twenty eight, (273b) is judged false.

3.2.2.4 A brief note on cross-categoriality

When we first turned to uses of almost and barely as modifiers of degree quantifiers, we simply

stipulated new types. We can generalize the meanings we give, though, to any arbitrary semantic

type o.

(276) [almost]®® = AXAZ 510t A (6,9 AB(69: X C A & X # 0. Z(A—X)(B') & SMALL(X)

(277) [barely]#® = AXAZ 5 51y AMA (6,0 AB(apy: X C B & X # . 2 Z(A)(B—X) & sMALL(X)
(ot,(ot,((ct,ott),(ct,t))

(278) SUBTRACTIVE ALTERNATIVES
For a subtractive LF ¢, with an exception x of type (o,t),
ALT(p) := {@[x/x'] | X C Dy & ¢[x/x'] is grammatical }

That these operators now are defined for arbitrary types means we could expect them to modify
all sorts of quantifiers. This will be discussed more in the conclusion of the dissertation, but we
should now comment on but. We only see this operator modifying quantificational determiners—
nominal quantifiers! For us, this simply comes down to the fact that but is more restricted in

the types of quantifiers it can modify*'. Almost and barely are more promiscuous, as it were.

Numbers from: https://tinyurl.com/327bphrt
“Though sometimes it does appear in degree constructions, at least for some speakers:



Perhaps, when we expand our search for subtractive operators to other domains in English and
cross-linguistically, we’ll see more of this: certain operators are dedicated to particular domains

of quantification, others are more flexible. This investigation must be left for the future.

3.2.3 Antonymy and scale structure

Up until now, the subtractive comparatives and equatives we’ve focused on have featured relative
adjectives, with old as our exemplar. Relative adjectives often come in antonym pairs; the truth

conditional equivalence between (279a) and (279b) shows the tight connection between young

and old.

(279) a.  Willow is older than Buffy is.
b.  Bufty is younger than Willow is.

Both of these are true just in case Willow’s age exceeds Bufty’s age; let’s call old the positive
antonym (A™") and young the negative antonym (A~). Other antonym pairs include long/short,
intelligent/unintelligent, safe/dangerous, and beautiful/ugly; in each pair, the first is the positive
antonym and the second the negative. These are diagnosable by a variety of empirical properties,
but it’s rather messy generally cross-linguistically and even within a single language (Seuren
1978; Kennedy 2001, i.a.). What is important is that antonyms come in pairs, and we’ll make
some stipulations about which is which.

Negative antonyms, just like their positive variants, occur in subtractive degree constructions.

(280) a.  Willow is almost as {young/ short/unintelligent} as Bufty is.
b.  Willow is barely {younger/shorter/more intelligent} than Buffy is.

All of these are acceptable subtractive comparatives and equatives. Our analysis needs to account,

then, for these.

3.2.3.1 The problem

Both (279a) and (279b) are comparatives, obviously. The matrix clause subject and the subordinate
clauses are reversed, also obviously. The adjectives differ. They mean the same thing—Bufty’s age
is strictly less than Willow’s age. How does this come about?

The semantics we’ve assumed so far treats positive relative adjectives as world-degree-individual

relations.

) Willow is as old as Bufty is, but for a few days.

For speakers who accept this, it means pretty much what the almost equative does. That said, we haven’t investigated
but for at all, nor measure phrases like a few days, which have been argued to have both degree and individual senses
(Brasoveanu 2008). More work is needed here.
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(281) [old] = AwAdAx: d € S,ge- AGER(x) > d

With such a semantics, the subordinate and matrix clauses of comparatives characterize initial
intervals of S,q;, i.e. starting at, but not including, 0, and extending upward to an entity’s age
in a world. Young, old’s negative antonym, seems to give the same kind of information about
an individual—it’s anchored, in a sense, to an entity’s age in a world, making reference to the
same scale—but the perspective on that information is rather different (Seuren 1978; von Stechow
1984b; Kennedy 2001). Negative relative adjectives ‘flip’ the relation that holds between an entity’s
measure at a world and all other degrees on the scale; one way to formalize this is to give young

the entry below.
(282) [young] = AwAdAx: d € S, AGEy(x) < d

The entry in (282b) characterizes the complement of the initial interval that old characterizes.
Antonym pairs share a measure function and scale on this kind of view, and the negative adjective

is a degree upward monotone function.

(283) A function A of type (s,(d,et)) is degree upward monotone just in case
YawxYdvd [Aw)(d)(x) = 1 & d < d' — Aw)(d)(x) = 1]

Such a semantics has roots in Cresswell (1976) and von Stechow (1984b), and is taken up in a form
in Kennedy (2001). Part of the motivation concerns measure phrases, which are compatible with

positive, but not negative, relative adjectives:
(284) Xander is sixteen years {old/#young}.

The contrast is unexpected unless there is some formal distinction between positive and negative
adjectives. Negative adjectives’ upward degree monotonicity is a way to cash this out. However,
when put with our maximality-based semantics of the degree quantifiers. First, our max is defined
only for initial intervals of a scale; the intervals derived by young in comparatives and equatives

will be final intervals of S ,g;.

(285) Buffy is younger than Willow is.

(286) MAX{ (Ww,oo) } < MAX{ (Bw,oo) } BOTH MAX ARE UNDEFINED!

Even modifying MAX in a way so that it is defined for final intervals of a scale—for example, by
having it pick out the minimal element in a final interval—still won’t solve all our problems with
this semantics for young. It’s not even about the semantics of young. The issue is maximality.

Consider these alternatives to the semantics for young and max.

(287) [young<] = AwAdAx: d € Sacp. AGE(x) < d
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(288) For any set of degrees D on a scale S:
max(D):=1d[d € D&Vd[[d € S&d<d] +d eD] vVd|[[d eS&d <d] + d eD]

This young is the mirror image of old; in a comparative, it would derive an interval starting at
an entity’s height in a world and extend onward infinitely>. It is not quite the complement of
the initial interval that old gives rise to, but it’s close. The redefinition of max allows it to pick
out the minimal degree of a final interval on a scale. Even these modifications don’t generate the

right results for comparatives and equatives with a negative relative antonym.

(289) [Buffy is younger than Willow is](w) = 1 iff Max{[Wy,00) } < max{[By.)}

i.e. Willow’s age in w < Bufty’s age in w

What do we do about this?

3.2.3.2 Inverse scale structure

The way negative antonyms flip the ‘perspective’ on the information encoded by a positive adjec-
tive doesn’t have to be a matter of reversing the relation between degrees encoded by adjectives.
That is, even though above positive antonyms expressed the > relation between two degrees,
and negative antonyms either < or <, we can flip the perspective in a different way altogether
that allows us to maintain our semantics for comparatives and equatives while also making ex-
plicit exactly how antonyms are related semantically, and in such a way that we are set up to
discuss the positive construction, and in particular, absolute adjectives, in §3.3. Here’s the idea.
Antonymy is about inverting scales: where positive adjectives invoke ‘positive’ scales, negative

adjectives invoke their mirror images, ‘inverse’ scales®.
(290) S = (0,00) (291)  Syoung = (-oo,O)

(292) INVERSE DEGREES

For any degree d € Dy, there is a unique d’ € Dy such that d’ = -d; -d is the inverse of d.

(293) INVERSE SCALES
Let S u, be the scale associated with an adjective A, S u, be the inverse of S My
S'PA = {d | -d S SPA}
For any d, d’ on a scale S,, if d <u, d’, then -d’ <y, -d.

Formally, the idea should be clear: for every age d in S, there is a unique inverse age -d in

S_ace- 0, of course, is in neither scale; it serves as the non-included lower bound of S,;; and the

*This kind of meaning is a degree-relational version of the proposal in Kennedy (2001).
*Note that we use ‘-’ to mark an inverse or negative degree, contrasted with ‘—’ for set subtraction.
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non-included upper bound of S_,¢;. Both old and young will invoke the same measure function—
AGE—but young is defined only for degrees on the inverse scale of S,q;, and gives the inverse of

an individual’s age in a world.

(294) a. [old] = AwAdAx: d € S,ge- AGER(x) > d
b. [young] = AwhdAx: d € S s -AGEy(x) > d

Both adjectives are degree downward monotone functions, though the intervals they will gener-

ate are rather different**

(295) a {d|[old]W)d)(Bufly) = 1} = (0.3,
b. {d|[young](w)(d)Buffy) = 1} = (-00,-By]

Figure 1 illustrates.

Figure 1

Comparatives and equatives of negative antonyms can now be dealt with exactly as their positive
variants. MAX has no problem picking out maxima from the intervals generated via negative

antonyms now.

(296) [Willow is shorter than Buffy is](w) = 1 iff MAX{ (—oo,—Bw] } < MAX{ (—oo,—WW] }
ie. -By < -Wy, i.e. By > Wy, i.e. Buffy is taller than Willow is

(297) [Willow is as short as Buffy is](w) = 1 iff MAX{ (—oo,—Bw} } < MAX{ (—oo,—Ww] }
ie -By < -Wy, ie. By > Wy, ie. Buffy is as tall as Willow is

It should be clear that this semantics validates the more general equivalence ‘inverse’ compara-
tives and equatives, since the degrees picked out by negative antonyms are the inverses of those

picked out by positive antonyms.

*We are giving the antonyms as basic entries that stand in a clear relation to one another. We could go further,
following Biiring (2007a, 2007b) and Heim (2008), and take negative antonyms to be derived from their positive
versions and a negative morpheme LITTLE. We leave a further exploration of this for the future.
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(298) Forany A, A, x,y:
a. [xis A-er than y is](w) = 1 iff [y is A-er than x is](w) = 1
b. [xisas Aasyis](w)=1iff [yisas A asxis](w) =1

While a more thorough treatment of such expressions is a subject for of the next chapter, our
proposal allows us to make sense of why, at least in English, measure phrases are generally only
compatible with positive adjectives. It is fairly standard to treat expressions like six feet as denot-
ing degrees saturating the degree arguments of adjectives. Specifically, measure phrases could
denote exclusively positive degrees (von Stechow 1984b), and therefore would not satisfy the pre-

suppositions of negative adjectives®.

(299) [six feet] = 6 d
a. Giles is six feet tall.

b. # Giles is six feet short.

Even if our proposal isn’t right for measure phrase constructions, something along the lines of
MEAS is necessary. Schwarzschild (2005) takes measure phrases to denote intervals, rather than
degrees, and proposes a lexical rule that turns degree-relational semantics to an interval-relational
semantics for a language-specified set of degrees. Such a view is quite compatible with a strict
ordering semantics for adjectives; what would need ironing out is the meaning contributed by
the measure phrase interval and what the semantic output of the lexical rule is.

Let’s return to subtractives.

3.2.3.3 Subtractives again

The proposal above allows us to capture the distribution of almost and barely with respect to com-

paratives and equatives with negative adjectives exactly as we did for positive adjectives. Note

Of course, not all positive relative adjectives permit measure phrases anyways, though their counterparts in
other languages do. Furthermore, some English negative relative adjectives have counterparts that take measure
phrases.

(i) # The village is two kilometers far.

(ii) Het dorp is twee kilometer ver.

the village is two kilometer far

“The village is two kilometers away. Seuren (1978)
(1) An dieser Stelle der Garage fehlt noch ein drei Zentimeter schmales Brett.

at this place the.DEN garage is.missing still a three centimeter(s) narrow plank.
‘In this part of the garage, a three-centimeter-{ wide/*narrow } plank is still missing. Hofstetter (2016:89)

The cross-linguistic distribution of measure phrases with respect to those adjectives is beyond the scope of this
dissertation; see, e.g., Schwarzschild (2005) and Hofstetter (2016).
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that even with negative adjectives, the comparative and equative morphemes are still Strawson

Downward Entailing on their first arguments, and Strawson Upward Entailing on their second.

(300) [ExH [Willow is almost y, as young as Buffy is]]
a. [(300)]¢°(w) is defined only if Mmax{ (-00,-By]—g(2)} is defined, max{ (-00,-W,,] } is
defined, g(2) C (-oo,-Bw}, and g(2) # 0; where defined:
[(3o0)]<(w) = 1 iff (i) & (i) = 1
i MAX{ (—oo,—Bw} —g(2)} < -Wy & sMALL:(g(2))
i, VX' [[ol®< # st [olx2/x 115 = lolx2/x11¥<(w) # 1]

The almost equative is intuitively true if Buffy is younger than Willow is, but only by a little bit;
the truth conditions predict this. g(2) subtracts the difference between (-oo,—BW] and (—oo,—WW]
from the former, in effect raising Buffy’s age to Willow’s. Were we to subtract any less, then Bufty
would still be younger than Willow is. This is exactly how positive relative adjectives operated
in almost equatives.

The rest of the cases operate as they did before as well; we won’t walk through them, but
their logic should be clear. Almost comparatives and barely equatives will face a density problem,
rendering (301a) and (302a) impossible to make true. Barely equatives will be just like almost
comparatives: the exception is the difference between Buffy and Willow’s (negative) ages, and it

must be small.

(301) # [ExH [Willow is almost x5 younger than Buffy is]]
a. [(301)]¢°(w) is defined only if Mmax{ (-00,-By] —g(2)} is defined, max{ (-00,-W,,] } is
defined, g(2) C (—oo,-BW}, and g(2) # 0; where defined:
[(3o1)]&(w) = 1 iff (i) & (ii) = 1
i. max{(-00,-By]—g2)} < -W,y & sMALL:(g(2))
ii. Vx'[lo]# # st [olx2/x'11¢ — [olx2/x'1#<(w) # 1]
(302) # [ExH [Willow is barely x2 as young as Buffy is]]
a. [(302)]®¢(w) is defined only if MAX{ (—oo,—Bw} —g(2)} is defined, MAX{ (—oo,—WW] } is
defined, g(2) C (-oo,-Bw}, and g(2) # 0; where defined:
[(302)]&(w) = 1 iff (i) & (ii) = 1
i Wy £ MAx{ (-oo,-BW] —g(2)} & sMALL.(g(2))
i, VX' [[ol®< # st lolx2/x11%¢ = lolx2/x115<(w) # 1]

(303) [ExH [Willow is barely y, younger than Buffy is]]
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a. [(303)]¢“(w) is defined only if Mmax{ (-00,-By]| —g(2)} is defined, max{ (-00,-W,,] } is
defined, g(2) C (—oo,—Bw}, and g(2) # 0); where defined:
[(303)]*(w) = 1 iff (i) & (ii) = 1
LWy £ MAX{ (—oo,—Bw} —g(2)} & sMALL(g(2))
i, VX' ([l # st lolx2/x 115 = lolx2/x11¥<(w) # 1]

Our proposal for the scale structure and meaning of negative relative adjectives allows us a tidy
account of the semantics of the comparative and equative and predict the distribution of almost

and barely with respect to those operators across the board.

3.2.4 Interim summary

We’ve done a lot in the first half of this chapter. We’ve taken the analysis of subtractives as mod-
ifiers of quantificational determiners developed in the previous chapter and extended it to degree
constructions, showing that it is quite successful at explaining the distribution of subtractives
therein. This is big! Comparatives and equatives have played little role in this way in previous
literature on almost and barely*®, but it has been incredibly fruitful to do so. We’ve seen that with-
out subtractive alternatives, the contrast between almost equatives and almost comparatives is
entirely unexpected. We’ve also seen that subtractives give us evidence of the idea that all mea-
surement scales in natural language are dense, even when we might not expect it. We’ve also
learned that barely has to subtract its exception from the nuclear scope of the modified quanti-
fier, not the restrictor; the results of the previous chapter remain, too. We also started building an
analysis of antonymy that allows us to maintain our semantics for comparatives and equatives,

and which sets us up for the topic to which we now turn: the positive construction.

3.3 The positive construction

There are several different classes of adjectives, and the distribution of almost and barely tracks
some of the distinctions. Generally, there are adjectives that appear felicitously in constructions

like the comparative, and those that do not.

(304) a.  Willow is {older/taller/smarter/more powerful} than Buffy is.

b.  Sunnydale is {cleaner/dirtier/safer/more dangerous} than Los Angeles is.

Adjectives that are at home in such constructions, like those in (304a) and (304b), are called GRAD-

ABLE adjectives (GAs).

*Though see §3.3.3.3 for a discussion of Rotstein & Winter (2004), the lone place almost equatives and compara-
tives have been discussed.
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Among GAs, there are different subclasses intuitively and empirically. Intuitively, the adjec-
tives in (304a) are vague and heavily context-dependent; what counts as tall or smart depends on
what is being compared. A tall or smart child typically doesn’t count as tall or smart when com-
pared to adults, for example, since we judge them by different standards. The adjectives in (304b)
lack this context-dependence, or at least have it to a much lesser degree (see Lassiter & Goodman
2013 for arguments and evidence for the latter). Intuitively, Sunnydale is safe is true iff there is no
degree of danger there, whereas Sunnydale is dangerous is true iff there is some degree of danger.
Note that it doesn’t seem right to say that Cordelia is tall is true entirely because Cordelia has
some amount of height; not only is that uninformative, it’s trivial if that sentence is defined. For
dangerous, though, having some degree of danger actually seems reasonably informative. Among
these adjectives we also find differences empirically in terms of permissible modifiers (Rotstein

& Winter 2004; Kennedy & McNally 2005).

(305) a.  Willow is ??{slightly/partially/completely/totally} tall/old.
b.  Los Angeles is {??slightly/??partially/completely/totally} safe.
c.  Dawn’s room is {??slightly/??partially/completely/totally} clean.
d.  Sunnydale is {slightly/partially/??completely/??totally} dangerous.
e.  Anya’s room is {slightly/partially/??completely/??totally} dirty.

Adjectives like tall and old are not compatible with any of these modifiers. Safe and clean are
compatible with completely and totally, but not slightly and partially; dangerous and dirty flip the
pattern of safe and clean.

Adjectives that have very vague, context dependent standards and which do not permit mod-
ification by slightly and completely, are called RELATIVE adjectives (RAs). The gradable, non-
relative adjectives that permit modification by slightly or completely, and which have more fixed
standards of comparison are called ABsOLUTE adjectives (AAs, Unger 1978; Rusiecki 1985; Kamp
& Rossdeutscher 1994). Even among AAs we can make distinctions: those that allow completely,
for example, and whose standards are ‘maximal’ in a sense are called ToTAL adjectives (TAs), and
those which permit slightly and have a ‘minimal’ standard are called PARTIAL adjectives (PAs)
(Yoon 1996; Rotstein & Winter 2004).

The distribution of almost and barely tracks these distinctions in the adjectival domain. They

are unacceptable generally with RAs; almost naturally modifies TAs and barely PAs.

(306) a. # Willow is almost {old/tall/smart/powerful}.
b.  Dawn’s room is {almost/#barely} clean.

c.  Anya’s room is {barely/#almost} dirty.
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RAs are not always unacceptable with subtractives, though. They require a special kind of context,
one in which a standard is explicitly set. Imagine we’re in gym class, and we’re trying to categorize
everyone in terms of whether or not they’re tall. We decide that, to count as tall, one must be five

feet seven inches or greater. Willow is 5'6.5", Buffy is 5'7.5”, and Cordelia is 5'9”.

(307) a.  Cordelia is (definitely) tall.
b.  Buffy is barely tall.

C. Willow is almost tall.

While perhaps not perfect, almost and barely improve in this kind of context. Explicit comparison

helps, as does focus on the subtractives.

(308) a.  Bufty? Eh, she’s [barely] ¢ tall. Now Cordelia? She’s definitely tall.
b. Willow? Eh, she’s [almost] ¢ tall. Now Cordelia? She’s definitely tall.

The essential fact is that while in general RAs resist modification by almost and barely, when the
standard of comparison is fixed explicitly in the context, they are permissible as modifiers"’.
Our theory of almost and barely, then, has a few important desiderata. We want to account
for the acceptability of almost with TAs and barely with PAs. We also want to generally predict
unacceptability with RAs, but the analysis cannot prohibit such modification across the board;

contextually-established explicit standards somehow make felicitous almost and barely with RAs.

3.3.1  Pos and standards

Our starting point for the semantics for adjectives remains unchanged for RAs.

(309) a. [old] = AwAdAx: d € S,ge- AGER(x) > d
b. [young] = AwAdAx: d € S_sc;- -AGE(x) > d

When bare adjectives occur in predicative position, we need something that saturates the degree
argument of adjectives. Intuitively, Cordelia is old conveys that Cordelia’s age meets or exceeds
some age, or family of heights, that are contextually relevant. The contextual relevance includes

facts about Cordelia; if she is a child star, the relevant ages will be lower than if she’s a competitive

”One might wonder whether in these cases context is licensing an elided measure phrase, which also ameliorates
the unacceptability of almost and barely with RAs:

(1) Buffy is {almost/barely} five feet seven inches tall.

In the next chapter, as we’ve mentioned before, we will address how to analyze measure phrase constructions. If
we have independent reason to assume ellipsis is the right analysis of RAs in contexts with explicit standards, the
solution will be found there. We’ll set this possibility aside for now.
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player of the card game Contract Bridge'®. These facts can even be made salient explicitly with a
for-PP (Klein 1980).

(310) Cordelia is old for {a child star/a competitive Bridge player}.

Absent such a PP, though, we need some morpheme that takes an adjective and saturates its
degree argument. The standard solution is a covert morpheme pos, which supplies the standard

of comparison via the function sTND, (see Kennedy 2007 and references therein).
(311) [POS]® = AA (s dety A\WAX. A(W)(STND(A))(x) (sdet,set)
This semantics aligns with a LF as in (312a)

(312) Cordelia is old.

a. <S,t>

10
Cordelia (e,t)

/\
Pro1o s (s,et)

N
pos old

b. [(312a)](w) = 1 iff AGEy(Cordelia) > sTND.([0ld])

How do subtractives fit into the picture?

There’s good reason to think that almost and barely target pos. Consider Anya’s room is al-
most clean: this is true if the level of cleanliness Anya’s room has is just below the standard of
comparison for counting as ‘positively’ clean. If you were to lower the standard just a bit, her
room would be considered positively clean. This intuition is more general, extending to RAs with
explicit standards. Grant that we’ve established the standard for heights is 6’; Willow is almost
tall means that if we lower the standard just a bit, Willow would count as tall, but in fact she does
not. This suggests that the right account of subtractives in the positive construction involves the
operators modifying pos. The semantics for Pos above isn’t compatible with such modification,
though. It’s not quantificational! What kind of shape must pos have, then?

The semantics for Pos above looks something like an equative. What if pos itself were seman-
tically a covert equative, expressing a relation between two sets of degrees, as in (313a)? Instead
of the LF in (312a), we’'d get the LF in (313b).

®At least in the United States in 2022, the typical Contract Bridge player is seventy-one
(https://tinyurl.com/mwyc2mg47).
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(313) a. [pos]® = ADAD'. max(D) < max(D’) first version

b.
10,
<dt,t> AP(d t)
/\
POS Ol(d,t) 6d
Cordelia
t
0.4 projps old

Such a proposal would naturally allow for subtractives to compose with pos, at least type-wise.

