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Abstract

How much of our linguistic knowledge is innate? According to much
of theoretical linguistics, a fair amount. One of the best-known (and most
contested) kinds of evidence for a large innate endowment is the so-called
argument from the poverty of the stimulus (APS). In a nutshell, an APS ob-
tains when human learners systematically make inductive leaps that are not
warranted by the linguistic evidence. A weakness of the APS has been that
it is very hard to assess what is warranted by the linguistic evidence. Cur-
rent Artificial Neural Networks appear to offer a handle on this challenge,
and a growing literature over the past few years has started to explore the
potential implications of such models to questions of innateness. We focus
here on Wilcox et al. (2023), who use several different networks to exam-
ine the available evidence as it pertains to wh-movement, including island
constraints. They conclude that the (presumably linguistically-neutral) net-
works acquire an adequate knowledge of wh-movement, thus undermining
an APS in this domain. We examine the evidence further, looking in partic-
ular at parasitic gaps and across-the-board movement, and argue that current
networks do not, in fact, succeed in acquiring wh-movement and do not even
provide a passable approximation of wh-movement. We also show that the
performance of one of the models improves considerably when the training
data are artificially enriched with instances of parasitic gaps and across-the-
board movement. This finding suggests, albeit tentatively, that the failure
of the networks when trained on natural, unenriched corpora is due to the
insufficient richness of the linguistic input, thus supporting the APS.
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1 Background: innateness and the argument from
the poverty of the stimulus

One way in which linguists have argued that humans are born with nontrivial
biases is through cases where speakers’ linguistic knowledge goes beyond what
seems warranted by the data they were exposed to. If humans systematically arrive
at this knowledge given the data while linguistically-neutral learners do not, then
humans are not linguistically neutral: they come to the task of language acquisi-
tion prepared. Reasoning of this kind is known as an argument from the poverty
of the stimulus (APS), and since its introduction by Noam Chomsky over 50 years
ago it has been central to the study of the human linguistic capacity.1,2 Here we
will focus on one APS, concerning wh-movement, but various other APSs have
been discussed in the literature based on a range of empirical phenomena such
as one-substitution (introduced in Baker 1978), subject-auxiliary inversion (intro-
duced in Chomsky 1971), and plurals within compounds (introduced in Gordon
1985).

The APSs just mentioned (and others like them) have been taken to argue for
nontrivial innate biases in humans. For example, the APS from subject-auxiliary
inversion has been taken to support an innate bias for hierarchical transforma-
tions over linear ones. The APS from wh-movement that we discuss below will
similarly support an intricate bias that a linguistically-neutral learner is not ex-
pected to have. The same holds for other APSs in the literature. In this, these
APSs go beyond the early observation that children can produce and understand
unboundedly many sentences after encountering only a finite number of sentences
(Chomsky 1957, p. 15). While generalizing from a finite input to an infinite lan-

1The general considerations behind the APS are discussed already in chapter 1 of Chomsky
1965. Further considerations are discussed in Chomsky 1971, pp. 26–8, Chomsky 1975, pp. 30ff.,
and Chomsky, 1980, pp. 42ff., as well as in much subsequent work.

In addition to the APS, linguists have also identified other sources of evidence supporting the
innateness of nontrivial linguistic knowledge. For example, there are arguments from the richness
of the stimulus, where a pattern that is clearly represented in the input data and would be easily
picked up by a linguistically-neutral learner is simply ignored by human learners. Evidence from
typological asymmetries has also played a very important role in linguistic reasoning. A proper
discussion of such sources of evidence falls outside the scope of the present paper, and in what
follows we focus exclusively on the APS.

2Throughout the discussion we set aside the question of whether the knowledge under con-
sideration is specific to linguistics (and, if so, how much of it is purely syntactic) or whether it
is shared with other cognitive domains. Our sole focus is on whether a neutral learner would be
justified in acquiring the relevant knowledge based on a given linguistic input.
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guage is perhaps not entirely trivial, it is something that most learning algorithms
do. And importantly, this ability does not imply any biases that a linguistically-
neutral learner will not have.

While the APS has been central to linguistic reasoning, it has also generated
much controversy. Contesting a given APS requires challenging either the knowl-
edge attained by humans or the information available to the child learner. It is
the latter that often comes under attack. The reason for this vulnerability is that
it is extremely difficult to assess what information exactly is available to the child
over the relevant time period (often years of exposure) and hard to tell what a
general-purpose, linguistically-neutral learner would do with this kind of infor-
mation. One can try to look for pieces of evidence that seem relevant for the
knowledge at stake — e.g., as done for the case of subject-auxiliary inversion in
English by Legate and Yang (2002) — but as noted by Lewis and Elman (2001),
Perfors et al. (2011), and others, this methodology runs the risk of underestimating
the available information: even if we fail to find the evidence we are looking for,
a general-purpose learner might be able to take advantage of other sources of in-
formation. This methodology also risks overestimating the available information:
even if we find several instances of the evidence we are after, a general-purpose
learner might treat those instances as noise and fail to draw the inference that we
intuitively expect it to. In the absence of an actual learner that can use the infor-
mation that is available in an entire corpus it is just very hard to estimate whether
the data support the knowledge under consideration.3

How then can we reason about the information available to the child and ask
whether it suffices to support the acquisition of a given piece of knowledge by a
linguistically-neutral learner? In an ideal world, one would (a) take a sufficiently
powerful learner that can be seen to not be biased in favor of the relevant knowl-
edge; (b) train this learner on a corpus that corresponds to the linguistic input
that children receive; and (c) check whether the learner has indeed acquired the
knowledge under consideration. In such an ideal world, one might perhaps be able

3See Pullum and Scholz (2002), Lidz et al. (2003), Foraker et al. (2009), Hsu and Chater
(2010), Berwick et al. (2011), Perfors et al. (2011), and Pearl and Sprouse (2013), among others,
for much relevant discussion.

In studies of analogous inductive leaps in other species, this worry regarding the input has been
addressed by controlling the information available to the learners (see, e.g., Dyer and Dickinson
1994). To a certain extent this can be done with humans in experiments of artificial-grammar
learning (see, e.g., Wilson 2006). But for the main APSs in the literature, which concern the
normal course of child language acquisition, controlling the information available to the learner is
not an option.
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to work with a program induction algorithm for a general-purpose programming
language such as Python, which is sufficiently powerful to represent the kinds of
knowledge that linguists consider but can be seen as linguistically neutral. For
example, nothing about a language like Python seems to favor programs that in-
corporate wh-movement of the kind that English has over programs that do not.
One would still need to ensure that the learning algorithm itself does not bias the
learner for or against linguistic patterns, but this can be done in various ways, such
as by using a linguistically-neutral prior within a Bayesian learner. After training
on a developmentally-realistic corpus, corresponding to a few years of human lin-
guistic experience, the knowledge acquired by the algorithm can then be directly
inspected at stage (c).

In the actual world, combining (a) through (c) is currently impossible. For
many years, the combination of (a) and (b) was already a major barrier. General
program induction algorithms of the kind just mentioned, for example, address (a)
but fail on (b), since they are limited to very small training corpora. On the other
end of the scale, n-gram models can easily be trained on very large corpora, thus
addressing (b), but their representational capacity is much too limited to capture
or even to adequately approximate linguistic knowledge such as wh-movement.
Other models, such as probabilistic context-free grammars, fall between these
two extremes but still typically struggle with the combination of (a) and (b) when
it comes to patterns such as wh-movement.

The challenge of assessing the information available to the child has become
less of an obstacle lately, with the advent of Large Language Models (LLMs).
These models, which rely on modern architectures of artificial neural networks
(ANNs), do not yet fully address any of (a) through (c) — a matter that has been
discussed in recent literature and that we return to below — but they can be trained
on very large corpora and are generally quite successful in acquiring sequential
dependencies.4 This has allowed a large and growing literature to use these mod-
els to ask questions relating to the learning of linguistic knowledge by LLMs,

4Long before the current models, earlier ANN architectures were used in debates of the APS,
and in particular in attempts to argue against various versions of it (see Elman et al. 1996, Lewis
and Elman 2001, and Reali and Christiansen 2005, among others, and see Berwick et al. 2011 for
a critical analysis of some earlier attempts). Early ANNs, however, were limited in their capacities
and generally trained on small corpora, and it is unclear whether they could be used to reason
about whether a corpus that roughly corresponds to children’s linguistic exposure supports the
acquisition of complex grammatical knowledge. In this sense, these earlier models were not yet
capable of addressing the combination of (a) and (b). The ability of current models to train on
realistically large corpora is a helpful step towards using them constructively in debates about the
APS.
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often with specific reference to the APS. Of particular relevance to our purposes
here is work starting with Linzen et al. (2016) and including Bernardy and Lap-
pin (2017), Chowdhury and Zamparelli (2018), Gulordava et al. (2018), Kuncoro
et al. (2018), Marvin and Linzen (2018), Wilcox et al. (2018, 2019, 2023), Bhat-
tacharya and van Schijndel (2020), Chaves (2020), Warstadt et al. (2020), Huebner
et al. (2021), Ozaki et al. (2022), and Yedetore et al. (2023), among others, that
examines the preference of LLMs within minimal pairs. Here we focus on the ap-
plication of LLMs to the domain of wh-movement, following Wilcox et al. (2018,
2019, 2023), Chowdhury and Zamparelli (2018), Bhattacharya and van Schijndel
(2020), Chaves (2020), Warstadt et al. (2020), and Ozaki et al. (2022). In par-
ticular, we examine the claim by Wilcox et al. (2023; WFL) that current models
debunk an APS in this domain: one that says that the input is insufficiently rich to
allow a general-purpose learner to acquire wh-movement.5