(314) /\

(dt,t> B(d,t)

T

<dt,dtt> o (d )

/<\POS

{ almost/ barely} X

Though not common by any stretch of the imagination, such a proposal is not without precedent.
von Stechow (2009) treats PoOs as a generalized degree quantifier; Bylinina (2013) gives pos the
meaning of our comparative morpheme. Now, our semantics for pos doesn’t say anything about
the standard of comparison, so how is that supplied? For the moment, let’s assume the first argu-
ment of POs is a pronoun that picks out a degree interval. Nothing yet will actually require that
the pronoun picks out the standards we want, but we’ll return to this later.

To see how this analysis works, let’s start with contextually explicit standards. We’ll assume
they pick out initial intervals of positive adjective scales, so that for some n, they are of the form

(O,n}. Let proy 4 be the interval pronoun saturating pos’s first argument. Then:
(315) [Giles is Pos proy 4 tall]#¢(w) = 1 iff max(g(4)) < MAX{ (O,QW] } ie. 6/ <G,

This seems right for the case of contextually explicit standards. Note that this semantics makes
Pos Downward Entailing on its first argument, and Upward Entailing on its second.

Let’s turn to absolute adjectives.

3.3.2 Absolute adjectives
3.3.2.1 'They’re different!

Absolute adjectives—pairs like clean/dirty and dangerous/safe—are distinct from relative adjec-

tives in the ways described above. They permit modification by expressions like completely and
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slightly. Their standards seem much more rigid than those of RAs.

(316) a.  Sunnydale is clean.

b.  Sunnydale is safe.
(3177 a.  Los Angeles is dirty.

b.  Los Angeles is dangerous.

The standards associated with AAs like clean, safe, dirty and dangerous lack the kind of contextual
variability that RAs had. (316a) is true if Sunnydale is free of any filth—it matters less whether
we’re comparing it to other cities in California or other cities of comparable size, for example.
Another way to put it is that the level of cleanliness that Sunnydale has is at least as high as the
‘paragon’ of cleanliness. The same goes for (316b); it’s true so long as Sunnydale’s safety level is
at least as high as the paragon of safety. (317a) and (317b) are different: as long as there is some
non-zero level of threat or dirt, they seem true.

Consider the following.

(318) a.  Are the toys dirty?
b.  Are the toys clean? Yoon (1996:217)

A positive answer to (318a) requires that at least one toy be dirty, i.e. have some degree of filth; a
positive answer to (318b) requires all to be free of filth (Yoon 1996). Kamp & Rossdeutscher (1994)
call adjectives like clean and safe “universal, and those like dirty and dangerous ‘existential in
virtue of properties like this. Note that RAs seem to pattern more like TAs with respect to this

diagnostic:
(319) Are the students {tall/ short } ?

An affirmative answer for either question would seem to convey that all the students are tall, or
all of them are short.
In light of this discussion, the compatibility of TAs with almost and PAs with barely is perhaps

unsurprising,.

(320) a.  Anya’s room is {almost/#barely} clean.

b.  Dawn’s room is {barely/#almost} dirty.

To be almost clean Anya’s room has to be close to clean—there can’t be very much filth, but if the
standard were adjusted a bit, things that are just a little dirty could count as clean. Another way
to phrase it: almost no part of Anya’s room is dirty, or almost every part is clean. For Dawn’s
room to count as barely dirty, it has to be that removing just a little bit of filth from it would yield
a clean room. There is some amount of dirt, some part if it could be dirty, but it’s pretty close to

being not dirty at all.
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3.3.2.2 Absolute standards

Kennedy & McNally (2005, K&M) argue on the basis of the data in §3.3.1 that the scales associ-
ated with different adjective classes have distinct structures. K&M propose that the differences
between AAs and RAs above comes down to whether the scales associated with those adjectives
are include their bounds. The scale associated with old, S, contains neither its upper nor a

lower bound; its mirror, associated with S_,4;, similarly contains neither.
(321) Suee = (O,oo) (322) S = (-oo,O)

These are totally open scales, and K&M propose that RAs in general are associated with such
scales.

AAs, K&M argue, are associated with scales that include at least one bound. PA scales include
scalar minima: the measure function associated with dirty, let’s call it FILTH, can map an entity x
in its domain to 0, meaning x lacks any filth. There is no upper bound, though, to how dirty x can
be; scales associated with PAs are thus lower closed and upper open. On the flipside, TAs include
scalar maxima; once an entity is clean (i.e. lacks any filth), it can get no cleaner. As with dirty,
there is no limit to how unclean clean an entity can be; TA scales are upper closed and lower
open. Akin to our treatment of the scales associated with RAs, we’ll treat one as a ‘positive’ scale,

and the other as its inverse.
(323) SFILTH = [O,OO) (324) S_FILTH = (-O0,0:|

Since clean needs a scalar maximum, it will be the ‘negative’ adjective, and dirty, requiring a
scalar minimum, will be the ‘positive” adjective. This naturally leads to the following entries for

clean and dirty.

(325) a. [clean] = AwAdAx: d € S_pypy. -FILTH(x) > d
b. [dirty] = AwAdAx: d € Sy FILTHG(x) > d

For K&M (also Kennedy 2007), various modifiers, including Pos, are sensitive to such scale struc-
tures. Essentially, they propose that Pos in general picks out a scalar maximum or minimum if
there is one to serve as the standard. Since RAs do not include maxima and minima in their scales,
there can never be such a standard, and it must be context-dependent®.

Picking out the standard and relating it to another degree is, as we’ve established, the purview

of pos. So what are the standards for clean and dirty? Let’s go through each in turn.

“There is some wiggle room for context dependence in the standards of absolute adjectives; Kennedy (2007), for
example, proposes that contextual factors can override the default standards picked out by Pos. Rotstein & Winter
(2004) have a more complicated theory of scale structure than we do; we’ll discuss this later on.
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(326) Anya’s room is [POS proy 4] clean.

Earlier, we paraphrased this by saying the level of cleanliness Anya’s room has must meet or
exceed the ‘paragon’ of cleanliness—that is, Anya’s room must be as clean as the paragon. The
paragon will, in general, be itself clean, i.e. have no degree of filth whatsoever®. So, the standard
must be the scalar maximum, i.e. 0. Given the semantics assumed for pos, the standard for clean

should just be S_;pp1y itself*'. so assume that g(4) picks out S pyry.
(327) [clean] = AwAdAx: d € S pyprn. -FILTHy(x) > d

(328)  [(326)]%<(w) = 1 iff max(g(a)) < max{ (0,AR,,]}
ie. Opurn < ARy, i.e. Anya’s room lacks any filth

These truth conditions seem adequate.

Dirty and other partial adjectives require a bit more work. Note that the included bounds of
S purn and Spypy are both 0—in fact, the very same 0. For Dawn’s room to count as positively
dirty, it must be dirtier than that same paragon of cleanliness. That is, its degree of filth must be
strictly greater than 0. Suppose that the standard is simply the singleton set containing 0, and
that this is the value of proy 4.

(329) [dirty] = AwAdAx: d € Spyry- FILTHG(X) > d
(330) [Dawn’s room is [POS prog 4 dirty]®“(w) = 1 iff Oppze < DRy,

These truth conditions hold even when Dawn’s room lacks any filth at all—that is, when it’s clean.
That’s not right. The truth conditions should be as follows:

(330") [Dawn’s room is [POS proy g dirty[#(w) = 1 iff Opure < DRy

These truth conditions are right, but some changes need to occur to derive them. Our Pos won’t
cut it.

Let’s note, though, that this is a more general issue. For example, in some of the literature,
adjectives are taken to denote measure functions, rather than degree-individual relations as we’ve
assumed, and as such in positive constructions Pos is recruited not only to yield a predicate of
individuals and supply a standard of comparison, but also to introduce the relation that holds
between the degree returned by the measure function and the standard of comparison (Kennedy

2007%%, Husband 2011, e.g.).

**This is more of an idealization than is probably ultimately warranted, but nonetheless, one that is made in the
literature, e.g. Kennedy & McNally (2005); also Rotstein & Winter (2004) and Kennedy (2007) for discussion.

*Note that we’re suppressing the definedness presuppositions of max throughout this subsubsection, as well as
those of mIN later on.

*?Kennedy (2007) doesn’t give a meaning for Pos that looks like this, but he does give >’ as the relation expressed
by [Pos a] where « is a PA and ‘=" where it is a TA. In a way, our analysis is, then, an attempt at compositionally
deriving the desired semantics with a single Pos morpheme.
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(331) a. [tall] = Ax. HEIGHT(X) (e,d)
b. [clean] = Ax. cLEAN(x) (e,d)
c. [dirty] = Ax. DIRTY(x) (e,d)

A(x) = max(A), if max(A) is defined

(332) [POS]® = AAgyAx. § Ax) > MIN(A),  if MIN(A) is defined

A(x) > sTND.(A), elsewhere

This pos checks the scale structure to determine the relation between degrees it encodes—let’s
call this a variable relation semantics. With a TA, it encodes =, with a PA >, and with a RA, >.
This variability is necessary given the structure of scales associated with absolute adjectives and
their standards of comparison. The necessity of some change when we assume adjectives express
degree relations instead of measure functions alone is thus not isolated.

We can modify our Pos so that it varies the relation depending on the input. First, let’s grant
that the standard for dirty, like the standard for clean, is simply the scale itself. This is, for us, one
of the two hallmarks of an absolute adjective, the other being that the scale includes at least one
of its bounds. Since only partial adjectives require modification to Pos, we can give the following
meaning.

miIN(D) < max(D’), if min(D) is defined

(333) [Pros]® = ADAD'.
max(D) < max(D’) otherwise

second version
(334) For any set of degrees D on a scale S:
miIN(D) := Ld[d eD &Vd’Hd’ eS&d > d] —d e IDH

Only PAs will trigger the MIN resolution of Pos. The TA standard is a lower-open scale, and as
such MIN is undefined for it. For RAs with contextually explicit standards, we assume they are
initial intervals of a lower-open scale if the relevant A is positive, and if the adjective is negative,

they still must be lower-open intervals. So,

(330) Dawn’s room is [POS proy 4] dirty.

(335)  [(330)]#°(W) = 1 iff MIN(Siyurn) < MAX{[0,DRy] }
e iff Oy < DRy

These truth conditions are right, too. This allows us to stick with the very standard assumption
that all adjectives express the same relation. Now let’s put this into action with subtractives.
Now let’s get serious about the standard. Simply allowing the pronoun to be totally free,

without a theory of how it is constrained by the context, seems undesirable, especially for absolute
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adjectives. If we were to put any constraints directly into pos, though, such constraints would,
when we consider subtractives, apply to the result of subtractives. Consider a version of Pos, let’s
call it pos’, that presupposes that the set characterized by its first argument is the standard of the
scale associated with the second (read ‘sTND.(Sp/)(D)’ as ‘the contextual standard for the scale
S associated with D' is D’).

mIN(D) < max(D’), if miN(D) is defined

(336) [Pos’]¢ = ADAD': sTND(Sp/)(D).
max(D) < max(D’) otherwise

(337) Anya’s room is [[almost x2 POS'] proy 4] clean.

a. [(337)]4¢(w) is defined only if g()—g(2) = S rure.
Where defined, [(337)]8°(w) = 1 iff (i) & (i) = 1

i. max(g(4)—g2)) < AR, & sMmALL.(g(2))
ii. Vx'[[o]#° # st [olxa/x"11%¢ — [olx2/x'11%(w) # 1]

g(4) is the contextually explicit standard, and g(2) the exception. What we want is for the ex-
ception to lower the standard just a little bit, so that Anya’s room counts as clean under the
modified standard. The problem is a presupposition like this would demand that the remainder
of the standard pronoun minus the exception be equivalent to S_yry. Since almost modifies the
first argument of pos, it’s impossible for the presupposition to target just the standard pronoun.

What we can do is lean into the equative/comparative analogy even further, and take the first
argument of POs to contain an elided copy of the adjective itself. Then, what is directly encoded
into POs in more typical analyses—the sTND function—is actually encoded by a separate operator
at LF, taking an adjective and returning the scale associated with that adjective should it contain
a bound. As a placeholder, let’s let STND.(A) be the otherwise case, i.e. for RAs and contextually

explicit standards.

(338)

POS (d,t) N

/\ ... clean

STANDARD <¢lean

S if MIN(S,,,) or MAX(S,,,) is defined

Ha?

(339) [STANDARD] = AA( dep).
STND.(A) otherwise

((s,det),(dt))
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There’s no need Pos to carry a presupposition, since the work is done by sTANDARD. Now almost
will subtract from the output of the sTANDARD function; the issue caused by the presupposition

no longer arises. Now let’s look at subtractives in earnest.

3.3.2.3 Absolute subtractives

Ultimately, the system we’ve developed makes TAs in the positive construction akin to equatives,
and PAs comparatives. It is to be expected, then, that almost should be able to modify TAs and

not PAs. Let’s show that this is borne out; the presuppositions are once again fully fleshed out.

(340) Anya’s room is almost clean.

a. /\

EXH 0]

10,

64

POS STANDARD <clean

almost  x» Anya’s room tg g clean,,

b. [(340a)]®(w)is defined only if g(2) C S piyrm, and MAX(S ;s —g(2)) and MAX{ (-oo,-ARW} }
are defined; where defined: [(340a)]®“(w) = 1 iff (i) & (ii) = 1
i. MAX(S um—g(2)) < AR & sMALL.(g(2))

ii. Vx'[[o]#° % st [olxa/x' 1% — lolxo/x 1 (w) # 1]

This looks exactly like an almost equative. g(2) must be a final subinterval of S 114, and g(2) must
subtract the difference between AR, and 0. This lowers the standard; this difference, of course,
must be small. ¢ is Strawson Downward Entailing with respect to the first argument of pos, and
so alternatives formed with small supersets of g(2) will be entailed; subsets won’t be. So, ExH will
require that X’ denoting either supersets of g(2) that are too big or subsets of g(2) make (340bi)
false or undefined when swapped for the actual exception. This is good; these truth conditions
capture what we want. Anya’s room is close to clean, so if we lower the threshold just a little bit,
it can count as clean. Any less, and it’s not.

Almost won’t work with PAs on this analysis.

(341) # Anya’s room is almost dirty.
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EXH ¢

105

64

1 POS STANDARD dirty )
almost 2 Anya’s room tg g dirty .,

b. [(3412)]#¢(w)is defined only if g(2) C Syyrs, and MIN(Syyrr—g(2)) and MAX{ [O,ARW} }
are defined; where defined: [(3412)]®(w) = 1 iff (i) & (ii) = 1

i. MIN(Sinm—g(2)) < AR, & SMALL(g(2))
i. Vx'[[o]#° # st [olxa/x' 118 — lolxo/x & (w) # 1]

This looks like an almost comparative. We’ll see that density is once again the reason these truth
conditions are necessarily untrue, but minimality in the first argument of Pos means the reason-
ing is a bit different than what we’ve seen before. First, MIN(S ;5 —g(2)) is defined only if g(2)
picks out an initial subinterval of Sgqy, and crucially is itself upper open®. That is, for some n,
g(2) = [O,n). For (341bi) to be true, n must be strictly less than AR,,. Now, because Pos invokes
MIN here, and because its input is a lower closed, upper open interval, ¢ is actually Strawson
Upward Entailing with respect to the first argument of Pos, and so it’s subsets of the exception

that are entailed. (341bii) boils down to:
(342) WX [X’ Z g(2) & sMALL(X") — MIN(S;irp—X') > ARy V MIN(Siyrp—X') is undeﬁned}

Now we can see that density makes these truth conditions impossible to satisfy. g(2) must be an
upper open, proper initial subset of [O,ARW} for (341bi) to be true, meaning that its upper bound
is, for some small ¢, AR, —e¢. If g(2) is the largest set that makes sMALL.(g(2)) true, then (341bii)
is trivial. If there are supersets that are also small, there will be at least one superset of g(2) that
isn’t entailed but which nonetheless makes (341bii) false, e.g. the interval [O,ARw—g). Density
strikes again. Almost cannot modify PAs.

Barely can, however.

(343) Anya’s room is barely dirty.

**We might be jumping the gun by automatically assuming pos yields MIN here. If g(2) subtracts an initial interval
that is upper closed, then from the perspective of pos, the condition that yields mIN instead of max won’t be met.
But then max will always be undefined for Sy minus such a g(2), since there is no upper bound to Syyrg. MIN is
necessary!
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EXH 0]

10

6d

barel POS STANDARD dirty : '
arely Xz Anya’s room tg 4 dirty .,

b. [(3432)]¢“(w)is defined only if g(2) C [0,AR.], and MIN(S ;rs) and Max{ [0, AR | —g(2) }
are defined; where defined: [(3432)]®(w) = 1 iff (i) & (ii) = 1
i 0¢ max{[0,AR,]|—g(2)} & sMALL:(g(2))
ii. V' [[o]# # st [olxa/x' 11 — [olxz/x118<(w) # 1]

POS is generally Strawson Upward Entailing on its second argument, so ¢ is Strawson Downward
Entailing here as a result of barely’s contribution. For (343bi) to be true, g(2) must be small, and
remove everything that isn’t O from [O,ARW} —that is, her room isn’t very far at all from counting
as clean. Removing any less, though, and it’d still count as positively dirty.

Since positive construction TAs are equatives, we should expect that barely will not be able

to derive coherent, contentful truth conditions. This is borne out again.

(344) # Anya’s room is barely clean.

N Py

EXH o)

105

G

barel POS STANDARD c¢lean
arely X2 Anya’s room tg g clean,,

b. [(344a)]%(w) is defined only if g(2) C (-00,- AR |, Max{ (-00,-AR,| —g(2)} and
MAX(S ;1) are defined; where defined: [(344a)[&(w) = 1 iff (i) & (il) = 1
i 0L MAX{ (—oo,—.ARW} —g(2)} & sMALL(g(2))
ii. V' [[o]# # st [olxa/x' 11 — [olx2/x11¥<(w) # 1]
Barely adds nothing here. First, suppose that 0 ¢ g(2): this means that any world w where (344bi)

is true is a world where 0 > -AR,, i.e. Anya’s room isn’t clean. In all such worlds it doesn’t
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matter, then, what we subtract, so long as it satisfies the definedness conditions above. Then all
alternatives that also meet the definedness conditions are entailed; everything else is false or
yields undefinedness. If (344bi) is true, then (344bii) is true.

Now suppose that 0 € g(2). This requires that AR, = 0, given the subset presupposition.
Since ¢ is Strawson Downward Entailing with respect to Pos’s second argument, small supersets
of g(2) will be entailed, then every other alternative yields undefinedness, so the truth of (344bi)
guarantees the truth of (344bii). (344bi) entails (344bii)—ExH isn’t licensed, and therefore barely
isn’t, either. That the system should predict that barely is useless in positive TA constructions
makes sense intuitively. For Anya’s room to be barely clean would mean that it was in fact clean,
but adding a bit of gunk would make it not clean. That’s already built into the semantics of TAs
in the positive construction, though. Barely doesn’t add anything!

The core proposal here is in line with general ideas in the literature about AAs and their
standards (Rotstein & Winter 2004, Kennedy & McNally 2005). We proposed a variable relation,
quantificational Pos morpheme that in general has the semantics of the equative morpheme.
When it combines with a partial adjective like dirty, Pos contributes a comparative relation. This
is a necessary modification for all theories of Pos, it seems, once partial adjectives are taken into
consideration (Kennedy 2007, Husband 2011). These ingredients together predict that almost can
surface with total adjectives like clean, and barely with partial adjectives like dirty, as a product
of their contributions interacting with scale structure and the semantics of pos. Now we’ll turn

to relative adjectives.

3.3.3 Relative adjectives

Relative adjectives and subtractives interact in an interesting way. When the context makes per-
fectly explicit a standard of comparison, both almost and barely are able to modify RAs in the
positive construction. We’'ll see that our system can analyze almost RAs, but not barely RAs. The
latter will have an analysis in the next chapter, but determining whether that’s the right choice
will wait. When no such explicit standard is available, RA standards are vague. Capturing this
will require a more general analysis of vagueness; we’ll see that neither subtractive could ever

yield truth in such a situation.

3.3.3.1 Contextually explicit standards

Here’s the context. We're in gym class, and we're trying to categorize everyone in terms of
whether or not they’re tall. We decide that, to count as positively, certainly tall, one must be
five feet seven inches tall or more. Willow is 5'6.5”, Buffy is 5'7.5”, and Cordelia is 5'9".

(345) a.  Cordelia is (definitely) tall.
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b. Willow is almost tall.

c.  Buffy is barely tall.

There are two plausible options in line with our analysis that can be used to account for the
improvement in felicity of almost and barely. First, it could be that in each of these cases, there’s
a silent measure phrase. For example, these cases could involve ellipsis—underlying (345a) is
Willow is almost five feet seven inches tall, and context licenses ellipsis of the measure phrase.
While it’s not clear how plausible such ellipsis is, this option can be made to work, but first we’ll
need an analysis of numerals and measure phrases. Numerals are the purview of the next chapter,
though we won’t fully cover measure phrases. So, the second option is to treat this not as a case
of ellipsis per se, but rather that the context determines the first argument of posmuch more
strictly than is typical for RAs. Here, the context fixes it to the set corresponding to those degrees
less than or equal to five feet seven inches. This will allow us to make the right predictions for
almost, but not barely; more work is needed®*.

When standards are contextually explicit like this, we’ll assume that sTANDARD function

picks them out.

(346) Willow is [[almost X2 POS] [STANDARD tall]] tall.
a. [(346)]¢°(w)is defined only if g(2) C (0,5'7"], and max((0,5'7"] —g(2)) and max{ (0,V,,] }
are defined; where defined: [(346)]®¢(w) = 1 iff (i) & (ii) = 1
i mMax((0,5'7"]—g(2)) < Wy, & sMALL(g(2))
ii. Vyx'[lo]# # st [olx2/x'11¢ — [olx2/x'1#<(w) # 1]

It should be obvious by now that these truth conditions are sensible, and in line with what all
we’'ve been proposing throughout. (346) is again a case of an almost equative; we won’t rehash
the logic here. What the truth conditions say is that, were we to lower the contextual standard
just a bit, Willow would count as positively tall.

Barely clearly won’t work, though. Since (0,5'7”] includes no minimal element, Pos con-

tributes the meaning of an equative.

(347) Buffy is [[barely x2 POs] [STANDARD tall]] tall.
a. [(347)]®¢(w)is defined only if g(2) C (O,Bw] ,and MAX((0,5/7”] )and MAX{ (O,Bw} —g(2)}
are defined; where defined: [(347)]®¢(w) = 1 iff (i) & (ii) = 1
i 57" £ max{(0,By]—g(2)} & sMALL:(g(2))
ii. V' [[o]# # st [olxa/x' 11 — [olx2/x118<(w) # 1]

**Our contextually explicit standards can be understood as a particular kind of functional standard, in the sense
of Kagan & Alexeyenko (2011) (also Solt 2012).
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The problem, of course, will be density, since this is a barely equative. The truth conditions are
necessarily untrue. What we would need is for pos here to encode a < relation, like it does in the
case when its dealing with a partial adjective, but still maintain maximality on both arguments.
That is:

(347 Bufty is [[barely y, Pos] [STANDARD tall]] tall.
a. [(347)]8°(w)is defined only if g(2) C (0,8, and max((0,5'7"]) and max{ (0,B,,| —g(2) }
are defined; where defined: [(347)]#¢(w) = 1 iff (i) & (ii) = 1
i 57" £ MAX{ (O,BW] —g(2)} & SMALL.(g(2))
ii. V' [[o]# # st [olx2/x'11 — [olxz/x118<(w) # 1]

These truth conditions make the right predictions. The question is, though, how we derive them
in a principled way. We would need for our Pos to have an additional case: it encodes maximality
for both arguments, but the < relation between them, only when barely is at play with a relative
adjective. This doesn’t seem ideal. It seems like we might need a different route altogether; as
mentioned earlier, we’ll see some possible solution in the next chapter. For now, we’ll leave this

as an open issue.

3.3.3.2 Vague standards and relative adjectives

In general, the contextual standards for RAs are much more variable than those of AAs. The
positive construction in particular has often been called vague—precisely what does and doesn’t
count as positively old, for example, isn’t always clear. Almost and barely don’t work with RAs

unless the standard is contextually explicit and deterministic.
(348) # Cordelia is {almost/barely} tall.

That said, it seems like we can evaluate these kinds of sentences as false sometimes. Imagine that

Cordelia is four feet tall; it just seems false to say Cordelia is almost tall. Here’s another case.

(349) a.  Boston is near New York City.
b.  Los Angeles is near New York City.
(350) a. # Boston is almost near New York City.
b. ?/# Los Angeles is almost near New York City.

Considered at the national level, (349a) seems like it could be judged true, but it also could judged
false. It depends. (349b) simply seems false—LA is really quite far from NYC. Adding almost makes
things a little interesting. (350a) seems really quite odd, but (350b) seems simply false, in addition

to being rather odd as far as a sentence goes. Something about the indeterminacy of cases like
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(349a) makes it even odder to have almost modification, whereas the latter we can outright reject
because it couldn’t possibly be true. We want our analysis to capture this.

The solution can be found in two facts. First, RA standards are typically taken to be vague,
indeterminate, or arbitrary. In general, there is not a particular degree we can point to and say,
that is the point at which someone is positively tall, positively bald, positively intelligent, etc.
There are a host of degrees which, even in a single context, are just as good as any other degree
to serve as the standard. Second, subtractives require, as we’ve seen, precision: the exception
to a subtractive sentence has to be a unique, minimal, non-empty set. We saw that when there
was no such set—e.g., with almost some, barely no, almost comparatives and barely equatives—the
analysis crashed and burned. That was good, though, since we wanted to rule out such cases. Put
together, the first and second facts conspire to render RAs with subtractives impossible to make
true: the lack of an explicit, particular boundary with which the subtractives can operate means
that we will not be able to determine a unique, minimal, non-empty exception. We will have no
way to actually determine, semantically, if someone is almost or barely positively tall.

Let’s turn now to the slightly more formal version of the proposal above. As it stands, the
way we’ve structured the semantics of the positive constructions is quite precise, even for RAs.
Since Sygenr contains neither its upper nor its lower bound, STANDARD picks out a contextually-

determined interval, just as it does when the standard is contextually explicit.

(351) Cordelia is tall.

1054

POS 64
STANDARD tall

Cordelia t6,d tauproloys
b. [(3512)](w) is defined only if max(stno.([tall]) and max{ (0.Cy] } are defined; where
defined: [(351a)]°(w) = 1 iff max(sTND ([tall])) < Cy,

RA standards are, in general, vague, though. The boundaries between the categories of positively
tall, positively short, and in-between are not easy to define. Now, vagueness itself is a deep and
rich topic (see van Rooij 2011, Solt 2015b, and Sorensen 2018 for overviews), and we have no
horse in the race of the right analysis of vagueness. We can augment our analysis of the positive
construction with a particular kind of analysis of vagueness—a supervaluationist model, as Klein
(1980) applies to the positive construction—and show that can account for the way subtractives

interact with RAs?.

»0Of course, vagueness isn’t limited to the positive construction, so some model of vagueness is independently
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The interpretation function [[] is relativized to a context of utterance c. In general, we can
think of ¢ as one of a family of contexts that are more or less equivalent. Let’s call .%(c) the
family of contexts ¢’ that are at least as determinate as c¢*. .% (c) helps us define a rough notion

of supertruth and superfalsity:

(352) SUPERTRUTH AND SUPERFALSITY

For some ¢ of type (s,t):
a. [o]”©(w) is supertrue just in case Vc' € .Z(c), [o]° (w) is true
b. [¢]7©)(w) is superfalse just in case Vc' € .Z(c), [¢]¢ (w) is false

c. [o]”©(w) is undefined otherwise

Consider RAs in the positive construction again. To assert that someone is positively tall means
that in every ¢/, they must be positively tall. Above, we wrote that the standard is fixed in a
particular c, but since we know that the standards are extremely fuzzy, for each ¢’ € .#(c), the
standard can be different. So for someone to be positively tall, they must count as tall with respect
to every possible precisification of the standard, i.e. in every ¢’ € .%(c). It must be clear that
they are tall. The same goes, mutatis mutandis, for counting as positively short. Now, when we
consider subtractives, they will get caught in the calculation of supertruth and superfalsity. That
is, to count as positively almost tall, it must be the case that in all ¢’ € .% (c), you count as almost
tall. This is impossible to make true, though, assuming that across all such precisifications g maps
the exception to the same value. If even one ¢’ € .7 (c) results in a different standard from another
c”, then the almost sentences will relative to ¢’ and ¢” will contradict one another. This allows an
explanation, too, of why AAs and contextually explicit standards are rather different from typical
RA standards: the former determine the same standard in all ¢’ € .% (c), whereas the latter do not.
RAs and subtractives cannot go together in the positive construction.

This also gives us a way of distinguishing the near cases, repeated below.

(349) a Boston is near New York City.
b.  Los Angeles is near New York City.
(350) a. # Boston is almost near New York City.

b. ?/# Los Angeles is almost near New York City.

(349a) is plausibly true, and possibly supertrue, depending on how much all the ¢’ € .%(c) agree
P y P y sup P g g

on the positive extension of nearness. (349b) is definitely superfalse. (350a) is simply undefined,

necessary more generally. As long as one’s favorite analysis of vagueness can be squared with our proposal for the
positive, the end result should be the same; we’re not committed to any particular model of vagueness in the end.
?*This probably needs more rigorous defining.



since it couldn’t be supertrue as a result of almost’s contribution. We can plausibly judge (350b) as
false though because it would be superfalse, both as a result of almost’s contribution and because

(349Db) is itself superfalse.

3.3.3.3 One more alternative

The vast majority of analyses of almost fall into camps we’ve discussed before, e.g. a scalar close-
ness semantics for the operator, and a propositional one at that. We won’t worry about such
analyses now. What we should discuss, though, is Rotstein & Winter (2004) (R&W), since their
proposal for almost depends crucially on the model of the scale structure of absolute adjectives
that they develop.

The core of R&W’s proposal shares with ours the idea that the scales on which total and partial
adjectives operate are related, but not identical. They differ from us in allowing more flexibility
in the setting of the standard for both scales. Let T and P be an antonymous pair of absolute
adjectives, where T is the total and P the partial adjective. The strictest requirement R&W impose
comes in the relationship between the minimal degree on Sp and the standard for St. To count
as positively T, one must be totally “free of P-ness” (R&W:270) in their view; this accords with
our view that to count as positively clean, one must lack any dirt. This means that the minimal
degree on Sp, Py, must be equivalent to the standard on St, sTNDT. They allow, though, that
there are T degrees on St both above and below sTNDT. The degrees above sTNDT allow that in
some contexts, we might allow that to count as positively clean needn’t mean absolutely maximal
cleanliness. Room below STNDr means that T can map entities to a degree that doesn’t mean
positively T—this is helpful for comparatives, where Anya’s room is cleaner than Dawn’s room
doesn’t entail that either is clean. Furthermore, they allow for far more contextual flexibility in

determining STNDp—it can be strictly greater than Py, though it needn’t be.

(353) Where -00 < TMAX < PMIN < PMAX) TMIN < oo

—_— h
a. SP = (PMINsPMAx) b. ST = TMAXaTMIN)

Sp

N

P,ux = STNDT STNDp Pyax (= 00)

T’.

=

St
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Figure 3

Positive adjectives in their analysis denote intervals on a scale.

(354) [Pos]([T](x)) = Ad. pr(x) > STNDT
i.e. [Tyax.STND1]

(355)  [Pos]([P[(x)) = Ad. pp(x) > STNDp
i.e.: [STNDp,Pyax), if Pyiy < STNDp < Ppax
..(STNDp,Pyax ), if Pyuy = STNDp

.00, if Pyyax = STNDp

The context-dependence of sTNDp allows for the positive extension of P to have more variability
than the positive extension of T.

Now, R&W propose that almost modifies not the Pos operator itself, but the whole positive
adjective construction. It is a function from intervals Z on a scale S to the complement of Z on
S. So for some T, almost [Pos T] returns a small interval below sTNDr. This is always available.
almost [Pos P] is only viable when STNDp > Py, i.e. when the context makes salient a particular,
non-default minimal standard. If that’s not the case, then there will be no interval that almost [Pos
P] can map to.

Their analysis of AAs is really not fundamentally all that different from ours, though theirs
admits flexibility in the relationship standards and contextual factors, at least in a sort of stipula-
tive way. In general, for example, they assume that sTNDp = Py, but context allows the fixing
of a higher degree as sTNDp. It’s not obvious how the context does set this different standard on
their account. We would need to do a little more work to allow this, since our Pos right now will
return the maximum/minimum of a scale if there is one, and only a contextual standard if there
there is neither. Provided we can come up with such a mechanism, we’re set.

That said, our analysis won’t readily account for the felicity of almost P in such cases, since
that would be an almost comparative. However, perhaps when almost P is felicitous, the right
analysis—as we suggested for what appeared to be superficially almost comparatives—is not to
treat them as almost modifying pos, but rather the whole predicate. That is, we would analyze it
structurally as R&W do, but semantically it would be quite different. We’ll have to leave this to
future work. The main difference is in allowing a gap between Ty,x and STNDr, but that we could
chalk up again to context; R&W do assume that the default value of STND7t is Tyax.

Let’s discuss now how our analysis is perhaps more parsimonious than theirs when it comes to
almost and barely. First, it’s not clear how their analysis will extend to barely. Their analysis relies
on almost picking out a small interval in the complement of [Pos A]. This captures, of course,

the negative polar inference almost carries. What about barely? To capture its own positive polar
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inference, it must pick out some small interval in [Pos A], but it’s not clear how what we’d have
to do to get the interval to be just above the standard. This comes out for free on our analysis. Their
brief notes about how almost every works, too, leave something to be desired; they treat almost
as a modifier of generalized quantifiers to generalized quantifiers, but this prevents a unified
semantics of almost every and almost no (cf. Moltmann 1995), whereas we can provide a uniform
semantics.

None of this is necessarily unfixable. The issues are just things that need much more ironing
out, and they arise, I suspect, because they start from the positive construction, and want to work
their way backwards. The central theoretical thrust of this dissertation is that starting from deter-
miner quantifiers and working towards degree constructions shows us how a unified, exceptive,

analysis can work for all with minimal adaptations along the way:.

3.4 Onwards

The first half of this chapter analyzed comparatives and equatives modified by almost and barely,
and showed that it is incredibly fruitful to extend the quantifier modifier analysis of subtractives
to this domain. It is a novel extension, and importantly, the resulting theory is quite uniform.
We make the meanings of almost and barely general in the following way. Let o be an arbitrary

semantic type.

(356) [almost]®® = AXAZ 510t A A6, AB6y: X C A & X # 0. D(A—X)(B') & SMALL(X)

(357) [barely]#® = AXAD (616 AA (5 9 ABapy: X € B & X # 0. ~2(A)(B—X) & SMALL.(X)
(ot,(ot,((ct,ott),(ot,t))

Particular properties of degree constructions naturally affect the fine details of the analysis, but
the general picture is very much the same as it was in analyzing quantificational determiners.
The second half of this chapter is a natural extension of the first, with some embellishments.
Analyzing total and partial adjectives in the positive construction as equatives and comparatives
respectively naturally captures the distribution of almost and barely. Throughout the whole chap-
ter and in the last, we've predicted the complementarity of almost and barely with respect to a
given determiner. Now we’ll turn to numeral constructions, where that distributional comple-

mentarity breaks down.
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Chapter 4

Numeral constructions

4.1 The overview

Our analysis of almost and barely treats them as modifiers of quantifiers, and they encode set
subtraction of a small exception from one of the modified quantifier’s arguments; barely addition-
ally negates the modified quantificational assertion. Let ¢ be an LF with exactly one subtractive
> modifying a quantifier A, with an exception x. Almost subtracts from the restrictor of the
modified quantifier, and barely from the nuclear scope. Both subtractive operators must occur
within the scope of the exhaustification operator ExH, and the alternatives to ¢ are those that
are formed by substituting alternative exceptions for y. What the analysis ultimately requires is
that the exception must be the smallest, non-empty set that can be subtracted and yield truth for
the modified quantification. If it impossible for there to be such a set, then the subtractives are
not licensed.

What we’ve seen so far is complementarity in the distribution of the subtractives. When we
turn to constructions with numerals modified by subtractives, though, that complementarity dis-

appears.
(358) Almost {one hundred/half of the } vampires attacked Sunnydale High School.

(359) Barely {one hundred/half of the} vampires attacked Sunnydale High School.

(360) a.  Willow is {almost/barely} a month older than Bufty is.
b.  Willow is {almost/barely} sixteen years old.
C. {Almost/barely} one hundred pounds of (the) gold is on the table.

Numerals like one hundred and proportional quantifiers like (a) half are all acceptable with both

almost and barely. We see this with differential measure phrases in comparatives and measure
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phrases constructions, too. Now, the analysis we've developed so far has been remarkably suc-
cessful in predicting the distribution of the modifiers, and accurately capturing the meaning they
contribute across quantifier types in with a uniformity and degree of precision not present in
other extant analyses. However, it has also predicted that complementarity we have seen: if a
quantifier A in a particular syntactic and semantic environment can be modified by almost, it
can’t be by barely in that same environment, and vice versa. What kind of structure and meaning
for numerals allows these constructions to be modified by both operators?

A solution to the quagmire we're in is suggested by thinking a little more carefully about
what almost and barely seem to do in numeral constructions. Consider the paraphrases for (358)

and (359), given in (361) and (362), respectively.

(361) almost one hundred: There is some set of vampire-attackers with a cardinality of just

less one hundred, but it is close to one hundred.

(362) barely one hundred: There is some set of vampire-attackers such that if you remove a

few of them, the cardinality of the set would be less than 100.

The informal paraphrases of these sentences seem to capture, roughly, the right meanings. Almost
tells us that it’s false that one hundred vampires attacked Sunnydale High School, but we’ve got
a group of close to 100 vampire-attackers; plausibly, almost is lowering the threshold set by the
numeral. Barely, on the other hand, doesn’t lower the threshold; it seems to say that if we remove
some small set of vampire-attackers from consideration, we wouldn’t have one hundred vampire-
attackers (but in fact we do). Barely seems like it’s operating on a set of individuals, rather than
the numerical threshold.

We can also simply reflect on the fact that we know what kinds of quantifiers almost can
modify, and we know what kinds of quantifiers barely can modify. This leads us to the idea that
both kinds of quantifiers must be present in the structure of numeral constructions. This is the
ultimate proposal: that both modifiers are compatible with numeral constructions precisely be-
cause the latter involve two layers of quantification that we’ve already seen. First, there is covert
analog of some, here given as &, and second, there is a cover analog of an equative, .# . Here is

the rough structure of the DP one hundred students.
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(363)

/DP\

D NumP
/\
(barely) &
SpecNumP Num’
/(hmdred Num NP
(almost) A |

MANY  vampires

The existential quantifier is the head of the complex DP, and barely can moditfy it, but not almost.
Numerals themselves are not determiners at all, but rather sit in the specifier position of a ded-
icated projection Num. Sitting in Num is the operator MANY, which relates sets of individuals
to degrees. Within the SpecNumP, almost modifies .#, a quantifier over degrees, which admits

modification by almost, but not barely.

(364) [£]#°=AAAB. Jyly € A&y € B]
(365) [#]° = ADAD'. max(D) < max(D’)

(366) For any set of degrees D on a scale S:
max(D) :=1d[d e D& Vd'[[d € S&d < d] <> d € D]]

Each of these elements has precedent in the literature on the syntax and semantics of numerals
in one way, shape, or form. An existential semantics for numeral DPs (henceforth numDPs) dates
back to Barwise & Cooper (1981) and Keenan & Stavi (1986). MANY, as a way of measuring the
cardinality of a plurality, is posited in many accounts including, but not limited to, Hackl (2000),
Buccola & Spector (2016), and Bylinina & Nouwen (2018). Numerals have been given the seman-
tics of maximality-based generalized quantifiers by Kennedy (2013, 2015). We take this a step
further, pulling out the maximality from numerals themselves, and into an operator .#, which
has the semantics of an equative. Subtractives provide an explicit argument for this kind of struc-
ture; the central goal is to show how we get there, and to show that it is the right analysis given
almost and barely’s contributions.

We'll start by showing how a GQT analysis of numerals fails for both subtractives, but it is
a useful starting point for barely. We’ll then see that incorporating MANY is essential, and that
numDPs require plural NPs; we’ll briefly backtrack once more to the basic cases of quantificational
determiners to discuss the implications of this. From there we’ll turn to the contribution of the
numeral itself, and the role that .# plays in our analysis. We’ll discuss a few areas in which issues

arise for our analysis, and possible remedies; we’ll also discuss a bit how .# is related to other
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quantifiers that almost modifies. We will then conclude with a discussion of areas in which this

syntax and semantics should be applied and some open issues.

4.2 'The structure and meaning of numeral constructions

4.2.1 Numerals as quantificational determiners

Existential quantification has been proposed as a key component of the semantics of numeral
constructions in many ways. Syntactically and semantically, one might think they are quantifi-
cational determiners; this classical, GQT view (Barwise & Cooper 1981, Keenan & Stavi 1986) is
natural considering that, like every, no, and some, they occur prenominally, and their contributed
meaning encode relations between sets. For example, one hundred in (367a) requires the inter-
section of the students and lecture-attendees to have a cardinality of at least one hundred; the
lexical entry given in (367b) encodes the cardinality function ‘| |” which counts the number of
atomic elements in a set. A typographical note: we will distinguish between numerals (1,2,...) and
the corresponding English words (one, two,...). The former will appear only in the metalanguage,

and generally be taken to denote degrees; the latter are expressions of the object language.

(367) a.  One hundred vampires attacked Sunnydale High School..
b. [one hundred]®® = AAAB. |A N B| > 100 (et,ett)

Such a quantificational determiner semantics for numerals would seem to be along the lines of
what we’re looking for, given that almost and barely are quantifier modifiers. This semantics is
plausible in particular for barely, but not almost: it is an existential quantifier at its core, since it
requires the intersection of its arguments to be non-empty. Recall the basic, formal components

of our analysis.

(368)  [almost]®* = AXAZ 510t A (6,9 AB(s1: X C A & X # 0. D(A—R)(B') & SMALL:(X)

(369) [barely]#¢ = AXAD (5t 5t AMA (6 ) ABapy: X € B & X # 0. =D (A)(B—X) & SMALL(X)
(ot,(ot,((ct,ott),(ot,t))

(370) SUBTRACTIVE LFs

ALF ¢ is a subtractive LF just in case ¢ is a LF containing exactly one subtractive operator

¥ introducing an exception ¥, and no other alternative-triggering expression, and ¢ is of
type (s.t).
(371) SUBTRACTIVE ALTERNATIVES
For a subtractive LF ¢, with an exception x of type (o.,t),
ALt(p) := {o[x/x'] | X C Dy & ¢[x/x'] is grammatical }
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(372) For a subtractive LF ¢, with an exception ¥,
[Exm @]&(w) = 1iff [o]=°(w) =1 & Vx'[[o]* # st o [x/x11& — lo[x/x11e(w) # 1]

Let us also note that the semantics in (367b) is Upward Entailing on both of its arguments: if the
intersection of A and B has a cardinality of at least one hundred, then substituting a superset of
either can only increase the size of the intersection. Now, it should be obvious that that will cause
us problems with almost simply because of the fact that this is an existential quantifier, but there’s
another, more pressing issue. Our analysis of almost, coupled with the semantics for numerals
above, cannot actually lower the threshold set by the numeral given this semantics. Consider
the meaning of (358) prior to application of EXH (we’re suppressing the presuppositions for the

moment).

(358) Almost x5 one hundred vampires attacked Sunnydale High School.
(373) [(358)]&° = Aw. [Vyy—g(2) N Ay| = 100 & smALL:(g(2))

Even without ExH, the problem is evident: given the semantics of one hundred, the only set that
almost has access to V. As a result, once its subtractive work is done, the truth conditions still
require that the intersection of the set of remaining vampires and the set of attendees is at least
one hundred. Given that (358) is intuitively true where less than one hundred vampires attacked
the school, this strikes us as a fundamental problem.

There are even problems that arise for barely on this classical view.

(359) Barely 2 one hundred vampires attacked Sunnydale High School.

(362) There is some set of vampire-attackers such that if you remove a few of them, the car-

dinality of the set would be less than one hundred.

What we want is for barely to encode that removing some small number of vampire-attackers
would make it false that one hundred vampires attacked; we should also derive that one hundred
vampires did in fact attack. ¢ is Downward Entailing with respect to the nuclear scope of barely
X2 one hundred, so entailed alternatives to ¢ are formed with supersets of the exception g(2)

(again, we suppress barely’s presuppositions).
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(374) ¢

attacked  progip )

one hundred Vampires proio)
barely x»

(375) [ExH @]#‘(w) =1 iff (a) & (b) =1
a. |Vu NAL—g((2)] < 100 & sMALL.(g(2))
b. Vx'[l@l# % st [o [x2/x']18 = lo [x2/x']18(W) # 1]

These truth conditions, at first glance, seem to accomplish what we want. Again because of the
semantics of one hundred, barely’s subtraction can only apply to sets of individuals, as was the
case with almost (unlike almost, barely subtracts from the nuclear scope, of course). While this
was a problem for almost, this is in fact right for barely. These truth conditions require that there
are fewer than one hundred vampire-attackers when we remove g(2) from A,,.

When we consider the contribution of ExH, supersets of g(2) yield entailed alternatives,
which is good. We’ve assumed throughout our investigation of quantificational determiners that
we were trafficking in sets of atomic entities, so presumably, barely’s exception would be a set of
atomic entities. Assuming that for numerals gets us into trouble, though. To make things simpler
expositionally, let’s grant that (379) is acceptable given the extensions of vampire and attacked
the high school below, and grant that exceptions with a cardinality greater than than two do not

count as small in the context of evaluation.
(376) VY, = {a, b, c, d, e, f} (377) Ay = {a, b, c, d, e, g} (378) Vyu NA, = {a, b, c, d, e}

(379) Barely four vampires attacked Sunnydale High School.