The present paper extends WFL’s probing of LLMs’ knowledge of wh-movement,
arriving at conclusions that are at odds with those of WFL. We start, in Section 2,
with a brief overview of the general setup for the rest of the paper. Among other
things we discuss how LLMs can be used as tools for assessing the information
in a given corpus without assuming that these models are cognitively plausible in
any way and without even asking whether these models have achieved an adequate
knowledge of the pattern under consideration.6 Rather, we treat these models as
proxies for future learners and ask only whether these proxies provide a reason-
able approximation of the target pattern. In Section 3 we discuss the success of
LLMs in simple cases of wh-dependencies, as noted by WFL. In Section 4 we
show that the scope of the LLMs’ success is rather limited. In particular, LLMs
fail to adequately approximate human knowledge of a much-studied family of
cases, falling under the labels of parasitic gaps and across-the-board movement,
in which certain additional gaps make an otherwise problematic gap inside an is-
land acceptable. It is cases such as these that are typically taken by linguists to
suggest an APS, and our findings show that the performance of current LLMs does
not, in fact, debunk this APS. In Section 5, we ask whether the LLMs fail only
due to their own limitations or whether their failure reflects also the insufficient

5See Pearl and Sprouse (2013) and Phillips (2013) for earlier discussion of APS in the context
of acquiring islands.

6Our results do bear on the question of the cognitive plausibility of LLMs, however. In par-
ticular, since our results are negative they provide further evidence, if such was needed, that cur-
rent LLMs are not cognitively plausible models of human linguistic cognition, contra Piantadosi
(2023). See Katzir (2023), Kodner et al. (2023), Moro et al. (2023), and Rawski and Baumont
(2023), among others, for additional discussion.
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richness of their training data. We address this question by retraining one of the
models on corpora that are clearly not impoverished with respect to the relevant
patterns and showing that the performance of the model improves significantly on
the enriched corpus. This, in turn, strengthens the APS, if also tentatively. Section
6 concludes.

2 The general setup
Simplifying considerably, a gap, such as the missing complement of ‘with’ in (1a)
and (1c), appears if and only if it is preceded by an appropriate filler, such as the
wh-phrase ‘who’ in (1a) and (1b). When there is both a filler and a gap (1a) or
neither (1d) the result is good; when there is a filler and no gap (1b) or a gap and
no filler (1c) the result is bad.7

(1) a. I know who you talked with yesterday. (+filler,+gap)

b. * I know who you talked with Mary yesterday. (+filler,−gap)

c. * I know that you talked with yesterday. (−filler,+gap)

d. I know that you talked with Mary yesterday. (−filler,−gap)

There is much further nuance to wh-movement, some of which we will briefly
mention below. For now, let us consider how one might check if the input data are
rich enough for a linguistically-neutral learner to acquire the knowledge of wh-
movement. We mentioned earlier that in an ideal world, we could try to evaluate
a given APS by (a) taking a sufficiently powerful learner that can be seen to not
be biased in favor of the relevant knowledge; (b) training it on a developmentally-
realistic corpus; and (c) checking whether the learner has indeed acquired the
knowledge under consideration. We also mentioned that current LLMs do not
quite handle any of (a)–(c). We will briefly review some of the shortcomings of
LLMs with respect to each and then discuss how LLMs can still be helpful (if also
inconclusive) in studying the APS.

2.1 Powerful and unbiased?
We do not know how powerful LLMs are. Representationally, ANNs are Turing-
complete under idealized assumptions of infinite precision and computation time

7In order to make it possible to alternate the ±filler condition, and following WFL, we embed
the relevant examples under ‘I know’: ‘I know who...‘ (+filler) vs. ‘I know that...’ (−filler).
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(Siegelmann and Sontag, 1991, 1995). Under realistic assumptions, however, the
representational capacity of common ANN architectures are much more limited,
as shown for example by Weiss et al. (2018) and Merrill et al. (2020) for recurrent
neural networks, and by Hahn (2020) and Merrill et al. (2022) for the more recent
transformer architecture. Moreover, even this limited representational capacity
is often not attained in practice, and there is evidence suggesting that standard
training methods prevent at least some models from acquiring key patterns (see
El-Naggar et al. 2023 and Lan et al. 2022, 2023). Given these limitations we will
avoid assuming that current models can learn the pattern of wh-movement that we
focus on here.

The above might seem like a reason to avoid using ANNs for a study of the
APS in the domain of wh-movement. As mentioned in the introduction, how-
ever, we will only rely here on the ability of ANNs to provide a reasonable ap-
proximation of wh-movement. If a given ANN can reach such an approxima-
tion from a sufficiently rich corpus, we can use it as a proxy for a good general-
purpose learner, even if the ANN is not such a learner itself. We can then use
the ANN to study the APS. If the model provides a reasonable approximation of
wh-movement from a developmentally-realistic corpus, this suggests that a good
general-purpose learner will learn the correct pattern from that corpus and that
the APS in this domain does not hold. And if the model fails to reach such an
approximation this suggests that a good general-purpose learner will not learn the
correct pattern from that corpus and that the APS in this domain stands.