(380) [EXH [barely four vampires attacked Sunnydale High School]]®¢(w) = 1 iff (a) & (b) =1
a. |Vu NAL—g(2)] < 4 & sMALL.(g(2))
b. Vx'[lo#< # sr [o [x2/x']1%¢ — lo [x2/x']1¥<(w) # 1]

There are many possible values for g(2) that predict truth: so long as g(2) contains at most two
entities in Vy, N A, e.g. {a, b}, {b, d}, and so on, (380a) will be true in w. This is the start of the

problem: there are many sets that are possible values for g(2). ExH is the rest of the problem.
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We know that for a given g(2), alternatives to ¢ formed with small supersets of g(2) will be
entailed, but since we’re dealing with an existential quantifier, we know that non-supersets won’t
be entailed’. So, EXH requires that for all small non-supersets X’ of g(2), subtracting X’ from the
set of attackers leaves at least four vampire-attackers. For any possible value of g(2) that makes
(380a) true, there will be a set X’ disjoint from g(2) such that X’ C (S, N A,,), with the same
cardinality as g(2), and which makes (380a) true. It won’t be entailed, though, so ExH will require
that it makes |V, N A, —X'| > 4 true. This will generate falsity. The essential problem here is that
there is no value for g(2) that uniquely entails all other true values—there are many true values
that don’t stand in any asymmetric entailment relationships with one another. That there is no
ordering relationship between elements in these sets creates a novel issue with numerals that is
absent from the more basic quantificational determiners we investigated before?.

There are other, independent issues with assuming a classical, GQT-style semantics for nu-
merals. For example, other determiners can sit on top of numerals, but the quantifier semantics

above doesn’t make clear how they could compose (Bylinina & Nouwen 2020).

(381) Every two houses come with one parking space.

(382) The twelve students that came to the party had a nice time.

Bylinina & Nouwen (2020:3)

Still, the classical view is a useful starting point for us. It makes quite clear the issue that almost
would face with any existential quantifier semantics for the numeral: on such a view, it could
never modify the threshold set by the numeral. That contribution must be separated out from
any existential component to the semantics, at least in such a way that gives almost access to it.
Let’s grant, though, that an existential semantics is a core component of numeral constructions;

how does it come in?

4.2.2 MANY pluralities

Hackl (2000) introduced an analysis of numeral constructions in terms of two parts: a numeral,
taken to denote a degree, and MANY, a parameterized existential determiner that quantifies over

individuals with particular cardinalities.

(383) [maNny]®¢ = AdAAAB. Ix[x € A& x € B & [x| > d] (d,(et,ett))
(384) [one hundred]#c = 100 d

!See the appendix for a proof that such sets aren’t entailed.
?0On a GQT analysis, one and NPI any are plausibly equivalent, and as such should pattern alike. That this is not
the case is an argument against a GQT analysis.
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This proposal is for our purposes a variant of the denotation in (367b). What we want is to sever

the quantification from this semantics, and align its contribution with the syntax below.

(385) DP
& NumP
numeral Num’
/\
Num NP

We’ll take & to denote a standard existential quantifier:
(386) [£]#¢ =AAAB. Ix[x € A& x € B]

Following proposals by Ionin & Matushansky (2006), Solt (2015a), and Mendia (2018), we’ll take

Num to be the locus of MANY; its semantics is given below’.
(387) [mMANY]®C=AANdAx.x € A& x| >d (et,(d,et))

This semantics allows an entity to be measured in terms of the number of its atomic parts; if there
is only one atom, then the cardinality is one. What happens if the saturating degree is greater
than one? We'll incorporate pluralities into our semantics.

Consider the set S:

(388) S = {a, b, c}

This set consists of three atoms, to be defined momentarily; pluralities are constructed from, or
minimally related to, atomic elements in one way, shape, or form. An influential theory, devel-
oped by Link (1983), et seq., is what we will adopt here, though nothing crucial hinges on this
assumption®. Link proposed that plural individuals are constructed through a summation oper-
ation, @, and that atomic and plural individuals are no different type-theoretically. That is, D,
consists of atomic individuals and plural individuals. The & operator is associative, commutative,

and idempotent:

(389) a. (abb)bc = adB(bbc) associative

*An alternative would be to treat it as a gradable adjective, with only a degree and an individual argument (as
in, e.g., Rett (2008), Wellwood (2014), Solt (2015a), Buccola & Spector (2016), Bylinina & Nouwen (2018), a.0.). That
would be equivalent for our purposes semantically, but would involve a different syntactic structure: our SpecNumP,
the numeral, would have to be within the Num head, i.e. sit as the first argument of MaNY. Nothing deeper hinges
on the distinction.

*This discussion follows Nouwen (2016).



b. a®b =bPa commutative

c. aba=a idempotent

This allows us to define a partial order < on D, and we can then define atoms in terms of <.
(390) a<biff adb=Dh. (391) AaTom(a) iff Vb[b <a= a}.

Now we take from Link an operator, *, which takes a set of atomic individuals and returns a set
of atomic and plural individuals. Applied to S above, it derives the set consisting of a, b, ¢, and all

their joins. The structure of this set is a join semi-lattice.

(392) *A is the smallest set such that:

a. AC %A, and

b. VxVy[X € xA &y € xA — xPy € *A]
(393) xS ={a, b, c, ac®bb, bdbc, adbc, a®bbc}

adbdc

(394)

*xS—call it the plural set of S—contains all the elements in S, plus all their possible joins. It is
common to assume that plural morphology—e.g., -(e)s on many nouns in English—is the mor-

phosyntactic correlate to the * operator. That is:

(395) [PL(URAL)[&C = AAAX. x € %P (et,et)
The English expression vampires can be taken to comprise two functions at LF.

(396) [pr]®¢([vampire]|&#(w)) = Ax. x € *V,

The plural students, then, is a set of atomic and plural individuals. Now let’s put the pieces together

for four vampires.

(397) four vampires
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T

& NumP
four Num’
MANY NP

N

vampire,, PL
b. [(397a)]#¢ = AB. 3x [X exV, &xeB& x| > 4}

This semantics makes four vampires a generalized quantifier. We’ll need to assume that the nuclear

scope of this quantifier is also pluralized. We’ll just stick a pL there, too.

4.2.3 Barely back in the mix

This semantics composes well with barely. Let’s return again to a context in which five vampires
attacked Sunnydale High, granting that (398) is felicitous for the sake of simplicity in explication.

Barely’s presupposition is put back in.

(398) Barely four vampires attacked Sunnydale High School.
a. Let w be such that V, N A, = {a, b, c, d, e}

b Py

EXH o)

D NumP PL/>\

attacked progip )
/<\ /\
&

PL
vampire  proo)

c. [(398b)]&<(w) is defined only if g(2) C *A,, & g(2) # 0; where defined:
[(398b)[(w) = 1 iff (i) & (ii) = 1
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i —~dy [y exVy, &y € xA,—g2) & |y| > 4} & SMALL.(g(2))
ii. Vx'[[@]# # st lo[x2/x']18¢ — [o [x2/x']]8¢ # 1]
The truth conditions are very different than what we derived before. (398bi) requires that g(2)

is small and removes all pluralities of four+ vampire-attackers. Consider the set of pluralities of

vampire-attackers in w.

#5 adbDdchdPe
#4 a®b®chd abbdche ac®bddde adchdDe bdchdde
#3

#2

#1

xVy, M *xA,

Figure 1

Because &, and by extension barely &, is an intersective quantifier, only pluralities that are in the
intersection of %V, and *A,, matter, i.e. those in Fig. 1; (398bi) can only be true if g(2) contains all

pluralities in #4 and #5, i.e. those with a cardinality of at least four.
(399) {a®bdcdd, adbdede, adbddde, adbeddde, bdeddde, adbbdeddde )

If g(2) does not contain at a minimum all pluralities in (399), then (398bi) is false, since there is a
plurality of vampire-attackers with a cardinality of at least four in *V,, N *A,—g(2).

What about (398bii)? The additional ordering imposed by pluralization helps constrain rela-
tions between possible exceptions. ¢ is Strawson Downward Entailing with respect to the VP,
and so alternatives to ¢ formed with supersets of g(2) that are small and subsets of *A, are en-
tailed’. Alternatives with X’ that are not subsets of *A,, or which are empty are undefined, so they
make the consequent of EXH true. Alternatives where X’ are not small are false, and also make

the consequent of ExH true. (398) thus amounts to the following.

(398) a. [(398b)]#(w) is defined only if g(2) C xA,, & g(2) # (); where defined:

’If you’re wondering how we determine sMaLLness when it comes to sets of pluralities, hold on to your hats;
we’ll discuss this in §4.2.3.2.
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[(398b)]&(w) = 1 iff (i) & (ii) = 1
i —Jy[y € #Vy &y € xA,—g(2) & [y| > 4] & sMALL(g(2))
i wx [[x’ C by & K A ) & SMALL(X) & g(2) K]
— Jyly € #Vy, &y € xA,—X & |y| > 4}]

It should be easy to see that these truth conditions yield truth if g(2) = (399).
Now let’s imagine g(2) contains everything in (399), plus one additional plurality; for con-

creteness, adbDc.

(400) {a@b@c@d, a®bdcde, a®bddPe, abchdPe, bbchdPe, abbDchdDe, a@b@c}

new!
This set would make (398bi) true. ExH then does its work, but predicts falsity. Since it quantifies
over non-supersets of g(2), any subset of g(2) is caught within its grasp, and all such subsets must
leave at least one four+ plurality in %V, N xA,—X'. The problem is that (399) is a subset of (400),
which means not all non-supersets of (400) satisfy ExH; we predict falsity here. Taken together,
then, the truth conditions require that g(2) be the smallest exception that removes all pluralities

of vampire-attackers with a cardinality of at least four.

4.2.3.1 Pluralities and quantificational determiners

A natural question that arises is whether pluralities affect how we analyze quantificational de-
terminers. There are two major points. First, with our intersective quantifier no, pluralities don’t
change anything foundational about the semantics. When we turn to some, we see potential prob-
lems. Pluralization does not obviously work with every; that said, it’s entirely reasonable to think
that every itself either “undoes” pluralization, if present, or blocks its presence, given that it is
standardly taken to be a distributive determiner (Vendler 1967, i.a.).

Let’s look at no, with almost as our focus.

(401) Almost no spellbook is worth reading.

a. /\

EXH ¢
10,
PL
no
almost  xo PL Proio,s
spellbook  projg worth reading
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b. [(401)]#°(w) is defined only if g(2) C xS,, & g(2) # (); where defined:
[(aon)]w) = 1 iff () & (i) = 1
i. *S,—g(2) N *WR,, = () & sMaLL(g(2))
ii. VX' [[@]# # st [ox2/x115¢ — [olx2/x'11%(w) # 1]

Prior to pluralization, g(2) had to contain all the elements in S, not in WRy,, which were atoms.

Consider this toy model for w.
(402) S, = {a, b, c, d, e} (403) WR, = {d, ef g h}

For (401) to be true in w, g(2) must pick out all the spellbooks worth reading (ignore concerns
about size), i.e. the intersection of these two sets, {d, e}. If we were to add in pluralization, the
intersection of the plural sets would contain all and only those atoms in S, and WR,, alongside

any pluralities formed with those atoms.
(404) *Su N *xWRy = {d, e, d@e}

This is all g(2) needs to pick out; the rest of the logic proceeds as if we were considering only sets
of atomic entities. Alternatives formed with small supersets of g(2) will be entailed, and nothing
else will be; EXH requires that other possible exception leave in S a spellbook worth reading.

This is true for all non-supersets of g(2), so we’re golden. Almost some is a little different.

(405) # Almost some spellbook is worth reading.

a. [(405)]&¢(w) is defined only if g(2) C xS, & g(2) # (); where defined:
[(405)[¥“(w) = 1 iff (i) & (ii) =1
i. *S,—g(2) N *xWR,, # 0 & sMALL.(g(2))
ii. V' [To]< # st [olx2/x'11# — lolxa/x'TE(w) # 1]
As long as |xS,, N *WR,| > 1, there is no value for g(2) such that both (405ai) and (405aii) are

true. If [xS,, N *WR,| = 1, we can find a unique exception, we have to rely on sMALL to rule it

out. Here’s such a world.

(406) Sy = {a, d} (408) xS, = {a, d, a@d}
(407) WR, = {d, e f, g h} (409) Sy NWR,, = %5, N *WR,, = {d}

When we start pluralizing, for (405ai) to be true, g(2) still must not contain d, and must be a subset

of *S,,. There are three such sets.
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(410) {a@d} (411) {a} (412) {a,a@d}

{a@d} entails neither of the other sets, so they will make (405aii) false, but the other two sets are
different. First, {a, a@d}: it entails all other sets that make (405ai) true because subsets of any
true value are entailed. Every other set X’ that is a subset of *5,, contains d, and could not be
entailed, and they are correctly negated by ExH. So, we should predict this to be true. We have
recourse here to SMALL: such an exception couldn’t be considered small. Perhaps that’s sufficient
to rule this out.

{a} is the real problem. It entails both {a@d} and {a, a@d}, even though they aren’t subsets,
as a result of how the * operator works. To show they are entailed, consider the following. If {a}
didn’t entail {a@d}, we should be able to find a world w’ where *SW/—{a} N *WRy # () is true
and *Sw/—{a@d} N *WRy, = 0, as well as a world w” where *Swu—{a} N *WRy # () is true and
*Swu—{a, a@d} N *WR,, = 0°.

Assume there is a world w’ such that *SW/—{a} N *WRy # () is true and *Swz—{ a@d} N
*WRy, = (). This means that *S,, N *WR,, C {a@d}. But then since a®d € x5, N *WR, all its
constituent atoms must be, so d € *S,, N *WR,-’. This means that d € *Swr—{a@d} N *WR, #
0, which contradicts our assumption. {a} entails {add}. The same proof works for {a} entailing
{a, a@d}. This means that {a} entails all true exceptions, too. That’s a problem!

There are a few ways we could work around this issue. We could make the size constraint
stronger: the exception cannot be greater than % the size of the restrictor. Perhaps that’s fine and
intuitive to do (personally, the % mark seems a bit high anyways). If this isn’t a tolerable route,
we could abandon appeal to sMALL and follow Gajewski (2013). In contexts like this, where there
is no unique exception, Gajewski proposes that an additional layer of exhaustification, negating
higher order alternatives. We won’t push that here. Finally, we could maintain that in QPs like
this, there isn’t pluralization, and maintain the % threshold set previously. Deciding definitively
between these options is left for the future; for concreteness, though, we’ll adopt the stronger

constraint on SMALL.

(413) THE SIZE CONSTRAINT
Let c be a context of utterance, X be an arbitrary set, p_ be a measure function, deter-
mined by the context, mapping sets to numerical values representing their size, and n. be
a contextually determined numerical threshold for size.

SMALL.(X) = 1 iff p (X) < n,

(414) MAXIMAL SIZE OF n,

‘I'm assuming they all satisfy (405)’s definedness conditions, i.e. they are all subsets of %5 in the relevant worlds.
"Note: this isn’t true for predicates in general, but distributive predicates. Collective predicates, which we do not
discuss here, can have pluralities in their extension and not the atoms comprising those pluralities
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Let ¢ be a constituent with subconstituent y such thaty = [A [oc [Z X} H or H[Z X} A} oc],
where ¥ is a subtractive operator, A is quantificational determiner, and o and y be expres-
sions whose denotations characterize A and X, respectively.

For any context c, an utterance of ¢ in c is felicitous only if n. < %(pC(A))

Now let’s briefly turn to every.

Pluralization is a real problem for our universal quantifier.

(415) Almost every spellbook is worth reading.

a. [(415)]#(w) is defined only if g(2) C *S,, & g(2) # (); where defined:
[(415)]%“(w) = 1 iff (i) & (i) = 1
i. *5;—g(2) C *WR,, & sMALL.(g(2))

ii. Vx'[[o]# % st [olxa/x' 1% — lolxo/x & (w) # 1]

Here, as it did when we were only trafficking in atoms, g(2) must contain all the elements of x5,
not in *WR,,. However, the problem is g(2) now has to be much, much larger—it not only has to
contain every atom x in xSy, not in *WR,,, but every plurality containing x. For any such x, at

least half the elements in %5, contain x. Here’s a toy example:

(416) S, = {a, b, f} (418) xS, = {a, b, f, adb, adf, bPf, a@b@f}
(417) WRy, = {a,b,c,d, e}

Without pluralization, g(2) would have to be {f}, which is small relative to Sy, on our original
definition. With pluralization, though, g(2) has to contain f and all the pluralities in %S, of which
it is a subpart; that’s four of the seven. Even on our original definition that’s too much! The
problem only gets worse if there is more than one element in the exception. One thing to think
about is how we calculate the size of the exception—right now, we’re just counting the number of
elements in the exception and restrictor. There might be other ways to do this, and we’ll turn to
this in the next section. Another angle is to claim that every is a distributive determiner (Vendler

1967, i.a.): when a predicate is necessarily collective, like gather is, every is unacceptable:
(419) # Every vampire gathered at dusk.

For present purposes, we could take this to mean one of two things: either every never composes
with a plural restrictor, perhaps through a presupposition, or its semantics ‘undoes’ any plural-
ization. Below are two quick-and-dirty entries to circumvent the issue that pluralization poses

for every here.

(420) a. [every;[® = AAMB: Vy[y € A — atom(y)]. AC B
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b. [every,]®¢ = LAAB. Vy|y € A & aTom(y) — y € B]

We’ll set making a firm decision aside for now, and where every comes up, we’ll simply not include
pluralization.
It’s important to note that all, famously compatible with almost, does permit collective quan-

tification with surface-plural restrictors.

(421) Almost all of the vampires gathered at dusk.

Predicates like gather are not distributive, nor can they be used with singular subjects:
(422) # Willow gathered at dusk.

All can be analyzed as a non-distributive counterpart to every, but subtractives tell us that can’t be
right. If all were indeed just a non-distributive version of every, the counting problem discussed
above should arise, and almost should not be able to modify all. There’s plenty of literature that
discuss the contribution of all as non-quantificational (e.g. Brisson 1998, 2003; Kriz 2015, 2016;
Bar-Lev 2018) or as a quantifier over candidate interpretations rather than entities (Kriz & Spector
2021). Whichever route is right, there’s still a puzzle as to how almost composes (what would it
be, for example, to subtract ‘candidate interpretations’?). At the very least, subtractives push us
towards those investigating those puzzles.

Now we’ll turn to the promised discussion of how we calculate the size of an exception when

pluralities are considered.

4.2.3.2 Thinking about size again

As is usual, an exception must count as small in the context. We defined the size constraint in the

following way.

(423) THE SIZE CONSTRAINT
Let c be a context of utterance, X be an arbitrary set, and n. be a contextually determined
numerical threshold for size.
Where X is a dense set of degrees, SMALL.(X) = 1 iff LENGTH(X) < n;
Otherwise, sMALL.(X) = 1 iff |X| <n.
(424) MAXIMAL SIZE OF n,

Let ¢ be a constituent with subconstituent y such thaty = [A [oc [Z X} H or H[Z X} A} oc],
where ¥ is a subtractive operator, A is quantificational determiner, and o and x be expres-
sions whose denotations characterize A and X, respectively.

An utterance of ¢ in c is felicitous only if, for any context c:
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1

5 (LENGTH(A));

Where A is a dense set of degrees, n. <

Otherwise, n. < |A|

In the context of quantificational determiners like every and no when their arguments are sets
of atomic elements, it makes sense intuitively to treat pi_ as a cardinality function. The exception
cannot contain more than a third of the elements in the set from which it is subtracted. When
we turn to pluralities, we might try to simply apply this definition: we need simply determine
if the number of pluralities in the exception is small relative to the number of pluralities in the

restrictor. Our toy example is repeated below.

(425) Barely four vampires attacked Sunnydale High School.

a. Inw, VYV, NA, = {a, b, c, d, e}

b. [(425b)[&“(w) is defined only if g(2) C *A,; where defined:
[(425b)[&“(w) = 1 iff (i) & (ii) = 1
i —dy [y € *xVy &y € xA,—g2) & |y| > 4} & SMALL.(g(2))
i, VX' [[ol®< # st lo [x2/x']18¢ = [o[x2/x']]¥(w) # 1]

Here, g(2) is not a dense set, so we are presumably counting pluralities. It contains six pluralities,
roughly 20% of the thirty-one pluralities in *Vy, N *A,, so we know that g(2) is no more than
20% of the elements in *V,. Considering that barely n vampires attacked generally conveys that
the actual number of attacking vampires was much lower than the number we expected, it seems
plausible to assume that the size of g(2) is dwarfed by the size of *V,,.

One might wonder whether this way of calculating the size of the exception when pluralities
are concerned is reasonable. That is, when using barely as a modifier in a numeral construction
in the way proposed above, does the judgement proceed by counting pluralities? If we were to
deny this, what could we do? If we want sMALL to circumvent the supplied pluralities, here’s a

modification to our proposal above.

(426) THE SIZE CONSTRAINT
Let c be a context of utterance, X be an arbitrary set, and n. be a contextually determined
numerical threshold for size.
Where X is a dense set of degrees, SMALL.(X) = 1 iff LENGTH(X) < n;
Otherwise, sMALL.(X) = 1 iff |[{y |y € X & aTom(y) }| < n,

(427) MAXIMAL SIZE OF n,
Let ¢ be a constituent with subconstituent y such thaty = [A [oc [Z )d H or [HZ X} A} oc],
where ¥ is a subtractive operator, A is quantificational determiner, and o and y be expres-

sions whose denotations characterize A and X, respectively.
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An utterance of ¢ in c is felicitous only if, for any context c:

1
3

Otherwise, n. < +[{y |y € A & aTom(y)}|

Where A is a dense set of degrees, n. < 3(LENGTH(A));

This seems sufficient for our purposes: we don’t count pluralities, but rather, the number of unique

atoms across the pluralities we remove.

4.2.4 The numeral itself

We've assumed so far that numerals denote degrees, and saturate the degree argument of MANY.
There is nowhere, yet, that almost can fit in. Given that we know that almost can modify universal
quantifiers and equatives, we want to look for such a quantifier within numeral constructions, and
in particular, one that is intimately connected to the numeral itself. We'll propose it’s a quantifier

over degrees, which we’ll call .#, with the semantics of an equative.
(428) [#]#° = ADAD’. max(D) < max(D’)

We'll further posit that numerals denote sets of degrees, in line with our more general enterprise
of set subtraction. Others have assumed that degrees denote (d,t) functions, e.g. Anderson (2015)

and Mendia (2018); for Mendia, they have the following meaning:
(429) [four]#*=2Ad.d=4

Such a semantics won’t work for our subtraction: this is a singleton set, and won’t allow us to

subtract anything more than that singleton, so, we’ll do things slightly differently.
(430) [four]#c=2Ad.4>d
Putting the pieces together, we get the following LF.

(431) Four vampires attacked Sunnydale High School.



(dt,t) (d,t)
N
A four ¢

d

(et,t)

PL
& NumP attacked  progio)
t(5,d> <d,et>
MANY NP

PL
vampire Progio,s)

b. [(4312)]¢°(w) is defined only if max{d |4 > d} is defined; where defined:
[(4312)]8(w) = 1 iﬁFMAX{d |4 > d} < MAx{d | Elx[x € *xV, & x € *A, & [x| > d} }

i.e. there is a vampire-attacker plurality consisting of at least four atomic vampires

The maximal degree in {d | Ix [x € xV, & x € A, & [x]| > d] } is the size of the largest plurality
of vampire-attackers, generating an at-least interpretation of the numeral. Almost now has a
foothold. It modifies ./ its integration is straightforward. ¢ is Strawson Downward Entailing
on the restrictor of .#, small supersets to any exception will be entailed. For concreteness, assume

ninety-eight vampires attacked Sunnydale High School.

(432) Almost one hundred vampires attacked Sunnydale High School.
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b. [(4322)]®¢(w)is defined only if g(2) C {d | 100 > d}, g(2) # 0, and MAX({d | 100 > d}—g(2))
and MAX{d | Ix [x € *Vy, & x € *A, & |x] > d] } are defined; where defined:
[(4322)]5(w) = 1 iff (i) & (i) = 1
i max({d[100>d}—g@2)) < max{d|Ix[x € +V, &x € *A, & x| > d]} &
SMALL.(g(2))
i, VX' [[o]#¢ # st lo [x2/x"]1%¢ = [o[x2/x']]¥(w) # 1]

The logic of this example is the logic of the equative, and so it should be familiar. .# will only be
defined if g(2) subtracts a non-empty, final, lower-open subinterval of {d | 100 > d}. Small su-
persets of g(2) will be entailed, subsets of g(2) aren’t, and everything else makes .# undefined. g(2)
must therefore contain everything in {d | 100 > d} notin {d | Ix [x € xSy, & x € *A, & |x| > d} },
i.e. the difference between 100 and the cardinality of the largest plurality of vampire-attackers.
That difference, of course, must be small.

Our . is not standard in the literature on numeral constructions, but there are precedents
for maximality in the semantics of numerals; for example, Kennedy (2013, 2015) proposes that

numerals denote generalized quantifiers over degrees.
(433) [fourkenneay]¥¢ = AD. Max(D) = 4

What we’re doing with .# is pulling out maximality from the numeral itself, so that we have

an almost can modify. Of course, our .# expresses a > relation, whereas Kennedy’s numerals
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express =; if our .# were instead an equality operator, e.g. .#’, in tandem with our semantics

for numerals, we’d derive his semantics.

(434) [#']®¢ = ADAD'. max(D) = max(D’)
(435) [A]5([four]®) = AD'. max{d |4 > d} = max(D’)
ie. AD'. 4 = max(D)

Of course, .#' is non-monotonic, which mucks up entailments when we consider subtracted
exceptions and entailed alternatives, so we stick with our equative .7 .

Now that we have the full picture of numeral constructions, we ought to put barely back in.
The generalized quantifier [// one hundred] must scope over &, but this causes an immediate

problem with definedness.

(436) Barely one hundred students attacked Sunnydale High School.

EXH 0
105
(dt,t) (d,t)
s /\
A one hundred 5 (et,t)

/\ PL
attacked  progig)

NumP

/<\(go /\
barely x» t5.4)
/\

MANY

PL
vampires  proios)

b. [(4362)]5(w) is defined only if g(2) C A, g(2) # 0, max{d | 100 > d} and
max{d | —3x[x € xV,, & x € *A,—g(2) & |x| > d & sMALL.(g(2))] } are defined.

The negation contributed by barely within the scope of .# one hundred turns the set of degrees

into an interval starting at, but not including, the largest number of vampire-attackers, once the
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exceptions are removed, and extending upwards ever on. Such a set has no maximal element!
MAX is undefined, and this example can never be true®. How, then, do we rectify this issue?

In spite of the support we’ve mustered for ., it is not strictly necessary, at least not always.
Its utility for us is as a hook on which to hang almost, but independent motivation comes from
the need for numerals to have scope independent of quantifiers they are a part of (Hackl 2000,
Kennedy 2013, i.a.). The at least reading discussed above could be derived without appeal to a
scope-taking operator—instead of .#, we could utilize an operator that picks out the maximal

degree in an interval. This allows interpretation of the numeral in situ.

(437) Barely one hundred students attacked Sunnydale High School.

a. /\
EXH [0}
/\

105 (et,t)

DP
PL
attacked  progio)

NumP
%

barely x»
g one hundred

MANY

PL
vampires  pro(ios)

b. [(4372)]*(w) is defined only if g(2) C *A, g(2) # 0, max{d | 100 > d} is defined;
where defined: [[(4372)]®¢(w) = 1 iff (i) & (ii) = 1
i —dx [x € xV, & x € %A, —g(2) & x| > 100 & SMALLC(g(Q))}
ii. Vx'[lol#° % st o [x2/x]18 = o [x2/x'][¥“(w) # 1]
Now the truth conditions work: the logic proceeds as before. We can take these two operators—uig;

and .# —to be in free variation generally speaking with one another, but a few things will lead

us to conclude one is in play and not the other. First, neither almost nor barely can modify 14 for

®Note that on a more standard definition of Mmax a la Rullman (1995) this is still undefined; if we tried to appeal

to maximal informativity a la von Fintel et al. (2015)., we’d still get undefinedness since this totally open interval
contains no maximally informative degree.
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type reasons. That said, the presence of almost requires the presence of . if it tried to modify
&, we’d get unacceptability across the board for the same reasons almost some is unacceptable.
Similarly, the presence of barely requires 4 rather than .#, which makes the numeral construc-
tion an equative. Barely can’t modify equatives, and .#’s movement to a position above barely
undefinedness. Second, and separate from subtractives, if a scope ambiguity is detected in a nu-
meral construction, both operators must be possible at LF; our .# allows for numerals to take
variable scope, separate from the individual quantifier. Such configurations have been discussed
for more complex examples in the literature (see Kennedy 2015 and Bylinina & Nouwen 2020,
for example), and while we don’t address these topics in any detail, it’s good to have in our back

pocket’.

4.2.5 What about .#Z?

As stated at the outset, .Z is exactly like the equative morpheme. It could, like & is to some, be
taken as a covert analog. One might also wonder if we could avoid positing .# by replacing it
with one of the other quantifiers that almost does modify: Pos. Such a proposal would be novel—
unifying numerals and the positive construction. In what follows, we’ll discuss this possibility
and what it requires in more detail. The pros and cons, it seems, probably shake out about the
same, but it’s worth a brief tour.
Pos has the following semantics.
miIN(D) < max(D’), if min(D) is defined

(438) [ros]® = ADAD'.
max(D) < max(D’) otherwise

(439) For any set of degrees D on a scale S:
a. max(D):=ud[deD&Vd'[[d € S&d <d] ++d € D]
b. MmiN(D) :=ud[de D& Vd' [[d € S&d >d] +»d € D]
At least sometimes, Pos has the meaning of the equative morpheme and our ./Z, i.e. the ‘other-

wise’ condition. Given our definition of MIN above, in numeral constructions, the first condition

for pos will never be met—numerals denote degree sets of degrees that include their upper bound.

°’One might be irked at the presence of both ./ and 14 in our theory; here’s an alternative, though I'm not sure
it’s much better. Instead of assuming that numerals denote sets of degrees, necessitating both .# and 14, we can take
them to denote degrees, and lift them to a set with an operator like the following:

(i) [urr]ec =rdAd.d > d’

A would thus necessitate lifting of a degree to a set like this, but we wouldn’t need 14. It’s really a pick-your-poison
moment, it would seem, since we would need to posit two operators on both approaches. We’ll stick with the one
above.



MIN requires that they contain every degree on the scale above their minimal degree, so we’d get
undefinedness. This means that only the ‘equative’ meaning, the otherwise condition, would be
triggered, regardless of whether almost or barely were modifying it. That works beautifully for
almost, and not so well, fortunately, for barely. The latter still requires that pos alternate with 1,
though, for the same reasons we needed it with .Z . So, to the extent that that is a detriment to
the .# analysis, it’s a detriment to the Pos analysis.

That said, maybe .# does win out in the end. Our definitions for Max and MIN are very
restrictive; they were made so largely for expository purposes. Such definitions allowed us in the
previous chapter to set aside a lot of exceptions quickly, because they yielded undefinedness. If
we opt to go with more standard definitions, i.e. those that pick out the biggest/smallest degree
in a set, we’d have to discuss a lot more possible exceptions. Ultimately, though, as we saw in the
previous chapter, such exceptions didn’t matter anyways—the analysis predicted they weren’t
good. The definitions are substantive in a sense, but they are for our purposes just a simplification.
Now, however, our restrictive definitions play a crucial role.

A less restrictive, Rullman-style meaning for miN would be as follows.
(440) mN(D) :=1d [d e D &Vd [d’ eD—d > dﬂ

Whether this meaning could be triggered given a numeral depends on the scale associated with
numerals. We’ve tacitly assumed that cardinalities include 0 and do not extend into negatives;
that is, {d | 100 > d} can be written as [0,100} in our interval notation. If such a set is the first
argument of Pos, and the active MIN is the weaker meaning just above, then we will trigger
the non-equative meaning, and it’s not clear how we could circumvent that. It seems like we’d
have two options. First, we could deny that 0 is included on the scale of cardinalities, so that
{d | 100 > d} does not contain 0, i.e. its interval notation is (0,100]. The issues surrounding 0
are complex and, as far as I can tell, not deeply studied, though; Bylinina & Nouwen (2018) and
Chen (2018) are two investigations into zero. An option that circumvents this entirely would be to
include 0, but grant that the scale continues on down the real numbers to -oo; then {d | 100 > d}
would translate in interval notation to (—00,100} . Neither definition of MIN would apply to such
an interval, and so we’d expect only the equative interpretation of pos to surface, and then the
derivation would proceed as expected. We'll leave a final decision between these two options and

all their entailments and choice points up to the reader.

4.3 Wrapping up

The fact that both almost and barely are compatible with numeral constructions suggests, at first,

a problem for our analysis: given that we predict complementarity, why are we seeing overlap-
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ping distributions? The solution comes from a closer look at how numeral constructions are built.
The solution to the apparent paradox comes in the form of a bipartite quantificational structure
for numeral constructions: (i) an existential quantifier over individuals, &, which is modified by
barely; and (ii) a maximality operator, .#, which is modified by almost. In the case of barely, we
saw that pluralization was a solid means of getting the ordering we needed in order to prop-
erly subtract; extending this to other determiners has some repercussions that we explored a bit.
Almost gave us evidence for an additional piece of degree-semantic machinery that has fewer
precursors in the literature, but which gets the right results and in fact makes good predictions
here. As we close out, we’ll briefly discuss some possible extensions and open issues.

Numerals appear in one way or another in other kinds of constructions, and we see that the
distribution of almost and barely again overlaps here. Both seem to modify measure phrases in

predicative sentences like (441).

(441) a.  Xander is almost six feet tall.

b.  Giles is barely six feet tall.

(441a) is true if Xander’s height is close to, but does not reach, six feet tall; (441b) is true if Giles’s
height is at least six feet tall, but if it it exceeds that, it’s not by much at all. We briefly discussed
measure phrases with almost and barely in the previous chapter, but as mentioned there, a com-
prehensive treatment is necessary.

Differential comparatives permit both almost and barely, whereas unmodified comparatives

only permit barely.

(442) a.  Willow is almost *(two months) older than Buffy is.
b.  Anya is barely (two months) older than Tara is.

Density prevents us from finding a non-empty, minimal exception when almost composes with
a comparative, and they can never be true. (442a) is perfectly natural, though, and true if Wil-
low is older than Buffy is, and the difference between their ages is close to, but isn’t quite, two
months. Barely and comparatives already went hand-in-hand, and that is no different with a
measure phrase. (442b) is true if Anya is two months older than Tara is, but not much more than
that. Equatives can be modified as well, and once more both almost and barely can modify such

modified equatives.

(443) a.  Gilesis almost (twice) as old as Willow is.

b.  Giles is barely *(twice) as old as Buffy is.

(443a) is true if Giles’s age is just under two times Willow’s age; (443b) is true if it’s just above
Buffy’s age. Without twice, the barely equative is unacceptable. These too need analyzing in the

context of subtractives.
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Typically, measure phrases are analyzed as denoting degrees, saturating degree arguments.
That won’t obviously be sufficient to account for these data. If we’ve learned anything from this
chapter, though, it’s that there must be more than meets the eye to measure phrases. They’ve got
numerals in them, so maybe they invoke more structure internally, even if they ultimately denote
degrees—there must be some operators that almost and barely each latch onto. Precisely what the
compositional shape of these constructions awaits future research.

We’ve discussed a bit that our analysis of numeral constructions yields at least readings, but
not exactly readings. That is, the truth conditions we derive for (431), repeated below, allow that

more than four vampires attacked, when generally one infers that exactly four did.

(431) Four vampires attacked Sunnydale High School.

a. ¢

A four 5,

(et,t)
PL
& NumP attacked  progioq)

t(57d> <d,et>

T

MANY NP

vampire  progo)
b. [(4312)]5(w) = 1 iff Ix[x € *V,, & x € *A, & |x| > 4]

One way that exactly readings can be derived is through ExH (Bylinina & Nouwen 2020). [(431a)]#¢
doesn’t Strawson entail, for any degree d’ > 4, that there is a vampire-attacker plurality with d’
atoms that attacked the school; ExH applied to ¢ could require that there be no such pluralities,
depending on what we assume about the alternatives to ¢. This would mean that at least four,
and no more than four, vampires attacked Sunnydale High School, an exactly reading. It should
be noted that, in its way, EXH forces an exactly reading when subtractives are in play. The bound-
ary set by one hundred in almost one hundred is set at exactly one hundred; the logic requires it.

There is no need for any additional mechanism for deriving exactly interpretations when we’ve
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got subtractives and their own ExH—this might be taken as support for ExH as the locus more
generally of exactly readings of numerals. That said, a full discussion of the complexities of bare
numeral constructions and their implicatures is beyond our scope; see Spector (2013) for a dis-
cussion of factors leading to an ExH-based view, and see Kennedy (2015) for problems for such
a view.

The discussion above segues into the fact that, as it stands, we predict no contrast between

(444a) and (444b).

(444) a.  Almost one hundred vampires attacked Sunnydale High School.

b. ?? Almost one hundred and one vampires attacked attacked Sunnydale High School.

The reason we predict no contrast between the two is that both one hundred and one hundred
and one, or more accurately [/// one hundred] and [/// one hundred and one] set a clear bound-
ary from which almost can subtract. It is intuitive that almost requires such clear boundaries,
and our analysis delivers the same truth conditions for (444a) as it does for (444b), modulo the
increased number. What’s the deal? ‘Round’ numbers like one hundred tend to have approximate
interpretations, whereas ‘non-round’ numbers like one hundred and one tend to have precise in-
terpretations (Krifka 2007). It’s not clear, though, in what sense we can say one hundred is round
and imprecise, since we just said our system delivers an exact reading of the numeral when modi-
fied by almost! Perhaps the nature of precise numerals is different. At this point, we have to leave
this as an open issue for our theory.

We have one additional problem that needs solving. We’ve posited that the quantificational
determiner invoked in numeral constructions is a covert existential operator &, allowing modifi-

cation by barely. How, then, do we account for the following?
(445) The barely one hundred vampires attacked Sunnydale High School.

Admittedly, this is not my favorite sentence, but it seems alright. The is presumably the head of the
DP the barely one hundred vampires, taking the place of the existential &, but the definite article
isn’t modifiable by barely (or almost, for that matter). How is barely composing if this is the right
view? Other constructions raise similar questions: why can we not compose subtractives with

other kinds of modified numerals, as in (446)?

o

(446) a. # {Almost/barely} at least one hundred vampires attacked Sunnydale High School.

o

. # {Almost/barely} at most one hundred vampires attacked Sunnydale High School.

o

. F# {Almost/barely} no fewer than one hundred vampires attacked Sunnydale High
School.

o

. F# {Almost/barely} between one hundred and two hundred vampires attacked Sun-
nydale High School.
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Unfortunately, we don’t have the time to analyze these in detail. We’ll have to leave accounting
for these data for the future. In any case, our analysis of numerals needs testing in a host of

domains, but subtractives do give us good reason to think it’s right, so that testing will hopefully
be fruitful.
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Chapter ;5

The polar inference revisited

In this chapter, we’ll discuss a bit more the relationship between ExH, the semantic means with
which we derive the polar inference, and subtractives. As we’ll see, some changes might be war-
ranted. We’ll start by looking at multiple quantifier constructions in which a subtractive modifies
a quantifier within the scope of another. We’ve seen some of these before, actually, when we
discussed Gajewksi’s (2008) and Crni¢’s (2018) arguments for EXH as the source of the polar in-
ference. What we’ll focus on is multiple quantificational determiners in a single clause, and what

these configurations reveal about the scope of ExH with respect to subtractives.

(447) a.  No witch read any spellbook but The Brekenkrieg Grimoire.
b. # Every witch read some spellbook but The Brekenkrieg Grimoire.
c.  No witch read every spellbook but The Brekenkrieg Grimoire.

The first two examples lead us to the view that EXH must be able to scope as close as possible
to the subtractive with which it is associated; that proximity is tied to the licensing of those
quantifiers modified by the subtractive. We’ll run into a problem with the third sentence, though,
and we’ll take a detour. We’ll discuss cases mentioned at the very beginning of our journey with
almost and barely, namely those in which the polar inference seems to be invisible to embedding
operators like good news! and because. We’ll sketch what our ExH-based theory would have to
say, but then, finding such a view unsatisfactory, we’ll argue that all this data supports a view
on which the main contribution of EXH is not truth conditional, but rather presuppositional, as
proposed by Bassi et al. (2021). The success of our implementation can serve as an argument in
favor of such a view. What is really quite neat is that when we return to the problematic multiple
quantifier cases, we have the means with which to explain them in terms of this presuppositional
ExH. The resulting theory allows a unified analysis of the locality of presuppositional ExH, or
PEX, with respect to subtractives, accounting for the data above, and the invisibility of the polar

inference in certain environments by the same mechanism. That is, we get to make good on the
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promise to properly analyze the polar inference of subtractives in a neat and uniform way. Let’s

get started.

5.1 Locality and multiple quantifier constructions

In general, we have stayed away from discussion of multiple quantifier constructions in the con-

text of subtractives®.

(448) a.  No witch read any spellbook but The Brekenkrieg Grimoire.
b.  No witch read almost any spellbook.

As we discussed in Chapter 2, this kind of example—where subtractive but modifies an existential
determiner in a Downward Entailing environment—is an argument for severing the derivation of
the polar inference from the meaning of the subtractive operator proper, as in Gajewski (2008).

The classical, Fintelian semantics for but, as in (449), predicts triviality for such cases.

/

(449) [but]ss = DXAPAZAQ. Z(P-X)(Q) & VX [X L X' = ~F(FP—X)(@Q)]

Vv
proximal inference polar inference

(450) [(448)[*(w) = 1 iff
Wy N {y | Sw—{BG} N {z | READ(y)(2)} # 0 &

VI [{BG} € X — Sy—' (1 {z| READ(Y)()} = 0] } =0

The set intersected with W;, is necessarily empty; the truth conditions as trivially true. This is
a function of von Fintel’s semantics generating falsity necessarily when but combines with an
Upward Entailing determiner, as any is. The same goes for a Fintelian semantics for almost; from
here on out, we’ll utilize the but examples to keep intuitions about truth conditions sharp.
Gajewski’s solution is the one we’ve assumed all along: ExH is responsible for the derivation
of the polar inference, and it can scope above no witch. This derives non-trivial, and correct, truth

conditions?.

(451) [but]®® = AXAPAZAQ: X C P & X # 0. 2(P—X)(Q)
(452) [ExH @]&(W) = Liff [p]#“(w) =1 &Y [y € ALT(9) & [9]#€ 7 st [y]# — [Y]&(w) # 1]

(453) EXH AND THE LICENSING OF SUBTRACTIVES OPERATORS first version

Subtractive operators are only licensed in the scope of an ExH operator.

Note that we’re still restricting ourselves to one subtractive, and we’ll only consider our subtractive alternatives
for simplicity.
*Throughout we’ll suppress the size constraint for space and readability, but its inclusion is ultimately necessary.
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(454) [(4482)]%(w) is defined only if {BG} C Sy, & {BG} # 0); where defined:
[(4482)]*“(w) = 1 iff (a) & (b) =1
a. Wy N {y|Sv—{BG} N {z| READ.(y)(2)} # 0} =0
b. Vx| [{BG} X &X' C 5, & X' £ 0]

— Wy N {y | Se—X' N {z| READ(y)(z)} # 0} # (Z)]

This is, then, an argument for allowing that ExH to have non-local scope with respect to sub-
tractive operators Sometimes, though, it seems like we need to require that ExH takes scope as

locally as possible to but; consider (455).

(455) # Every witch read some spellbook but The Brekenkreig Grimoire.
a. "[every witch [2 [ExH [, some spellbook but BG [3 [t; read t3]]]]]]

local contradiction

b. *[ExH [, some spellbook but BG [3 [every witch [2 [t; read t3]]]]]]

local contradiction

c. [ExH [, every witch [2 [some spellbook but BG [3 [t; read t3]]]]]]
well-formed (bad!)

In all three LFs, ¢ is Upward Entailing with respect to the restrictor of some. Where no quantifier
intervenes between ExH and some spellbook but BG, we predict necessary non-truth, so (455a)
and (455b) are ruled out as possible LFs of (455)°. The problem is (455¢). ¢ is still Upward Entailing

with respect to the restrictor of some, and alternatives formed with subsets of {BG} are entailed
by [¢]&.

(456) [(455¢)][#°(w) is defined only if {BG} CSy & {BG} # (); where defined:
[(a550)]8<(w) = 1 iff
Wy € {y | Sw—{BG} N {z| READ,(2)(y)} # 0} &
V[ [X Z {BG} &X' C Sy & X £ 0] =Wy & {y | Su—¥' 1 {z| READL)Y)} £ 0}

This is true iff every witch read at least one non-BG spellbook, and for every spellbook, at least
one witch failed to read it. Here’s a context that makes this true. Tara read DLM and WD but
failed to read BG; Willow read WD and BG, but failed to read DLM; Amy read BG and DLM, but
failed to read WD. Each has read a non-BG spellbook, and every spellbook was left unread by at
least one witch. Unfortunately, these truth conditions are coherent, though the sentence is not.
Furthermore, it’s not the case that the exhaustified meaning is entailed by its counterpart without

EXH.

*0f course, to actually do this, we’'d need sMALL. We trust the readers can grant that.
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(457) Wy C {y|Sw—{BG} N {z| READ(2)(y)} # 0}

If (457) is true, can (456) be false? Yes: if Tara, Willow, and Amy all read the same non-BG spell-
book, say WD, then (457) and the first conjunct of (456) are true, but {DLM} is an X' that falsifies
EXH, since it is not a subset of {BG} and every witch did indeed read at least one of non-DLM
spellbook. Exhaustification yields a stronger meaning. This is unfortunate, since this sentence is
reported to be unacceptable across the board.

Here are the facts we need to account for at this point.

1. EXH must be able to scope above no to predict the acceptability of no > any...but

2. EXH must take the closest scope possible to but in every > some...but in order to rule it out

We can account for this by recognizing an important difference between some and any, and by
modifying the constraint by which we tie the licensing of subtractives with ExH. Gajewski (2013),
discussing no > any...but, notes that the non-local scope position of ExH in (458) has as its sister

the smallest node ¢ in which any is licensed.