The use of ANNs as proxies still requires understanding how their biases re-
late to the approximations of the relevant linguistic patterns. Unfortunately, due
to how poorly these models are understood, we cannot say with any certainty
whether a given ANN is linguistically-neutral, and if not, whether its biases push
it in the direction of a given linguistic pattern. Until more is known about these bi-
ases, and as correctly cautioned by Rawski and Heinz (2019), any claims about the
neutrality of these models must be taken as tentative. Still, it strikes us as reason-
able to assume that current LLMs are not particularly biased against the linguistic
dependencies under consideration. This is especially so since these models have
been developed over the past decades so as to succeed in capturing key patterns in
linguistic sequences; therefore, if they do have linguistically-relevant biases after
all, those are likelier to be in favor of the patterns under consideration rather than
against them. Consequently, if the models fail to acquire an adequate approxi-
mation of the relevant dependencies, this failure can be taken to be informative.
More directly, and as mentioned above, we will show in Section 5 that with richer
training data, at least one model improves its approximation of the pattern of wh-
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movement, which will suggest that the failure of the model on its original training
data is not due solely to its biases and other limitations but also to the lack of
sufficient evidence in the data.

2.2 Training on developmentally-realistic corpora?
As discussed in detail by Warstadt and Bowman (2022), current models are not
trained on developmentally-realistic corpora. Such a corpus would be the equiva-
lent of the relevant input that a child receives over the first few years of their life.
But the training data for current models are more informative than the input to the
child in some ways and less informative in others. They are more informative,
for example, in that they are orders of magnitude larger than what humans are
exposed to in a whole lifetime. They are less informative in that they are purely
textual and do not reflect prosody, environmental and social cues, and input from
modalities other than speech, all of which are in principle available to children.
See Warstadt and Bowman (2022) for further discussion.

The particular pattern that we discuss here can arguably be investigated on the
basis of the information available in standard training corpora. Of course, this is
not to say that the dependencies under consideration do not depend on such cues
(a matter of ongoing discussion in the literature). But if, as WFL suggest and
as our results further support, the basic pattern of wh-movement can be approxi-
mated based on text, there is no reason to think that the further approximation of
parasitic gaps and across-the-board movement will crucially require extra-textual
cues. This point will be reinforced by the evidence from retraining in Section 5.

As to the size and quality of the text in our training data, we use a range of
corpora, reviewed immediately below, that span the spectrum from the very small
(CHILDES) through mid-size (Wikipedia) to the very large (the training sets for
GPT-2/3/j). We do so in an attempt to make up for the inadequacy of individual
corpora to some extent, but we acknowledge that this is at best a partial remedy.

The models we use in our evaluation are the following, also summarized in
Table 1: two models from Yedetore et al. (2023), an LSTM and a Transformer,
that were trained on the CHILDES corpus of child-directed speech (MacWhin-
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ney, 2014);8,9 an LSTM trained on English Wikipedia (Gulordava et al., 2018);
a Transformer trained on English Wikipedia;10 Open AI’s GPT-2 (Radford et al.,
2019); GPT-j (Wang and Komatsuzaki, 2021); and OpenAI’s GPT-3 (Brown et al.,
2020).11 The two CHILDES-trained models, as mentioned, are taken from Yedetore
et al. (2023). The LSTM trained on English Wikipedia and both GPT-2 and GPT-3
are used by WFL in their evaluation.12

In order to get a very rough sense of the number of years of linguistic ex-
perience that a given training corpus corresponds to we follow common practice
(used also by WFL) based on Hart and Risley (1995)’s estimates about the number
of words that American children typically hear during acquisition. According to
these estimates, the models just mentioned were exposed to amounts of data rang-
ing from ten months of linguistic experience (CHILDES LSTM and Transformer)
through eight years of linguistic experience (Wikipedia LSTM and Transformer)
to between 10 and 500 human lifetimes (GPT-2, GPT-3, and GPT-j); see Table 1.
Indeed, WFL admit that the linguistic experience of some of the models is prob-

8The models in Yedetore et al. (2023) were trained on utterances of 52 children between the
ages of six months to 12 years, from the North American English subset of the CHILDES cor-
pus. The total training size amounts to 9.6 million words, which is considerably less than what
children typically receive by the time they exhibit knowledge of the pattern under consideration
here. Qualitatively, on the other hand, this training corpus is arguably more realistic than the much
larger training corpora used for the remaining models.

9Out of ten models per architecture (LSTM/Transformer) trained in Yedetore et al. (2023) with
different random seeds, we use the model with the best test perplexity.