(458) []No witch read any spellbook but the Brekenkrieg Grimoire.
a. *[, no witch [2 [ExH [ any spellbook but BG [3 [t; read t3]]]]]]

local contradiction

b. [ExH [, no witch [2 [y any spellbook but BG [3 [t; read t3]]]]]]
well-formed (good!)

(458a) is the LF that generates a contradiction, so that couldn’t be the right LF for (458a), but it’s
also the case that in V{/, any is not licensed. It is only in ¢ that any is licensed. ExH, then, is as
close to any spellbook but BG as it can get while any is still licensed. We can alter the licensing
condition on subtractives, the constraint that ties the distribution of subtractives to the presence

of an associated ExH, in a way that reflects this.

(459) EXH AND THE LICENSING OF SUBTRACTIVES OPERATORS revised
Subtractive operators are only licensed as modifiers of some quantifier A if:
a. They are in the scope of an EXH operator, and

b. That EXH’s sister is the minimal expression of type (s,t) in which A is licensed.

These are taken to be necessary, not sufficient, conditions for the licensing of subtractive op-
erators, of course. This allows us to rule out the problematic scopal configuration for every >

some...but too!

(455) # Every witch read some spellbook but The Brekenkreig Grimoire.
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a. *[, every witch [2 [ExH [y some spellbook but BG [3 [t; read t3]]]]]]

local contradiction

b. *[ExH [y some spellbook but BG [3 [every witch [2 [t; read t3]]]]]]

local contradiction

c. *[ExH [, every witch [2 [, some spellbook but BG [3 [t; read t3]]]]]]

barred by locality of licensing condition

The problematic LF was (455¢): we were able to derive coherent truth conditions, even though the
sentence itself is garbage. Now, though, that LF is not possible, given (459): ¢ is not the most local
position for ExH, since some is licensed in {/. We can, therefore, predict that there is no possible

LF for (455) that generates coherent truth conditions*.

5.2 A problem or two

Multiple quantifiers still cause us some problems, unfortunately. First, some of the original cases
in favor of the ‘distributed, ExH-based theory of subtractives run into an obvious problem: our
adoption of such a strict locality constraint only permits the an LF for (460) that derives the
strongest reading of (460). The LF in (460a), the one which is necessary to get the weaker inter-
pretation of (460) that is most accessible, i.e. that Willow wasn’t required to skip the last question,

is no longer permitted.

(460) Willow answered every question on the exam but the last. To get an A,
she had to answer-every-questionbut-thelast:

*Gajewski (2013) provides a richer explanation of our constraint in terms of relativized minimality: following
Chierchia (2006, 2010), he takes the licensing of any to be tied to its own EXH operator, distinct from the Exx
associated with but (or the whole DP any spellbook but BG). The EXH operator associated with any must adhere
to our constraint in (459), but were the ExH associated with but to sit below the other, there would be crossing
dependencies between them, and this is independently banned.
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a. /\

EXH 0]
12

have to  proja 11
S

[every [[question proy; 5] [but the last]]] [ 3. [Willow answer proy s ts.c]]

b. [(460a)[5(w) is defined only if {L} C Qy & {L} # (); where defined,
[(a60a)]E(w) = 1 iff () & (i) = 1
i {W’ | REQ, (W) & GAA,, (the exam)(Willow)} C {W’ | Qw/—{L} C Aw/}
i WO [{L} 20 aX £ 08X CO] -
{W' | REQ, (W) & GAA,(the exam)(Willow)} Z {W’ | Qu—X' C AW,}}

That such a configuration is, prima facie, barred given our licensing condition for subtractives
is deeply irksome. Note that this is entirely our own doing: Crni¢ (2018) faces no problem with
(460) because there are no locality constraints in his theory.

Perhaps what we can do is the following:

(461) EXH AND THE LICENSING OF SUBTRACTIVES OPERATORS revised again

Subtractive operators are only licensed as modifiers of some quantifier A if:

a. They are in the scope of an EXH operator, and

b. ExXH is licensed where its sister is the minimal expression of type (s,t) in which A is

licensed.

In a way, we’re setting up a cyclical, bottom-up story of how we get to candidate LFs for a given
sentence: we derive the LF in (460a) first by checking if the more local scope is one in which it
is licensed, i.e. within the scope of the modal have to. It is licensed in this position, so we can
consider more distant locales for ExH, now permitting the LF in (460a). This formulation still re-
quires that EXH scope above no in no > any...but configurations, since it’s still the closest it can
get to but while any is licensed. This formulation also still rules out the problematic LF for every
> some...but: EXH cannot take scope between every and some...but, since this derives a contra-

diction, so it’s therefore not possible for it to scope above every. That’s good. This formulation
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also makes a welcome prediction: we cannot utilize a high-scope EXH to generate coherent truth

conditions for (462).

(462) # Willow had to answer some question on the exam but the last one.

a. "[had to [ExH [, some question but the last [3 [Willow answer t3]]]]]

local contradiction

b. *[ExH [, some question but the last [3 [had to [Willow answer t3]]]]]

local contradiction

c. "[ExH [, had to [some question but the last [3 [Willow answer t3]]]]]

barred by locality of licensing condition

This is just the same configuration as every > some...but: highest scope ExH here would pre-
dict coherent truth conditions; the other two LFs will, naturally, yield necessary non-truth. Note
that without our kind of licensing condition, Crni¢’s theory does predict the availability of the
problematic LF in (462c) for (462); the very same reason he avoids the problem in (460) causes a
problem here. It would seem, then, that allowing ExH to have non-local scope with respect to a
determiner-subtractive combination only if it is licensed in locally is a good constraint.

Well, until we consider the following.

(463) conTexT: Willow, Tara, and Amy are all the witches, and The Brekenkrieg Grimoire, The
Du Lac Manuscript, and Writings of Dramius (BG, DLM, and WD) are all the spellbooks.
Willow read all three spellbooks. Tara read BG and DLM, but not WD. Amy read BG and
WD, but not DLM.

a.  No witch read every spellbook but the Brekenkrieg Grimoire.

(463a) is acceptable and true in this context. An intuitive, semi-formal paraphrase of the truth

conditions can be stated as follows:

(464) Ify is a witch, then either y read every spellbook or y failed to read at least one spellbook
other than The Brekenkrieg Grimoire.

Our analysis faces problems deriving this. Given the constraint placed on the locality of ExH

with respect to but, (465) is the first LF we ought to consider.
(465) [no witch [2 [ExH [, every spellbook but BG [3 [t; read t3]]]]]]

¢ is Downward Entailing with respect to the restrictor of every in this configuration. Alternatives
formed with supersets of {BG} will be entailed within the scope of EXH; so, EXH negates alter-
natives to ¢ that are formed with non-supersets of {BG}. (466) are the truth conditions derived

from (465).
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(466)  [(465)]®¢(w) is defined only if {BG} CSy & {BG} # (); where defined:
[a65)]Ew) = 1iff Wy N1 {y | Sy—{BG} € {z| rEADLD)Y)} &
VX’[[{BG} Z X &K CSy] = Sy—%' & {z] READW(Z)(Y)}} } —0

The set with which W, is intersected is the set of individuals who read both DLM and WD and
who didn’t BG. Let’s call that set RB,, for short—those who Read some Books. That is:

(467) RBw = {Y|
a. SW—{BG} - {z | READW(Z)(y)} &
b. Sw—{DLM} 4 {z | READW(Z)(y)} &
C. SW—{WD} z {z | READW(Z)(y)} &
d. S,—{DLMWD} Z {z | READ,(2)(y)} }

RB,, is the set of people who read both DLM and WD and not BG. (466) is true iff RB,, is disjoint
from Wy—that is, if no witch read all and only DLM and WD. Note that this allows the witches to
have read all three spellbooks, or a subset thereof, just not the subset {DLM, WD}. These truth
conditions, then, map onto the intuitive meaning of (463a) and the informal truth conditions
above.

Unfortunately, ExH is in a Downward Entailing environment in the nuclear scope of no, and

eliminating EXH from (465) yields a meaning that entails the meaning with ExH.

(468) Wy N {y|Sw—{BG} C {z | READ(2)(y)} } =0
This is a problem for our constraint restricting the distribution of ExH.

(469) ECONOMY CONSTRAINT ON THE DISTRIBUTION OF EXH
Let ¢ be an arbitrary expression containing an occurrence of the EXH operator. EXH is

not licensed in ¢ if eliminating this occurrence leads to an expression { such that for any
admissible g, ¢, [V]& = [o]&*.

The issue is that (the intension of) (468) Strawson entails (the intension of) (466); this constraint
means that EXH is not licensed, and since the licensing of subtractives is tied intimately to the
licensing of ExH, this LF won’t work with the tools at hand.

Other LFs don’t fare any better, really. Given the constraints placed on the locality of ExH
with respect to subtractives, (470) is not a possible LF for (463a). That said, even if it were, (471)

are the incorrect truth conditions.

(470) [EXH [, no witch [2 [every spellbook but BG [3 [t; read t3]]]]]]
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(471)  [(470)]8<(w) is defined only if {BG} C S, & {BG} # 0); where defined:
[(470)]8(w) = 1 iff (a) & (b) = 1
a. Wy N {y | S —{BG} - {z | READ,,(2)(y }} 0
b, Vx| [X € {BG} &X' C 5, & X' £ 0]
— Wy N {y | Sy—XK' C {z | READW(Z)(y)}} # @]

Assume that 5, = {BG, DLM, WD}. (471a) is true if the set of witches intersected with the set of
readers of both DLM and WD is empty. That is, no witch read both DLM and WD. (471b) requires

all the following to be true in w.

(472) a Wy N {y|Sy—{DLM} C {z|READ(2)(y)} } # 0

b. Wy N {y|Sy—{WD} C {z|READ(2)(y)} } # 0

Wy N {y | Sw—{DLMWD} C {z| READW(Z)(Y r#0
Wy N {y | Sw—{BGWD} C {z| READ(2)(y)} } # 0
e. Wy N {y|Sw—{DLMBG} C {z| READ(2)(y)}} # 0

£ Wy N {y|Sw—{DLMWDBG} C {z| READ(z)(y)} } # 0

o

o

(472a) is true if some witch read both WD and BG. (472b) is true if some witch read both DLM
and BG. (472c¢) is true if some witch read BG. (472d) is true if some witch read DLM. (472¢) is true
if some witch read WD. (472f) is true if some witch is a reader, but assuming that [every]#€ pre-
supposes that its restrictor is non-empty, we could claim that (472f) is undefined. Taken together,
(471) is true if no witch read both DLM and WD, but all books were read by some witch. Were it
a possible LF, it would still get us only part of the way to the truth conditions we want, but they
predict falsity if some witch read every spellbook. That’s not good.

One might think that inverse scope, i.e. every...but scoping above no witch would solve the
issue. First, inverse scope does not appear possible in this configuration—no seems to prevent, in

some sense, quantifiers from scoping across it.

(473) No witch read every spellbook.
a.  no witch > every spellbook

b. # every spellbook > no witch

This is independent, as we can see, of subtractives. However, even if every spellbook but BG could
scope above no witch, we still wouldn’t derive the right results. Such a logical form derives the

following.

(474) [ExH [, [every spellbook but BG [3 [ no witch [2 [t; read t3]]]]]]]
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(475) [(474)]®¢(w) is defined only if {BG} CSy & {BG} # (); where defined:
[(470)]%(w) = 1 iff () & (b) = 1
a. Sy—{BG} C {z| Wy N {y | READ(2)(y)} =0}
b, V[ [{BG} € X & X C Sy & X £ 0] 58, —X € {2 Wo— N {y | READW()(Y)} = 0}

Every spellbook but BG is now in an Upward Entailing environment, so the restrictor of every is
a Downward Entailing envoronment, and so supersets of {BG} give rise to entailed alternatives.
The truth conditions in (474) require that both WD and DLM are in the set of things that no witch
read, and any non-superset of {BG} is such that some witch read an element of S,. This second

conjunct amounts to the following.

(476) a. Sy {WD}Z{ZW\/ ﬂ{y|READW } (Z)}
b. Sy—{DLM} Z {z| W, N {y| READ,(2)(y)} = 0}
c. Sy—{WD,DLM} Z {z| W, N {y|READ.(2)(y)} =0}

(4764a) requires that some witch read either DLM or BG, (476b), that some witch read either WD
or BG, and (476¢) that some witch read BG. (474) is true iff no witch read either DLM or WD,
and some witch read BG. This is still not the reported interpretation. Alas. This is a problem we’ll
have to put on hold for a moment. Importantly, though, it’s not a problem unique to this ex-
act configuration. Subtractives can occur in (Strawson) Downward Entailing environments more
generally, as in the restrictors of conditionals (Kilbourn-Ceron 2016) and relative clauses inside

the restrictor every (Spector 2014), both of which are islands to movement.

(477) a.  If Willow reads every spellbook but The Brekenkrieg Grimoire, Giles will reward her.
b.  If Willow reads almost every spellbook, Giles will reward her.

(478) a.  Every witch who read every spellbook but The Brekenkrieg Grimoire has become

quite powerful.

b.  Every witch who read almost every spellbook has become quite powerful.

These are both weak readings of the subtractives (Willow can read every spellbook to get her
reward from Giles, and reading every single one doesn’t seem incompatible with witches becom-
ing powerful) and strong readings (some spellbooks are just detrimental). The tension between
the subtractive licensing conditions, requiring that ExH be licensed within the restrictor, and the
economy conditions on ExH, blocking that very licensing, prove problematic.

In the next section, we’ll discuss some seemingly unrelated data concerning the ‘invisibility’
of the polar inference, and then we’ll propose an analysis that seems to account for both the

problem above and the invisibility.



5.3 The invisible polar inference

Sometimes the polar inference is, while present in its classical form, invisible to certain operators.

As we've seen, the inference doesn’t appear to be cancellable.

(479) a. # Bufty killed almost every vampire. In fact, she killed every one.
b. # Xander killed barely any vampires. In fact, he killed none.

This is a byproduct of ExH. The first sentence (479a) entails that some vampires weren’t killed by
Bufty, and the speaker is thus committed to its truth; the continuation is inconsistent with that.
The same goes, mutatis mutandis, for (479b). Sometimes this disappears, though. We saw earlier

that certain expressions are blind to the polar inferences of almost and barely (Horn 2002).

(480) a.  Good news! Almost everyone has arrived.

b.  Good news! Barely anyone has arrived.

(481) a.  Bad news! Almost everyone has arrived.

b.  Bad news! Barely anyone has arrived.

It’s not that the good news in (480a) is that some people have yet to arrive; the good news is that
most everyone has indeed arrived. (480b) requires a particular kind of context to be felicitous—say,
we’re scrambling to prepare for our party and at the appointed time, most everyone has not yet
arrived, saving us—but then the good news is still that close to no one has arrived, not that some
have. The data in (481) are similar, except is the bad news is that close to everyone has arrived in
(481a), and that close to no one has in (481b). Other high modifiers, like fortunately/unfortunately,
pattern similarly. In all these cases, the modifiers are blind to the polar inference, which is indeed
present in all cases, only picking up on the proximal.

Expressions like good news! appear to be speaker-oriented, or ‘expressive’ in the sense of Potts
(2005, 2007; Karttunen & Peters 1979, i.a.): they encode the speaker’s perspective or opinion on
the assertion. In general, their contributions seem to operate on a distinct semantic-pragmatic
level from truth conditions. Damn in (482) is another such expression (Cruse 1986; Lobner 2002,

ia.).
(482) That damn vampire bit Buffy.

There’s nothing obviously true or false about the vampire being described with damn here. Rather,
the utterer of (482) is expressing a very negative view of the offending vampire.

The view that expressions like damn, good news!, and other speaker-oriented expressions op-
erate on a distinct level of meaning than the truth conditional goes back to Grice (1975); they
give rise to Conventional Implicatures (CIs). Potts (2005:11) characterizes Cls, following Grice, as

having the following properties (italics and scare quotes original).
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1. ClIs are part of the conventional meanings of words.
2. Cls are commitments, and thus give rise to entailments.

3. These commitments are made by the speaker of the utterance “by virtue of the meaning of”

the words [they choose].

»
b

4. CIs are logically and compositionally independent of what is “said (in the favored sense)

i.e,, independent of the at-issue entailments.

Expressive content like that encoded by good news is, we assume, a CL. Since the meaning contri-
bution of good news and other expressions is such expressive content, i.e. a conventional implica-
ture, it is logically and compositionally independent of truth conditions, i.e. at-issue entailments.
Nothing in our proposal so far suggests that ExH has direct access to not-at-issue content, save
any definedness conditions on its prejacent. So, one might think that if [@]|®¢ carries expressive
content, then it stands to reason that ExH couldn’t see the contribution of conventional implica-
tures, and so [ExH ¢]®° is calculated without direct reference to Cls triggered within its scope.
CIs would sneak on by, as it were. We’ll assume that the data in (480)-(481) are all ‘monoclausal’
in the sense that, despite the exclamation point, good news! and bad news! are part of the same
syntactic and semantic unit. In all these cases, ExH must scope above the speaker-oriented ex-

pressions.

(483)

EXH

Good news! ¢

almost X,

The result of such a configuration, once the actual compositional details of expressive content are
incorporated, [ExH [good news! ¢]]®€ is truth conditionally equivalent to [ExH ¢]&¢, but within
the scope of EXH, good news! only has access to the non-exhaustified meaning of ¢. In the context
of subtractives, this means it only has access to the proximal inference encoded by the modifiers;
on such a proposal, it could not be good news that ¢ is false, only that ¢ is close to being true.
It’s clear, even with this sketchy analysis, that to get the facts right EXH must scope over
good news and other expressive content. Our view of EXH treats its contribution as at-issue, truth
conditional content, so if good news were to structurally appear higher than ExH, all of the latter’s

contribution should be good news. As we’ve seen, though, in (480)-(481), this is not a possible
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interpretation. So, we’'d need to justify why this position is necessary, i.e. what distinguishes
above and below good news! such that above it is the most local ExH can be.

If we do not wish to adhere to the highest-scope proposal for ExH, we’ll need to make some
other claims about its contribution such that good news doesn’t have access to it.

Granting that we could make such an analysis work, it might extend to other constructions
where the polar inference is invisible to embedding operators. Recall that it seemed the polar
inference could not be construed as a result of the content of the because-clauses below (Ziegeler

2000).

(484) Almost every senior at Sunnydale High School attended the pep rally...

a.  because there was pizza there.

b. # because they wanted to ditch.
(485) Barely any seniors at Sunnydale High School attended the pep rally...

a. # because there was pizza there.

b.  because they wanted to ditch.

That from (484) we ultimately infer that there were some seniors who ditched the rally, the be-
cause-clause cannot pick up on this. The ditcher’s reasons cannot serve as causal justification.
The presence of pizza at the rally, though, can justify why the vast majority attended. Similarly,
the inference drawn from (485) that some students did attend cannot be picked up on by the be-
cause-clause, with the presence of pizza justifying those few who did attend; the desire to ditch
does justify (or at least, explains!) why close to none came.

Let’s give an extremely rough meaning for because: we’ll assume it relates two propositions,
asserts the truth of both, and asserts that the proposition expressed by the first ‘caused’ the sec-

ond.
(486) [because]® = ApsAqsdw. p(w) & q(w) & CAUSE(p)(q) = 1

I would imagine this meaning won'’t stand up to scrutiny, but let’s grant that as a rough and ready
denotation, it’s sufficient for our purposes. If because takes scope above ExH, then the inference
should be, or at least could be, that the pizza was the reason that most everyone came and the

reason that not everyone came.

(487) [because]®“([there was pizza]®°)([ExH almost x5 every student attended]®°)(w) = 1 iff
CAUSE,(there was pizza)([ExH almost 5 every student attended]®<)(w) &

[ExH almost x5 every student attended]®(w) & there was pizza in w
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The fact that such an inference is unavailable would suggest that because cannot be taking scope
above ExH. What happens if EXH scopes over everything? In the derivation of the meaning, we’ll
use ¢ to refer to the constituent almost every student attended, \ for there was pizza, and 6 for

their conjunction via because. The latter is the argument of ExH (all presuppositions suppressed

here).

(488) [ExH [[because]®‘([there was pizza]®‘)([almost x5 every student attended]®)]]&(w)

Y ¢

N J/

—1iff @& b) =1 i

- [p]F(w) & [Y]<(w) & cavse([Y]&)([o]*)
- VX [8]8€ st [8[x2/x']]&¢ — there’s no pizza in w V [8[x2/x'|]&(w) # 1V

o

o

—CAUSE(there’s pizza in w)([almost ' every student attended]]g’c)]

The problem with these truth conditions is that we don’t predict that there should be any ditchers
at all; at best, it seems that what we predict is that pizza didn’t directly cause any members of the
exception set to attend the rally. These are far too weak. Because clauses are a problem!

It’s worth noting, at this juncture, that some account of the interactions between the contri-
bution of ExH and expressive content is necessary independent of almost and barely. Other kinds
of inferences are ‘invisible’ to such expressive content. Consider the well-known fact that (489)

typically implies that Buffy didn’t kill all the vampires.

(489) Buffy killed some of the vampires.

~ Bufty killed some but not all of the vampires.

This is a scalar implicature, and like our polar inferences, these scalar implicatures are often
taken to be derived via ExH. This can be done by taking the alternatives to (489) to be formed via
substituting some for other elements on its Horn scale (other quantificational determiners, e.g.
all) and negating those alternatives that aren’t entailed. Since (the proposition expressed by) (489)
doesn’t entail (the proposition expressed by) Buffy killed all of the vampires, EXH requires this
alternative to be false. This generates the inference that Buffy didn’t finish the job, so to speak.

Importantly, this implicature is invisible to expressions like good news.

(490) a.  Good news! Bufty killed some of the vampires.
~ Buffy killed some but not all of the vampires

b.  Bad news! Buffy killed some of the vampires.
~ Bufty killed some but not all of the vampires
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The good news in (490a) and the bad news in (490b) is the same news, just with a different per-
spective: it’s that Buffty killed some of the vampires. Importantly, the good and bad news is not
that she failed to kill all of the vampires. Our analysis of almost and barely, then, needs to be a
part of a more general discussion of the precise nature of the inferences derived by ExH, and of
EXH s relationship with other operators.

In the next section, we’ll turn to a variant of ExH that seems like a reasonable candidate for

solving the issues noted here and in the previous section.

5.4 Presuppositional ExH

What if, instead of being truth conditional, the content of ExH had a different status? Bassi et al.
(2021) propose an alternative to ExH that would accomplish just that—theirs is a presuppositional
variant of ExH, called presuppositional EXH, or PEX for short. Instead of asserting the non-truth
of alternatives to its prejacent, it presupposes their non-truth, and simply asserts the truth of its

prejacent’.

(491) [PEX @]&°(w) is defined only if V{ [y € aL1(p) & [@]& % st [Y]&° — [@]&°(w) # 1];
where defined: [PEX ¢]®“(w) = 1 iff [p]®(w) =1

Think about it in relation to the data from the previous section: presuppositions appear to project
through the contribution of CIs, but expressive content like good news still doesn’t directly com-

ment on the presuppositions themselves. Here we’re not even invoking ExH!