10We added this Transformer since we wanted to evaluate the information in the English
Wikipedia training corpus (the most realistic developmentally in terms of size of all the train-
ing corpora under consideration) using a more current architecture than the LSTM that WFL use.
We used one of the large Transformer architectures used in Yedetore et al., 2023: 8 layers, hidden
and embedding size 1600, and 16 attention heads, trained using the same training regime. Since
the current task is limited to single sentences, we lowered the Transformer’s context size to 30
(compared to 500 in Yedetore et al. 2023), closer to the average sentence size in the Wikipedia
dataset (27.2).

11Model version ‘text-davinci-003’, the latest supported version not fine-tuned us-
ing reinforcement learning from human feedback (RLHF) for chat and other applica-
tions; however, the model is still trained with supervised fine-tuning, and it is propri-
etary. See https://archive.today/2023.10.07-060351/https://platform.
openai.com/docs/models/gpt-3-5 for OpenAI’s documentation retrieved October 2023
(archived snapshot).

12WFL also use another LSTM, from Jozefowicz et al. (2016). We chose not to include that
model in our evaluation since it is extremely slow to work with. For WFL’s evaluation, which
used a small number of sentences, this was not a problem, but our evaluation relied on a much
larger number of sentences, making Jozefowicz et al. (2016)’s model impracticable.
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Model ∼Tokens in training data ∼Human equivalent
CHILDES LSTM
(Yedetore et al., 2023)

8.6 million 10 months

CHILDES Transformer
(Yedetore et al., 2023)
Wikipedia LSTM
(Gulordava et al., 2018)

90 million 8 years

Wikipedia Transformer
GPT-2 (Radford et al.,
2019)

8 billion 730 years

GPT-3 (Brown et al.,
2020)

114 billion 10,300 years

GPT-j (Wang and
Komatsuzaki, 2021)

402 billion 36,540 years

Table 1: Training data size of the seven language models considered here, and
the human linguistic experience equivalent to these data sizes; human equivalents
follow WFL (based on Hart and Risley 1995) who assume a daily exposure to
∼30,000 words by children, or around 11 million words per year.

ably above and beyond that of children, and could thus weaken their argument
against the APS in case of successful learning by the models. However, in the
case of a negative result, as in the current work, a large training corpus strength-
ens the argument: if these models are exposed to amounts of data that go beyond
what children are exposed to and still don’t learn the constructions under consid-
eration, this serves to strengthen the APS for these phenomena.

2.3 Inspecting LLM knowledge?
As mentioned, LLMs are very opaque. In particular, we cannot at present check
whether they believe that a given continuation such as ‘yesterday’ or ‘Mary’ is
grammatical following a given prefix such as ‘I know who/that you talked about’.
In fact, it is not clear whether current models even have a notion of grammaticality
to begin with.

What LLMs do tell us is how likely they consider any given continuation. The
problem is that grammaticality and probability are generally very different no-
tions. And while the two are correlated — many ungrammatical continuations are
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also unlikely on any sensible notion of probability, and grammatical continuations
are sometimes probable — this correlation is far from perfect (see Chomsky 1957,
Berwick 2018, and Sprouse et al. 2018, among others, for relevant discussion). In
particular, many grammatical continuations are highly unlikely; e.g., ‘splat’ is a
grammatical but unlikely continuation of ‘John would like to eat a freshly-made’.
And in some cases an ungrammatical continuation can be likely; e.g., ‘is’ is a
likely but ungrammatical continuation of ‘The keys to the cabinet’, an instance of
so-called agreement attraction (see, e.g., Bock and Miller 1991 and Wagers et al.
2009).13

In the cases we are interested in here, however, probability and grammatical-
ity are often quite well aligned, and — as in many other cases discussed in the
literature mentioned earlier on evaluating LLMs on minimal pairs — it is easy to
find examples such as (1) in which the grammatical continuation is significantly
more probable than the ungrammatical one on any sensible notion of probability.
So if we focus on such cases where grammaticality and probability are aligned,
and if ANNs are sufficiently good learning models — at least, good enough to
provide a crude approximation of the pattern under consideration — then we can
use the probabilistic predictions of the resulting LLMs to evaluate the APS. If
a given LLM systematically assigns a much higher probability to the grammati-
cal continuation, this can be taken to suggest that the pattern of wh-movement is
represented sufficiently well in the training data for the model to approximate it.
While it remains unclear, as mentioned above, whether current ANNs themselves
have a representation of grammaticality as distinct from probability or whether
they can learn the true pattern, their success when trained on developmentally-
realistic corpora would suggest that a good linguistically-neutral learner that does
have such representational abilities might acquire the pattern.14 Conversely, if

13Agreement attraction is a performance error. Speakers make such errors when distracted or
in a hurry but less so when given more time. ANNs do not make this distinction: when they give
a higher probability to an ungrammatical continuation their response reflects a faulty knowledge
rather than a resource problem. This serves to further illustrate the inadequacy of ANNs as models
of linguistic cognition but does not pose a problem for our use of these models as a tool for
assessing the informativeness of the input data.

14Kodner and Gupta (2020) and Vázquez Martı́nez et al. (2023) note that success on current
benchmarks of minimal pairs of the kind used below is no guarantee of human-like representations
or learning. This observation is problematic for attempts to attribute to LLMs knowledge of actual
linguistic patterns, but it does not affect our investigation below, which only uses LLMs as proxies
for better learners and only relies on the ability of the LLMs to reach a reasonable approximation
of the relevant pattern for simple cases. Even if the LLMs pass the test due to an approximation
that is very different from the actual linguistic generalization, the success will still support the
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the LLM does not systematically assign a much higher probability to the gram-
matical continuation, one potential explanation for this failure (though of course
not the only one, and we discuss some potential alternatives below) is that the
pattern of wh-movement is not sufficiently well represented in the input data to
merit its approximation by the model. This, in turn, would suggest that a good
linguistically-neutral learner will not acquire the pattern from the input data. In
this way, LLMs — even if their representational inadequacies prevent them from
providing more than a crude approximation of the pattern under consideration —
can serve as useful proxies for future general-purpose learners and help us reason
about the information available in the input data.

3 LLMs succeed in very simple cases of wh-movement
How rich is the input, then, when it comes to filler-gap dependencies of the wh
kind? In very simple cases such as (1) above, the LLMs considered by WFL assign
a higher probability to the grammatical continuation than to the ungrammatical
one. Above we mentioned that success in cases such as those considered here,
where probability and acceptability are aligned, should involve not just a higher
probability to the grammatical continuation but a much higher one. However, in
order to give the models a better chance of refuting the APS, we will adopt a
very lenient criterion for success and only ask if the probability assigned to the
grammatical continuation is higher than that assigned to the ungrammatical one,
without taking into account how much higher it is. This will allow a network
to be considered successful even if it prefers the grammatical continuation by
the slightest of margins. This lenient condition for success will strengthen our
conclusions from cases of failure, which we get to in the sections below: if a
network fails even with this lenient condition of success, this failure can be taken
seriously.

Here and below we will follow WFL (and the psycholinguistic literature that
they build on) and illustrate using surprisal values, where the surprisal of x is
− logP (x), which is simply the negative of the logarithmically-scaled probability
of x.15 The lower the probability the higher the surprisal; when the probability ap-

notion that the pattern is sufficiently well represented in the training data for a good model to
acquire it.

15WFL’s methodology includes looking not just at +filler cases, as in (1a) and (1b), but also at
the corresponding −filler ones, as in (1c) and (1d). We will follow WFL in this in our discussion
in sections 4.3 and 5 below, but for the present we will attempt to keep the presentation simple by
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proaches 0 the surprisal tends to infinity, and as the probability approaches 1 the
surprisal tends to 0. Since higher probability corresponds to lower surprisal, sup-
port for the model will come from its assigning lower surprisal to a grammatical
continuation than to an ungrammatical one, which, as mentioned, is what WFL
indeed find in simple cases.

Figure 1: Raw surprisal values outputted by the LLMs for the grammatical (1a),
in blue, and ungrammatical (1b), in orange. All models correctly output lower
surprisal values for the grammatical continuation.

Figure 1 illustrates the preference of the models considered here for the gram-
matical continuation over the ungrammatical one in a very simple case by plotting
surprisal values for sentences (1a) and (1b). All models assign a lower surprisal
value (i.e., a higher probability) to the grammatical continuation ‘yesterday’ in the

considering only +filler pairs.
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gapped sentence than to ‘Mary’. This suggests that the input is sufficiently rich
for a general-purpose learner to acquire from it an approximation of some basic
aspects of wh-movement.

WFL further suggest that the LLMs go beyond the basic knowledge that fillers
and gaps go hand in hand. Specifically, they claim that LLMs are aware of islands
(Ross, 1967): configurations in which a gap is bad even if there is a filler upstream.
We illustrate this with the following:

(2) * I know who [[the question whether jumped] surprised Mary yester-
day].

While, as discussed above, a filler upstream generally increases the LLMs’
expectation of a gap downstream, this expectation should be reduced within the
subject of the embedded clause in (2). This subject is an island to movement, and
extraction from within it is unacceptable and presumably highly unlikely. Figure 2
shows that the models are indeed surprised by the gap in (2), suggesting that their
training corpora are informative with respect to this aspect of wh-movement.16

WFL consider a range of similar cases and conclude that linguistically-neutral
learners can acquire the intricacies of wh-movement from the input data. In other
words, the input data are not impoverished after all with respect to wh-movement,
and an APS in this domain falls apart.