(492) a.  Good news! The principal of Sunnydale High School was eaten by the mayor.

b.  Good news! Willow stopped abusing magic.

(493) a.  The principal of Sunnydale High School was eaten by the mayor because the mayor

became a demon.

b.  Willow stopped abusing magic because she feared its consequences.

The definite descriptions in (492a) presuppose the existence of a principal and a mayor; the verb
stopped in (492b) presupposes Willow had been abusing magic. Good news! doesn’t comment on
this presupposed content, but rather on the truth conditional contributions of (492a) and (492b),
the fact of the mayor’s devouring the principal and the cessation of magical abuse, respectively.
The presuppositions pass through because, too, in (493a) and (493b). It seems reasonable, then, to

assume that expressive content does not apply to presuppositional content. If we adopt PEX, the

*We’re simply making our semantics for EXH presuppositional. Their theory differs in a few ways that are, as
far as I can tell, orthogonal to this endeavor. We assume that no harm comes of this, but a fuller exploration of their
theory in the context of subtractives is warranted in future work.
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relative scope of the operator with respect to good news and other speaker-oriented expressions
doesn’t matter, then. Regardless of configuration, neither operator can see the contribution the
other makes. The ‘invisibility’ of the polar inference to speaker-oriented expressions on this view
is a conspiracy between the distinct not-at-issue status of expressive content and presuppositions.
This means that the locality constraint for ExH in relation to subtractives can be maintained
without issue. Now, the questions are whether any issues arise with our other examples, and
whether this solves the problem with no > every...but.

The issue with no > every...but for us, recall, is that the most local position for ExH is within

the nuclear scope of no, and this is the position in which the derived truth conditions are correct.

(461) EXH AND THE LICENSING OF SUBTRACTIVES OPERATORS
Subtractive operators are only licensed as modifiers of some quantifier A if:
a. They are in the scope of an EXH operator, and
b. EXH is licensed where its sister is the minimal expression of type (s,t) in which A is
licensed.
(465) [no witch [2 [ExH [, every spellbook but BG [3 [t; read t3]]]]]]
(466)  [(465)]&<(w) is defined only if {BG} C S,, & {BG} # 0); where defined:
[a65)]Ew) = 1iff W 11 {y | Su—{BG} C {2| READL(D)Y)} &
Ve[ [{BG} 2 W & X C 8y & W £ 0] = 8,—X € {2| READLGIY)}| } =0

The problem is, though, that ExH is in a Downward Entailing environment, and therefore isn’t

licensed, so we’re a bit stuck.

(469) ECONOMY CONSTRAINT ON THE DISTRIBUTION OF EXH
Let ¢ be an arbitrary expression containing an occurrence of the ExXH operator. EXH is

not licensed in ¢ if eliminating this occurrence leads to an expression {y such that for any
admissible g, ¢, [V]& = [o]&*.

An economy condition like (469) is needed on standard theories of ExH to block the calculation
of scalar implicatures under negation (Fox & Spector 2018). Where or triggers a strong, exclusive

inference in (494), under negation, as in (495), this isn’t generated.
(494) Willow talked to Bufty or Xander.
~> Willow didn’t talk to both

(495) Willow didn’t talk to Buffy or Xander.
~6 Willow talked to both



Only a constraint prohibiting ExH from occurring in Downward Entailing environments would
block the LF for (495) that would generate the unattested inference that Willow talked to both
Buffy and Xander. However, Bassi et al's PEX doesn’t require such an economy constraint. For
starters, they take the presuppositions encoded by PEX to be automatically globally accommo-
dated, provided they are consistent with the context—they are more like the presuppositions

encoded by possessives and only.

(496) Buffy is bringing her sister to the Magic Box.
presupposition: Buffy has a sister, x

at-issue content: Bufly is bringing x to the Magic Box

(497) Only Willow went to Cordelia’s party.
presupposition: Willow went to Cordelia’s party

at-issue content: No one else went to Cordelia’s party

Barring incompatibility with the common ground, these kinds of presuppositions are readily ac-
commodated, and not necessarily detected in the same way. Now, if PEX is in the scope of a
Downward Entailing operator, what results is a presupposition that projects through that oper-
ator, but it is a presupposition that is entailed by the truth conditional, at-issue content of the

entire sentence.

(498) [not [PEx [Willow talked to Buffy or Xander]]]
a. predicted presupposition: it’s not the case that Willow talked to both Buffy and Xander
b. at-issue content: Willow didn’t talk to Buffy and Willow didn’t talk to Xander

The at-issue content asymmetrically entails the presupposition, which would be globally accom-
modated anyways, so its contribution is not detected. There is, in their theory, no need for the
the economy constraint in (469). Now let’s bring this back to no > every...but.

Since PEX can occur within the scope of no now, let’s see what we can do with an LF that

substitutes ExH for PEX. The truth conditions we want, recall, are those in (466).
(466) Wu 1 {y|8—{BG} C {z|rEAD, ()Y} &

VK| [{BG} € X & X' C Sy &X' # 0] = S—X € {z| rEAD(G)(D)}] } =0
The newly PExed LF is in (499).

(499) [no witch [2 [PEX [, every spellbook but BG [3 [t; read t3]]]]]]
(500) [(499)]®¢(w) is defined only if (a) & (b) = 1
a. {BG} CS,&BG#0



b. vx'[[{BG} ZRERAD&K CS,] = Sy—X € {z] READW(Z)(g(z))}}

Where defined, [[(499)]#°(w) = 1 iff Wy N {y \ SW—{BG} C {z | READW(Z)(y)}} =0

At the point at which PEX calculates entailments, the restrictor of every is in a Strawson Down-
ward Entailing environment, and so all and only supersets of {BG} will be entailed (ignoring
SMALL, of course), so the presupposition in (500b) requires that g(2) not have read BG. That’s a
free pronoun, though! To deal with quantified presuppositions like this, we can accommodate
it locally, i.e. within the scope of the binding quantifier no witch. The necessity of this kind of
solution for precisely this issue is within the tradition of Heim (1983), Van der Sandt (1992), and
Beaver & Krahmer (2001). Following Bassi et al., we will use the ./ operator; this operator col-

lapses falsity and undefinedness.

(501) [« 9]*(w) =
Loif [p]<(w) =1

0, if [@]®<(w) = 0 or #

This means that the presuppositions of ¢ become part of its truth conditional content. Applying

o/ below no witch and above PEX yields the LF (502) and so derives the truth conditions in (503).

(502) [no witch [2 [« [PEX [, every spellbook but BG [3 [t read t3]]]]]]]

(503) [(502)[#(w) =1 iff
{BG} # 0 & {BG} C 5, & Wy 11 {28~ {BG} C {y | READL()()} &

vy [[{BG} R &R CSy &X £0] = Su—X' & {y] READW(y)(Z)}] } —

These truth conditions are just what we set out to derive: they require that no witch have read all
and only those non-BG spellbooks. They are weaker than the truth conditions derived without
2/ and PEX, of course, but that’s what we wanted, of course.

A consequence of adopting the PEX based theory is that the economy constraint, which blocks
ExH from being within the scope of no, is no longer necessary, at least in its current incarnation.
PEX, in Downward Entailing environments, doesn’t generate the wrong inferences, as ExH does—
it is simply not detected because its contributed presupposition is asymmetrically entailed by the
assertion. This allows us to maintain the licensing conditions on subtractives with respect to PEX,

which we revise a final time for PEX.

(504) PEX AND THE LICENSING OF SUBTRACTIVES OPERATORS final version

Subtractive operators are only licensed as modifiers of some quantifier A if:

a. They are in the scope of a PEX operator, and
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b. PEX is licensed where its sister is the minimal expression of type (s,t) in which A is

licensed.

It appears, then, that what subtractives do is provide an explicit argument in favor of a PEX-type
theory, and this in turn gives us a special insight into the polar inference subtractives give rise
to: it is, generally speaking, a presupposition, albeit a readily accommodated one.

Now, there are a couple things we should clear up before concluding. The first point of order is
the economy constraint. Although the economy constraint is no longer needed for the purposes
of barring PEX from occurring in Downward Entailing environments, we did make use of it to

rule out cases where subtractives occurred in necessarily true quantificational claims, as in (505).
(505) # Almost every spellbook is a spellbook.

In our analysis, the pre-exhaustified meaning of (505) entailed the exhaustified meaning; if we
don’t appeal to the economy constraint when we switch to the PEx theory, we don’t have an
immediate way of ruling such cases. Since we already avail ourselves of a cyclical sort of model
for the licensing of subtractives—an LF with a particular shape must be permissible before con-
sidering other LFs—perhaps there are constraints imposed on PEX that can feed into that cycle.
For example, we can posit a novel economy condition on PEX that is related to, but distinct from,

the economy condition we abandoned above.

(506) ECONOMY CONSTRAINT ON THE DISTRIBUTION OF PEX to be revised
Let ¢ be an arbitrary expression, and let { = [PEX (p}.

For any g, ¢, if [@]®¢ = [y]®*, then PEX is not licensed in ¢.

This condition would ensure that PEX is not licensed in (505), since the un-PExhaustified meaning
entails the PExhaustified meaning. ° It also wouldn’t allow a higher operator to save the derivation
of an otherwise illicit LF. That is, we should still expect (507) to be odd because PEX is not licensed
because [@]&¢ =g [Y]#°.

(507) # [not [y PEX [, almost every spellbook is a spellbook]]]

Note, though, that the condition won’t incorrectly rule out those cases we discussed above where

PEX is present in a Downward Entailing environment, and yet not detected. This is good!

(498) [not [y PEX [, Willow talked to Bufty or Xander]]]
a. predicted presupposition: it’s not the case that Willow talked to both Buffy and Xander
b. at-issue content: Willow didn’t talk to Buffy and Willow didn’t talk to Xander

*Note that this constraint makes reference to strict entailment, not Strawson entailment. Because PEX only adds
presuppositions, for any ¢, [¢]&€ =st [PEX ¢]&°; the economy constraint needs to be stronger, then.
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Here, although the global at-issue content entails the presupposition contributed by PEX, it’s not
the case that [{]#° is entailed by [¢]®€, so PEX is licensed here even with our new economy
condition. The basic role of the constraint is to rule out cases where PEX is locally vacuous; it
succeeds in that. Perhaps there is a more sophisticated way in which we can rule out these cases,
and maybe there are issues that will be uncovered with our constraint that point in new directions.
This is left open for investigation, but, as far as I can tell, works for our theory.

The second point of order is to note that contradictions derived by PEX are still contradic-
tions. The presuppositions contributed by PEX in (508) will contradict themselves and the truth

conditions—before, it was just all truth conditional contradiction.
(508) # Almost some spellbook is worth reading.

Still, we likely need to add to the theory a means of explicitly stating that this LF is deviant, and
that PEX is not licensed, and hence that almost is not licensed. Bassi et al. (2021:27) incorporate
an oddness filter into their theory in order to rule out these kinds of LFs on the basis of their

contradictions, e.g. (509) from Bassi et al. (2021:27).

(509) ODDNESS FILTER

Let ¢ be a sentence with presupposition p and assertion q. For any context c, asserting ¢

in c is odd if:
a. p is inconsistent with c, or

b. p and q are individually consistent with c, but p & q is inconsistent with ¢

Their purpose in adopting such a filter is to explain why (510) is odd on natural assumption that,

if all Ttalians are from a warm country (see also Magri (2014)).

(510) # Some Italians are from a warm country.

a. predicted presupposition: not all Italians are from a warm country

b. at-issue content: some but not all Italians are from a warm country

Here, the presupposition is in conflict with common knowledge, and hence a normal context ¢
in which (510) is uttered. The oddness filter is an explicit way to say that this sentence is odd in
typical contexts. The conjunction of the presuppositions and the assertion (508) are is inconsistent
necessarily for us; note that we’ve added back in the size constraint to make sure this is crystal

clear.

(511) [PEX [almost X2 some spellbook is worth reading”
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(512) [(511)]8(w) is defined only if g(2) C S,, & g(2) # 0 &
VX [[X € g(2) & X' C Sy & sMALL(X) & X' # 0] — Sy—X N WR, = 0]; where defined,
[(511)]8(w) = 1 iff Sy—g(2) N WR,, = 0 & smALL.(g(2))

The conjunction of the truth conditions and presupposition is contradictory, and so cannot be
consistent with the context (or any non-trivial context). This LF is caught by the oddness filter.
Now, for concreteness, we’ll add into the economy constraint on PEX a condition barring it from

being licensed if it yields oddness.

(513) ECONOMY CONSTRAINT ON THE DISTRIBUTION OF PEX final version
Let ¢ be an arbitrary expression, and let { = [PEX (p}.

For any g, ¢, if [@]®¢ = [¥]®*, or if [{]#€ is odd, then PEX is not licensed in ¢.
This allows us to ensure that embedding an odd LF won’t save things, either.

(514) # Every witch read some spellbook but The Brekenkreig Grimoire.
a. "[every witch [2 [ PEX [, some spellbook but BG [3 [t; read t3]]]]]]

local contradiction

b. *[y PEX [, some spellbook but BG [3 [every witch [2 [t; read t3]]]]]]

local contradiction

c. *[PEX [every witch [2 [ some spellbook but BG [3 [t; read t3]]]]]]

barred by locality of licensing condition

PEX derives assertions and presuppositions that conflict necessarily in the LFs (514a) and (514b).
These are odd LFs, and given the updated economy constraint, PEX is not licensed in these LFs,
and neither is the subtractive. (514c) is not licensed by the locality of licensing condition, just as
it was before.

In the end, we have quite a neat theory in PEX: it allows us to both solve the puzzles we set
out to in multiple quantifier constructions and to predict why the polar inference disappears in
certain environments. More work is needed to ensure that the theory we’'ve ended up with is on
the right track. Some questions will be inherited from Bassi et al. (2021), simply through assuming
their theory. For example, Bassi et al. take the presuppositions triggered by PEX to be globally
accommodated wherever possible—is this the right explanation for their status? When we turn
to subtractives, does global accommodation really capture the nature of the polar inference? We
have also proposed a sort of funny licensing condition on subtractives in claiming that the licens-
ing of one particular LF permits the licensing, or blocks the licensing, of another. More work is
needed to flesh out the details and consequences of such a view. These are essential issues, and
this chapter does not answer them. It is, in the end, more of a sketch of what the theory might

need to look like, but hopefully, it is clear that we’re on the right track.
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Chapter 6

Outlook

This chapter concludes the dissertation. In the first part of the chapter, we discuss a bit data that
we’ve not yet gone through in detail, and discusses how we ought to analyze those constructions
in light of the analysis developed and defended in the previous chapters. This will, by necessity,
be a much looser discussion than in the previous chapters; unfortunately, doing justice to the
distribution and interpretation of almost and barely along these lines requires more time than we
have. However, the hope is that this discussion will show that there’s good reason to think that
the theory of the modifiers as subtractives can, and should be, extended beyond. The second part

summarizes the dissertation and concludes.

6.1 Unanalyzed data

In the previous three chapters, we discussed in detail the distribution of almost and barely with
respect to quantificational determiners, degree quantifiers, adjectives, and numeral constructions.
We saw, generally speaking, that almost and barely were in complementary distribution up until
we reached numeral constructions, where both subtractives on the surface appear to modify the
same expression. There are plenty of other domains in which we haven’t applied our analysis,
and there’s plenty of data for the theory to cover. We’re going to focus on verbal uses for now.
Verbs aren’t typically understood as quantificational constructions, and as such, it’s much harder
to see at first how we can reconcile such uses with our theory. That our theory only reaches at the
finale the data that other theories begin with is possibly a problem, but we’ll suggest that it’s not.
If we're right about the subtractives, then we’re committed to the presence of quantification in
hiding, and there’s perhaps good reason to think it is present. While we won’t be able to provide
a full account of these data, we’ll do our best to suggest some tentative analyses.

What I call verbal uses of almost—those in which almost seems to modify a verb phrase—are

probably the most discussed uses in the literature. They have received quite a lot of attention
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(Morgan 1969; McCawley 1972; Dowty 1979; Rapp & von Stechow 1999; Eckardt 2007; McKenzie
& Newkirk 2019). These are uses that can also reasonably be seen as clausal or propositional.
Indeed, oftentimes we see analyses of almost as a proposition-modifying operator in these uses,
with appeals to the modal or scalar closeness semantics discussed in Chapter 2. Barely, as we’ve
mentioned, has received less attention in general than almost, but it is its verbal uses that have
largely received attention (Ducrot 1973; Horn 1996; Atlas 1997; Sevi 1998; Amaral 2007). Think

about (515): it seems to admit two, maybe three interpretations (Morgan 1969; McCawley 1972).

(515) Giles almost killed Angel.

a. Giles almost did something that would have had the effect of Angel’s dying
b. Giles did something that almost had the effect of Angel’s dying

c. Giles did something which had the effect of Angel’s becoming almost not alive (i.e.

becoming nearly dead)

One interpretation is (515a); let’s call this the counterfactual (CF) interpretation. It’s true even
where Giles made no attempt to kill Angel, but he seriously considered doing it. In another world,
where facts aren’t too different from this one, he did kill Angel. The second and the third are quite
similar (though perhaps indistinct, cf. Dowty 1979)—both entail that Giles did something that is
related to Angel’s near death. The second, what we can call the scalar (SC) interpretation, doesn’t
require that Angel came close to dying, but rather, had the facts been different, he would have. The
third is the resultative (RS) interpretation. Here, Angel really came close to death. Ultimately he is
alive, but it was a close one. Note that in all three, there’s a way to understand the interpretations
as saying that some event or state of affairs didn’t come about, but it was close to coming about.
Just what closeness amounts to does seem to be interpretation-specific.

Morgan (1969) and McCawley (1972) argue these kinds of data support a decompositional

view of verbs like kill into three parts, each of which can be targeted by almost.

(516) Giles almost killed Angel.
a. [almost [acT(Giles) [cAUSE [BECOME [Angel dead]]]]] COUNTERFACTUAL
~ Giles almost did something that would have had the effect of Angel’s dying

b. [acT(Giles) [almost [cAUSE [BECOME [Angel dead]]]]] SCALAR
~ Giles did something that almost had the effect of Angel’s dying

c. [act(Giles) [cAUSE [BECOME [almost [Angel dead]]]]] RESULTATIVE
~ Giles did something which had the effect of Angel’s becoming almost not alive (i.e.

becoming nearly dead)
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Of course, it’s not settled that decomposition along these lines is the right call-Dowty (1979), for
example, suggests that the different “interpretations” arise out of vagueness or ambiguity rather
than such a complex structure.

Rapp & von Stechow (1999) similarly suggest based on German fast “almost” that decomposi-
tion might play some role, though it can’t be the whole story. First, they note that CF interpreta-
tions are connected to the presence or absence of particular verbal morphology, the Konjunktiv

IT (glossed here as K2), in some dialects, and its presence blocks SC interpretations.

(517) a. weil Davidfast seinen Hasen erwiirgt hatte
because David almost his  rabbits strangled have-K2
‘Because David almost strangled his rabbits’ CF, *SC

b. weil  David seinen Hasen fast erwiirgt hatte
because David his  rabbits almost strangled have-K2
‘Because David almost strangled his rabbits’ CF, SC as ‘indirect discourse’

c. 7?weil  Davidfast seinen Hasen erwiirgte
because David almost his  rabbits strangled-PRET

‘Because David almost strangled his rabbits’ ??CF, *SC
d.  weil David seinen Hasen fast erwirgte

because David his ~ rabbits almost strangled-PRET

‘Because David almost strangled his rabbits’ *CF, SC

Rapp & von Stechow (1999:156-157)

That there must be, for some dialects, dedicated counterfactual morphology for the CF interpreta-
tion of fast to appear is rather interesting. It could be telling us that fast is modifying the semantic
correlate of that morphology, and when it isn’t present, almost must be modifying something else.
Other languages illustrate verbal morphology-based restrictions on the availability of CF vs. SC
interpretations, tied to aspect. In European Portuguese, the Imperfeito do Indicativo, an imper-
fective past tense, allows only a CF interpretation, but the Pretérito Perfeito Simples, a perfective

past tense, allows both CF and SC interpretations (Amaral 2007).

(518) a. O Joao quase ganhava a corrida.
The Jodo almost win-PAST.IMPFV.3SG the race
‘Joao almost won the race. CF, *SC
b. O Jodo quase ganhou a corrida.
The Jodo almost win-PAST.PFV.3SG the race
‘Joao almost won the race. CF, SC

Amaral (2007:137)

Sometimes almost seems to be commenting on the manner of performing some action; con-

sider the following contrast.
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(519) a. ??Rafi afl den Kuchen fast.
Rafi ate the cake  almost
‘Rafi almost ate the cake’

b. Rafi fraf den Kuchen fast.
Rafi devoured the cake  almost
‘Rafi almost devoured the cake’

Rapp & von Stechow (1999:182-183)

Here, the use of the more forceful, ‘colorful’ verb fraf§ with fast brings out an interpretation in
which the manner is commented on: the way Rafi ate the cake approached a devouring. There
was no moderation!

The data above is a lot of ground to cover, and it is, of course, not the full extent of things.
That said, if we’ve learned anything from our investigation into subtractives, it’s that starting from
their uses as modifiers of quantificational determiners and generalizing from there is incredibly
fruitful. The appearance of subtractive operators in the constructions above tells us we need to
be looking for some quantification. We saw in our investigation of numeral constructions that
sometimes we have to dig around and pull things apart in order to find the quantifiers; perhaps
they’ve been hiding in plain sight in verbal uses.

Think about the counterfactual interpretations above in this light.
(520) Giles almost killed Angel.

As discussed above, this is true in a context where Giles came close to, but did not actually, kill
Angel. Giles could have merely contemplated the murder, he could have only just missed the
heart, whatever. Had the facts been different, Angel would be dead. Perhaps this interpretation
arises as a result of almost modifying a particular kind of universal modal which trafficks in
those kinds of facts, and almost subtracts a set of facts relevant to Giles’s killing of Angel from
that modal’s base. PEx would then say that that’s the smallest, non-empty set of facts in the
context that you can subtract from the modal base and still yield Angel’s death.

The fact that in some languages we see counterfactual interpretations of almost cognates cor-
relating with particular morphology could lend support to this sketch of a proposal. The presence
of K2 morphology, at least for some speakers of German, is the trigger for counterfactual inter-
pretations of fast because K2 is the host of a counterfactual-type modal. The absence of K2 for
such speakers would mean that there is no such counterfactual modal present, and fast would

have to modify something else.

(521) weil  David fast  seinen Hasen erwiirgt hatte
because David almost his ~ rabbits strangled have-K2
‘Because David almost strangled his rabbits’ CF, *SC
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(522) weil  David seinen Hasen fast  erwiirgte
because David his ~ rabbits almost strangled-PRET
‘Because David almost strangled his rabbits’ *CF, SC

The idea that morphology like K2 is utilized in constructions to contribute a sort of modal dis-
placement is not new—it’s familiar from the literature on X-marking, as in von Fintel & Iatridou
(2020)—but this idea needs to be better grounded in the rather complex set of facts surrounding
X-marking cross-linguistically, and a careful investigation goes beyond what we have time for.
What about non-counterfactual uses of almost, and what about barely? How do we incorpo-
rate them into the theory? The European Portuguese facts might be giving us a clue. Perhaps
we can think of almost and barely in these cases as modifiers of aspectual morphology. Aspect
is typically taken to relate events to times, and introduce existential quantification over events
(Klein 1994, i.a.). Let v be the semantic type of events, t be the semantic type of times, and t be a
function that maps events to their run times; we’ll assume that times are intervals for simplicity

here.