4 LLMs fail on slightly more complex (but still sim-
ple) cases of wh-movement

We now turn to a well-studied nuance of islands: in various cases, an otherwise
impossible gap inside an island is made possible by a separate gap elsewhere. For
example, while (3a), with a subject-internal gap, is bad, its counterpart in (3b),
which has an added gap in the direct-object position of the main clause, is good.
This phenomenon is known as a parasitic gap (PG): the gap inside the subject
island becomes acceptable parasitically, based on the direct-object gap.17

16The literature discusses various cases in which extraction from subjects (and other islands) is
judged acceptable by speakers. Here and below we focus on relatively simple examples in which
speaker judgments are clear, and our evaluation will concern the extent to which LLM preferences
approximate these clear speaker judgments.

17Not all impossible gaps can be rescued in this way. For example, adding further gaps does
little to improve (2) above.
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Figure 2: Raw surprisal values for the island violation sentence in (2), in blue,
and a variant of the sentence with no island violation (we use ‘John’ instead of
the island-internal gap), in orange. All models are correctly surprised to find a
gap within the island. Note that since the variant with ‘John’ has no downstream
gap that would correspond to the upstream filler, it is ungrammatical. For a gram-
matical version one could replace ‘Mary’ with a gap. This matter, however, is
orthogonal to the surprisal at the island-internal gap, which is what this figure il-
lustrates.

(3) a. * I know who [John’s talking to ] is going to annoy you soon.
b. I know who [John’s talking to ] is going to annoy soon.

Somewhat similarly, while (4a), with a gap inside a conjunct, is bad, its coun-
terpart in (4b), where there is a gap in the other conjunct as well, is good. This
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phenomenon is known as across-the-board movement (ATB).18

(4) a. * I know who John [met recently] and [is going to annoy you
soon].

b. I know who John [met recently] and [is going to annoy soon].

4.1 An initial failure
Do LLMs approximate the patterns of PG and ATB? Both Wilcox et al. (2018)
and Chaves (2020) mention PG and ATB in passing, but we are not familiar with
attempts in the literature to evaluate the success of LLMs in approximating these
patterns. Figures 3-4 illustrate that all the LLMs that we are considering here fail
on (3a) and (4a), even on our very lenient condition of success: they do not just
fail to assign a much higher probability to the grammatical continuation over the
ungrammatical one in this simple case; they actually prefer the ungrammatical
continuation. This seems to indicate that the ANNs have failed to acquire a good
approximation of the relevant constructions. This challenges WFL’s claim that
LLMs undo the APS in this domain: for LLMs to undo this APS, they would need
to provide a passable approximation of PG and ATB, but their performance above
does not suggest such an approximation.

If our entire empirical basis is the failure we just saw, however, our conclusions
will remain weak. This is so for the following reason: while the behavior of a good
linguistically-neutral learner on the examples above would indeed be informative
about the APS, it is possible that current ANNs are simply not sufficiently good
learners in this regard, and the inadequacies of the ANNs can in turn significantly
limit our conclusions.

In the remainder of the present section we attempt to address the general con-
cern about the adequacy of the ANNs, which we break down into two separate
investigations. We first ask whether the failure that we just saw is an accident
of the particular lexical choices that we used (Section 4.2). We then ask, build-
ing on WFL’s methodology, whether the failure was due to a general preference
for ungapped continuations that is so strong as to override a preference for the
correct form (Section 4.3). Our investigations concern ways in which the models
might have an approximation of PG and ATB that is obscured by weaknesses of

18We set aside the important question of what stands behind PGs and ATB and whether the two
are related. See Ross (1967), Engdahl (1983), Haı̈k (1985), Williams (1990), Munn (1992), Postal
(1993), Nissenbaum (2000), and Hornstein and Nunes (2002), among others, for discussion.
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Figure 3: Raw surprisal values for the ungrammatical sentence (3a) which violates
a subject island, in orange, and its grammatical variant (3b), in blue, where a
parasitic gap makes it possible to escape the island. For measuring the model’s
expectation for a gap, surprisal is measured at the adverb ‘soon’, which indicates
a gap. This is compared with surprisal at ‘John’ which plugs the gap at the same
position. All networks wrongly assign a higher surprisal value to the grammatical
continuation.

the models. By helping these models at test we aim to reveal this approximation
if it exists, but in both sections we will fail to find evidence for it. This, in turn,
will strengthen the challenge to WFL’s claim: even with additional help at test,
the models show no evidence that might undermine the APS.
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Figure 4: Raw surprisal values for the ungrammatical sentence (4a) which vio-
lates the coordinate structure constraint (orange), and its grammatical variant (4b)
where ATB movement makes it possible to avoid the constraint (blue). All net-
works wrongly assign a higher surprisal value to the grammatical continuation
‘soon’ rather than to ‘John’.