(523) [PERFECTIVE[®‘ = AA, At. Je [e eEA&t(e) C t]

(524) [IMPERFECTIVE[®® = AA, At. Je [e EA&tC r(e)}

Already the existential quantification could be a starting point for barely to latch onto. Almost
would need some work. That said, perfective aspect conveys that an event’s runtime is contained
in some other time t; perhaps this boudnedness gives us access to endpoints from which almost
can subtract, whereas imperfective doesn’t give such access. At least for European Portuguese
quase, this might be the start of an account of the absence of ‘scalar’ interpretations when the
verb is marked with imperfective, but their availability when the verb is marked with perfective.
Quase could be subtracting, for example, subintervals of the runtime of a Jodo winning-the-race
event in (518b) saying that if we took a small amount of time away from the runtime of such an
event, it would be complete, but in fact, that’s not the state of affairs. Perhaps something like this
is on the right track.

There are still a host of other areas to explore with subtractives, and we’ve only just scratched
the surface of the cross-linguistic picture. Pushing the theory developed and defended in this

dissertation and testing it against in sorts of novel territory is left for future work.

6.2 Wrapping up

This dissertation has been about almost and barely. We began our journey in Chapter 2 by look-
ing at uses of the subtractives as modifiers of determiners. Building on work by von Fintel (1993),

Gajewski (2013), and Crni¢ (2018) on exceptive but, we took all three operators to encode set
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subtraction, removing an exception from the restrictor of the modified quantifier. We added pre-
suppositions that required the exception to be a subset of the set from which it’s subtracted, and
non-empty. We also argue that all three operators require their exception to be small in the con-
text; this is the size constraint, and in particular, it is an essential part of the derivation of the

proximal inference in subtractives.

(525) [but]&¢ = AXAALZAB: X C A & X # . D(A—X)(B) & SMALL.(X)
(526) [almost]|& = AXAZAAAB: X C A & X # (). Z(A—XK)(B) & sMALL(X)

(527) [barely]®¢ = AXAZAAAB: X C A & X # (). ~D(A—X)(B) & sMALL:(X)
(et,((et,ett),(et,(et,t))

(528) THE SIZE CONSTRAINT final version
Let c be a context of utterance, X be an arbitrary set, and n. be a contextually determined
numerical threshold for size.

Where X is a dense set of degrees, SMALL.(X) = 1 iff LENGTH(X) < n;
Otherwise, sMALL.(X) = 1 iff |[{y |y € X & aTom(y) }| < n,

(529) MAXIMAL SIZE OF n, final version
Let ¢ be a constituent with subconstituent y such thaty = [A [oc [Z )d H or [HZ X} A} oc],
where ¥ is a subtractive operator, A is quantificational determiner, and o and x be expres-
sions whose denotations characterize A and X, respectively.

An utterance of ¢ in c is felicitous only if, for any context c:
Where A is a dense set of degrees, n. < 3(LENGTH(A));

Otherwise, n. < :|{y |y € A & aTom(y)}|

All three operators are required to be within the scope of an operator that derives scalar implica-
tures via negating non-Strawson entailed alternatives of an LF ¢. Until Chapter 5, this operator
was EXH; for expository purposes we restricted ourselves to ‘subtractive’ LFs and to ‘subtractive’
alternatives, as defined below, which allow us to more succinctly state the contribution of ExH

given such LFs and alternatives.

(530) [ExH @]*(w)=1iff [p]*“(w) =1 &Y [y € ALT(9) & [9]* 7 s1 [W]** — [W]*“(w) # 1]
(531) SUBTRACTIVE LFs
ALF ¢ is a subtractive LF just in case ¢ is a LF containing exactly one subtractive operator
Y introducing an exception ¥, and no other alternative-triggering expression, and ¢ is of
type (s.t).
(532) SUBTRACTIVE ALTERNATIVES

For a subtractive LF ¢, with an exception ¥,
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ALT(Q) := {(P[X/X'] | X' CDg & @[x/x'] is grammatical}

(533) For a subtractive LF ¢,
[ExE @]&(w) = 1iff [o]&°(w) =1 & Vx'[[o]* # st [o[x/x1& —= lo[x/x1]&(w) # 1]

Entailment between alternatives is tied to monotonicity.

(534) SUBTRACTIVE ENTAILMENT THEOREMS FOR DETERMINERS
Let X be a subtractive operator, A a quantificational determiner, and a and x be expres-
sions whose denotations characterize A and X, respectively. Let ¢ be a constituent with
subconstituent y such that y = [A [oc [Z XH} or H[Z X} A} oc}. Let g be an assignment
function in context c.

Let aLt(p) = {o[x/x'] | X' C De & ¢[x/x] is grammatical }.

a. If ¢ is Upward Entailing (and not Downward Entailing) with respect to the constituent
o, then for all ' such that X’ C X%, then [@]&° =sr [o[x/x]]®*.

b. If ¢ is Downward Entailing (and not Upward Entailing) with respect to the constituent
a, then for all ¥’ such that X C X’ & X' is small in ¢, then [o]&° = [o[x/x]]®*.

We saw that it is only when, for a given exception y in a subtractive LF ¢, alternatives to ¢
formed with supersets of X (the set characterized by [x]®°) are entailed are subtractives possible.
This is a necessary, not sufficient, condition, but it’s an important one. This occurs when ¢ is
Downward Entailing with respect to the restrictor of the subtractive-modified determiner. This
captures the distribution of subtractives with respect to the quantificational determiners explored
in Chapter 2. EXH is also, importantly, the locus of the polar inference—its contribution entails
that the unmodified quantificational claim is false in the case of almost, and true in the case of
barely.

In Chapter 3, we extended the coverage of this theory to degree constructions, i.e. compar-
atives, equatives, and the positive. There, we learned a few important things. First, subtractives
provided evidence in favor of the idea that all natural language scales are dense, even when they
aren’t intuitively. Second, we learned from barely-modified comparatives that barely must sub-
tract not from the restrictor of the quantifiers it modifies, but the nuclear scope. This revision,
fortunately, doesn’t change the predictions made in the previous chapter. The extension of the
theory developed in Chapter 2 to degree constructions is a central contribution of the disserta-
tion. We see that by starting from the determiner-modifier uses of subtractives, we naturally and
readily capture data that have been largely ignored in the literature. This is big, and set the stage
for the investigations in the following chapter.

In Chapter 4, we probed numeral constructions, where we saw that the complementarity in

distribution between almost and barely we’d seen so far disappears. We argued, though, on the
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basis of the theory developed in Chapters 2 and 3 that there is structurally more than meets
the eye in numeral constructions. We posited that, in numeral constructions, there is a covert
existential quantifier over individuals &, which barely can modify, and a degree quantifier .#
with the semantics of the equative, which we know almost can modify. We explored how the
composition allows us to explain why both subtractives are licensed in these constructions. This
chapter is also important: it taught us that it’s fruitful to use subtractives as evidence for the
presence of quantifiers, even when we don’t expect them. The ability of both almost and barely
to surface in numeral constructions is crucial for deducing the presence of quantifiers of different
kinds.

Chapter 5 returned to quantificational determiners and the nature and role of ExH. We com-
plicated matters by considering structures in which subtractive-modified quantifiers are embed-
ded under other quantificational elements, and cases where the polar inference associated with
subtractives is invisible to other operators. We were led to place constraints on the locality of
EXH with respect to subtractive operators, which are only licensed in the scope of ExH, and we

were led to supplant ExH with a presuppositional version, PEX (Bassi et al. 2021).

(535) [PEX @]#(w) is defined only if Y [{ € aLT(¢) & [9]° % sr [Y]&° — [p]=(w) # 1];
where defined: [PEX ¢]®(w) = 1 iff [o]®(w) =1

(536) PEX AND THE LICENSING OF SUBTRACTIVES OPERATORS final version

Subtractive operators are only licensed as modifiers of some quantifier A if:

a. They are in the scope of a PEX operator, and

b. PEX is licensed where its sister is the minimal expression of type (s,t) in which A is

licensed.

The resulting picture is one in which we neatly capture the invisibility of the polar inference to
certain operators—the presuppositional polar inference escapes the notice of ‘expressive’ content—
and accurately capture the meaning and distribution of subtractives embedded under other quan-
tificational operators.

The first half of this chapter briefly discussed some areas in which our theory should be ap-
plied, and sketched what such an extension might look for and look like. If this theory is right,

we expect more quantifiers in more places; subtractives give us evidence of their presence.



Appendix A

A

Denotations, definitions, and a theorem

This appendix is formulated for the discussion in Chapter 2, so the denotation of barely is nuclear

scope-subtracting. As discussed in Chapter 3, arguments don’t really change too much for nuclear

scope barely.

(537)

(538)

(539)

(540)

(541)

DENOTATIONS OF SUBTRACTIVE OPERATORS

a. [but]® = AX ey e AD (etery ABiey: X C A& X # 0. D(A—X)(B) & SMALL(X)

b. [almost]® = AX(ey AA(e s A D (et ety ABey: X C A & X # . Z(A—XK)(B) & sMALL:(X)
c. [barely]® = AX(e s M (e s AD (etetty ABey: X C A & X # 0. ~2(A—RK)(B) & sMALL(X)
CONJOINABLE TYPES

a. tis a conjoinable type.

b. If T is a conjoinable type, then for all types o, (o, 1) is a conjoinable type.
CROSS-CATEGORIAL ENTAILMENT ‘=’

a. Forp,qoftypet:p=qiffp=1—q=1.

b. For £, g of conjoinable type (o, t): f = g iff for every x of type o, f(x) = g(x).
CROSS-CATEGORIAL STRAWSON ENTAILMENT ‘=gt von Fintel (1999)
a. Forp, qoftype t: p =7 q iff [pzl&q;«ré #] —q=1.

b. For f, g of conjoinable type (o, 1): f =51 g iff for every x of type o, f(x) =57 g(x).

SUBSTITUTION-BASED STATEMENT OF (STRAWSON) ENTAILMENT Gajewski (2011)

For a constituent ¢ and some subconstituent o:

a. ¢ is (Strawson) Downward Entailing with respect to o iff

VB{IBIE = sty [o]® — [@]® = sty [@[o/BI]*<}
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b. ¢ is (Strawson) Upward Entailing with respect to o iff

VB { [a]# = st [BI*C — [9]&° = sy [@[o/BI]E}

(542) SET SUBTRACTION ‘—’

a. For arbitrary sets A, B: A—B := {x |xeA&x ¢ [B}.

(A is the minuend and B the subtrahend; the set C such that A—B = C is the difference

or remainder.)

b. For any arbitrary expressions o, f, of type (e,t), let A and B be the sets characterized

by [a]#€ and [B]#*, and let ‘e — B’ be a wellformed expression of type (e,t) such that

[oo — B]#° is a function characterizing the set A—B

(543) SUBTRACTIVE LFs

ALF ¢ is a subtractive LF just in case ¢ is a LF containing exactly one subtractive operator

¥ introducing an exception X, and no other alternative-triggering expression, and ¢ is of

type (s,t).

Now we add one theorem for our proofs.

(544) SUBSTITUTION EQUIVALENCE FOR SUBTRACTIVES (S.E.S.)

Let X be a subtractive operator, A be a quantificational determiner, and o and x be arbitrary

expressions denoting functions of type (e,t). Let ¢ be an LF that contains a constituent y

such that, for particular occurrences of « and ¥, call them o* and x*, y = H[Z X*} A} oc*}
or [A [oc* [Z X*H]
For any o, x', if [} —[x"] = [o']—[x]. then [g] = [ [ /e’ x*/x"]]-

This theorem comes in handy in proving entailments between exceptions. See below.

A1

(1) a.

(2) a.
b.

C.

Subtractive equivalences

[but] = AX (e M e A ey Breg: X C A & X # 0. D(A—K)(B) & SMALL(X)
[almost]® = AX ey M e A% e Bresy: X C A & X £ 0. D(A—R)(B) & SMALLL(X)
[barely]® = AX ey AMA (e g A D (et etty ABey: X T A & X # 0. 2~ D(A—XK)(B) & SMALL(X)
[every] = AAAB. AC B

[no] = AAAB.ANB = () (= MAMAB. A C B)
[some] = [anynp;] =AAAB.ANB # 0

(3) Leta,f,and yx, be arbitrary expressions whose denotations characterize the sets A, B, and

X, respectively; let g be such that g(i) = X
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a. [[every [a [but x]]]]&° = [[[[almost x;] every] a]]&< =
AB: X C A& KX # 0. (A—X) C B & SMALL(X)

b. [[some [a [but x]]]]&° = [[[[almost x;] some] a]]&< = [[[[barely x;] no] a]]& =
AB: X C A& X #D. (A—X) NB# ) & sMALL:(X)

c. [[no [a [but x]]]]& = [[[[almost x;] no] a]]&< = [[[[barely x;] anyyp] a]]&° =
AB: X C A& X #D. (A—X) N B=0 & sMaLL(X)

d. [[[[[almost x;] some]| o] B]]&<and [[[[[barely xi] every] a] [not p]]]&* are defined
only if X C A & X # (); where defined,

[[[[[almost x;] some] ] B]]&< = [[[[[barely x;] every] a] [not B]]]&*
= 1iff (A—X) N B # 0 & sMALL.(X)

e. [[[[[almost x;] no] o] B]]&* and [[[[[almost x;] every] a] [not B]]]&* are defined
only if X C A & X # (); where defined,

(st ] ] a] B = [ [fsmost ] evey] ] [t B
=1 iff (A—X) C B & sMALL(X)

A.2 Proofs

A.2.1 Subtraction is Downward Entailing with respect to the subtrahend

(1) Let X, Y, and A be arbitrary sets PREMISE
sHow: X CVY — A-—Y C A-X
(2) XCY ASSUMPTION

sHow: A—Y C A—X

(3) XCYVX=Y def. of C, (2)
CAsE1: X CY
(4) 3z[zeY&z¢ X def. of C
(5) —Jz[z€Y-K&z€E A VI[zeY-K&zE A TAUTOLOGY
CASE 2.1: —Jz[z € V=X & z € A]
(6) A-Y=A-X def.of —, X C Y
(7) A=Y CA-X (6), def. of C

CASE2.2: Jz[z€Y-X &z € A
(8) Elz[z EA-K&z ¢ A—Y}
(99 A-Y C A—X def.of -, X CY
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(10) A=Y C A-X (10), def of C
CASE2: X =Y
(11) A—YCA-X TRIVIAL

Q.E.D.

A.2.2 Subtractive entailments

We will now make general claims about entailment between an exception x in a subtractive LF ¢
and alternative exceptions as a function of the monotonicity of ¢ with respect to the argument o
from which y is subtracted. These proofs are about Logical Form, and will make use of the S.E.S.
theorem, so that we can make claims about all of our subtractives, regardless of the syntax in
which they appear.

We omit the size constraint, but it should be obvious what its inclusion will add. For any
context ¢ and arbitrary set X, if sMALL.(X) is true, then any subset of X is also small in c¢; non-

subsets might not be.

(1) LetXbeasubtractive operator, A be a quantificational determiner, and o and y be arbitrary

expressions denoting functions of type (e,t) PREMISE

(2) Let ¢ be subtractive LF that contains particular occurrences of a and y, call them o* and

x*, and a constituent y such that y = [A [oc* [Z X*H] PREMISE

A.2.3 ¢ is Upward Entailing with respect to o
sHow: If ¢ is Upward Entailing with respect to o*, then Vy/[[x'] € [x*] — [¢] = [o[x*/x'1]]
(3) ¢ is Upward Entailing with respect to o ASSUMPTION

suow:  Vx'[[x'] € [x'] — [o] = [olx*/x'N]
(4) Let besuch that [¥] characterizes (); let { be the LF such that = ¢[o*/o* —x*,x*/X]

) e ]=[x"] = [o"=x"1-[X] def. of —
©) [o] =[v] 4., 5., S.E.S
(7) ¥ is Upward Entailing with respect to a*—x* 3., 6.
smow:  Vx'[[x'] € [x'] = [W] = [wlx*/x1]
(8) Let x** be an arbitrary expression such that [x**] C [x*] ASSUMPTION
swow:  [Y] = [y [x*/x™1]
(9) [o*—x*] C [e*—x™] Ai.2
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(10) [V] = [Y[o*—x*/a*—x**1] 7., 9., def. of =

a1 W1 = Wix ]
(12) VX'[[X] <€ Ix*] = ] = Wix*/x0] 8., 11.
(130 VY'[[x] € Ix*] = [o] = lolx*/x'1] 4., 6., 12.

Q.E.D.

A.2.4 ¢ is Downward Entailing with respect to o
sHow: If g is Downward Entailing with respect to o*, then V' [[x*] C [x'] — [¢] = [o[x*/x'1]]
(14) ¢ is Downward Entailing with respect to o* ASSUMPTION

sow: V' [[x*] € [xX'T = [e] = lolx*/x'1]
(15) Let¥ be such that [] characterizes (); let { be the LF such that { = @[o*/a* —x*,x */X]

(16) [ —=[x"] = [o"—x"T—[xI] def. of —
(17) [e] =[v] 15., 16., S.E.S
(18) ¢ is Downward Entailing with respect to o* —x* 14., 17.
smow:  Vx'[[x"] € [x'T = [w] = [Whx/xM]
(19) Let x™ be an arbitrary expression such that [x*] C [x**] ASSUMPTION
saow:  [¥] = [Whx"/x™ 1l

(20) [ar—x"] S [o"—x"] A2

(21) [¥] = [Y[a*—x*/a*—x**]] 18., 20., def. of =

(22) ] = [WIx/x™1] 21,

(23) Vx'[[x] € IxT = ] = v Ix/x10] 18, 22.

(24) VX'[[x’] € XT = ol = [olx*/x1] 15., 17., 23.

Q.E.D.

A.3 Subtractive non-entailment

In these proofs, we use specific subtractive-determiner combinations to show a general recipe for

constructing proofs of Strawson non-entailment. The subtractive equivalences underwrite their

extension to the relevant other combinations.
For any g, ¢, w, [ExH ¢]#°(w) yields truth just in case [@]®(w) is true, and all { which are

alternatives to ¢ and not Strawson-entailed by ¢ are not true (i.e. false or undefined) in w. More

formally:
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(25) For any ¢, and any admissible g, c:
[Exm @[<(w) = Liff [p]*(w) =1 &Yy [y € aLT(p) & [9]# 7 st [Y]*< — [Y]*<(w) # 1]

We’re restricting ourselves to subtractive LFs; their alternatives are given below. These facts allow

us to rewrite the contribution of ExH.

(26) SUBTRACTIVE ALTERNATIVES

For a subtractive LF ¢, with an exception ¥,

aLx(e) == {o[x/x'] | X C D & ¢[x/x] is grammatical }
(27) For a subtractive LF ¢, with an exception Y,

[exH @]&(w) = 1 iff [@]&(w) =1& Vx'[[9]&° # st [o[x/x1]&¢ — [o[x/x'][&(w) # 1]

We know that those x’ which characterize sets X’ that are not small cannot be Strawson entailed,
but they will satisfy the consequent above. Given the presuppositions of subtractives, those x’
which characterize sets X’ that are empty will not falsify ExH, either. We're interested, then, only

in those y’ that are small and and non-empty. The proofs reflect this.

A.3.1  Almost every

(1) Leta, B, x be arbitrary expressions, o and f of type (s,et), and y of type (e,t) PREMISE

(2) ¢ = [11; [[[[almost x] every] [c proi1s]] [proi,s B1]] PREMISE
(3) Vwve [[[(p]]g’c(w) is defined only if X C A, & X # 0); where defined:

[o]&c(w) =1 iff A,—X C By & SMALLC(X)} meaning of almost; 2.
(4) VW [sz - [BW/} PREMISE

sauow: VceVX “X Z K" & SMALL(X) & SMALL(X) & X # () & X' # (Z)}

— 3w/ [[o]Ec(w) = 1 & [o[x/xT[*(w') = OH
(5) a. Let x*™* be an arbitrary expression such that X ¢ X**
b. Let X and X** be non-empty

c. Let c* be such that sMALL,(X) and SMALL, (X**) ASSUMPTIONS
swow: 3w’ [[]E(w') = 1 & [ [x/x*]]&*(w') = 0]
6) Vwve [ﬂ(p [x/x**]]&<(w) is defined only if X** C A, & X** # 0; where defined:
lolx/x 18 (W) = 1 iff Aw—X** C By & SMALLC(X**)] meaning of almost, 2.
(7) Let W* s.t. X = Ay N Byy & X C Ay
(8) Awi—X C By 7., def. of —
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(9) [o]&(w") =1 3., 5., 7., 10.
(10) Ix [x EX&xE X**], callita 5., def. of &
(11) a €Ay NBys & a g K** 7., 10.
(12) a€ Ay—X* &a ¢ By 11., def of —
(13)  Aw—X"" € B, 12.
(1) [olx/x™][F(w") =0 5., 6., 7.5 13-
(15) 3w [[o]# (W) = 1 & [ [x/x™*][#"(w') = 0] 9., 14.

Q.E.D

A.3.2 Almost some

(1) Leta, B, x be arbitrary expressions, « and B of type (s.et), and x of type (e,t) PREMISE

(2) ¢ = [11, [[[[almost x] some] [ proi; s]] [proiis B1] PREMISE
(3) Vwve [[[(p]]g’c(w) is defined only if X C A, & X # 0); where defined:

[o]E(w) = 1 iff Au—k N By # 0 & SMALLC(X)] meaning of almost, 2.
(4) VW [sz - [BW/} PREMISE

sHOW:  VeVX'[[X € X & sMALL(X) & SMALL(X') & K # 0 & X' # (]
— 3w [[o]#w) = 1 & [o[x/x/]]#*W) = 0]]
(5) a. Let x*™ be an arbitrary expression such that X** Z X
b. Let X and X** be non-empty
c. Let ¢* be such that sMALL.,(X) and SMALL., (X**) ASSUMPTIONS
swow: 3w’ [[o]#(w) = 1 & [o[x/x™]]#*(w') = 0]
(6) Vwvc [[[cp [x/x**]]&*(w) is defined only if X** C A, & X** # (); where defined:
lolx/x**]]&c(w) =1 iff A,—X* N B, # 0 & SMALLC(X**)] meaning of almost, 2.

(7) Let w*s.t. X** = Ayy N Bys & X C Ay

(8) JylyeX™ &y ¢ X];calita 5., def. of Z

(9) a€ Aw NByy &ac Ay —X 7., 8., def. of —
(10)  (Ay—X) N By # 0 9.
(11) [[(P]]g’C(W*) =1 3., 5., 7., 10.
(12)  (Aw—X™) N Byy =0 7.
(13)  [olx/x**]]&w*) =0 5., 6., 12.
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(14) 3w [[p]E (W) = 1 & [p[x/x"]]&* (W) = 0] 11, 13.

Q.E.D.
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