4.2 Lexical accident?
Our illustration above of how the LLMs prefer the ungrammatical continuation
over the grammatical one for ATB and PG used one pair of sentences for each of
the two patterns. This raises the obvious worry that the failure of the LLMs reflects
some accidents of the specific sentences that we used. This worry is lessened
to some extent by the fact that we looked at a broad range of different models
trained on different corpora: it seems unlikely that all these models and all these
training corpora just happen to have the same blind spot when it comes to the

18



specific sentences that we used above and that otherwise the models approximate
the patterns well. Still, it is clearly useful to examine more systematically what
happens when we vary the lexical choices for the two patterns.

In order to test the performance of the networks on PG and ATB sentences
more broadly, we systematically varied the lexical choices in (3) and (4), repeated
here.

(5) a. * I know who [John’s talking to ] is going to annoy you soon.
b. I know who [John’s talking to ] is going to annoy soon.

(6) a. * I know who John [met recently] and [is going to annoy you
soon].

b. I know who John [met recently] and [is going to annoy soon].

We generated the sentences by template, using simple context-free grammars.
Excerpts from these grammars and a sample of the generated sentences are given
in Tables 2 and 3. The full grammars are given in Appendix A.19 8,064 sentence
tuples were generated for PG and 6,624 for ATB. For a given model and a given
pair of sentences, we looked at the surprisal of the model at the critical point on
each member of the pair. For (5), for example, we checked whether after the
shared prefix “I know who [John’s talking to ] is going to annoy . . . ” surprisal
was higher at the ungapped, ungrammatical continuation ‘you’ as in (5a) than in
the gapped, grammatical continuation ‘soon’ as in (5b). If it was, and in line with
our lenient condition for success that is satisfied by any kind of preference for the
grammatical continuation regardless of its magnitude, this counted as a success.
We will write ∆ = Surprisal(ungapped continuation|shared prefix)−Surprisal(gapped
continuation|shared prefix), and we will write ∆+filler to indicate that the shared
prefix has an upstream filler. Using this notation, we can write the condition for
success as ∆+filler > 0.

Figure 5 plots the results of examining ∆+filler preferences for the PG and
ATB datasets. In both cases, the best performance by a large margin is that of
GPT-3, with 40.9% accuracy on the PG dataset and 71.6% accuracy on the ATB
dataset. We are not sure to what extent these numbers can be taken to indicate
an approximation of the relevant patterns. If it is a success then it is hardly a
striking one. Nor is it particularly informative: recall that GPT-3 has been trained

19All experimental material, artificial grammars, and training and test data, as well as the source
code, will be published as supplementary material once the paper can be de-anonymized. We will
also be happy to share the material with referees anonymously during the review process.
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Figure 5: Model accuracy on the ∆+filler condition for the PG and ATB
datasets. Accuracy is measured as the ratio of cases where the model assigns a
higher probability to the grammatical sentence continuation.

on the equivalent of 10,000 years of linguistic experience (and is also further im-
proved manually in various ways), so even if it approximates the relevant patterns,
this does not indicate that a general-purpose learner would acquire the relevant
knowledge from a developmentally-realistic corpus of just a few years of linguis-
tic experience. Setting GPT-3 aside, the models perform very poorly, with the
best performance on PG being Wikipedia LSTM’s 18.1% accuracy and the best
performance on ATB being CHILDES Transformer’s 30.1% accuracy. In other
words, the models do not just fail to prefer the grammatical continuation over the
ungrammatical one, they positively prefer the ungrammatical continuation in the
vast majority of the pairs. Helping the LLMs by testing them on a wide range of
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lexical choices, then, fails to reveal any evidence that the models have approxi-
mated the patterns of parasitic gaps and across-the-board movement.

4.3 A preference for ungapped continuations?
Our second investigation, building on WFL’s methodology, asks whether the net-
works have a local preference for or against gapped continuations that might make
them succeed or fail for the wrong reasons.

Consider again (5) (=“I know who [John’s talking to ] is going to annoy
*you/✓ soon”). A sufficiently strong local preference about the critical area
can affect a given ANN’s success regardless of whether it has acquired any ap-
proximation of PG, or of wh-movement in general. It could be, for example, that
the ANN assigns a higher probability to the grammatical continuation ‘soon’ than
to the ungrammatical ‘you’ but that it does so because it ignores the filler (‘who’)
altogether and simply prefers ‘annoy soon’ to ‘annoy you’. Conversely, it is con-
ceivable that the ANN has, in fact, acquired knowledge of wh-movement but that
it incorrectly prefers ‘you’ to ‘soon’ because of similarly irrelevant reasons. For
example, perhaps it has a strong preference for ungapped continuations in gen-
eral, or perhaps it has such a preference in the present case because the lexical
frequency of ‘you’ is very high.

To what extent might such local preferences affect the ANNs? We are not
entirely sure. A good enough learner would presumably not get confused by such
irrelevant factors, and the fact that all our models perform well on very simple
filler-gap dependencies illustrated in Figures 1 and 2 is at least suggestive of their
ability to overcome any such confusion when the training data are sufficiently
rich. However, beyond this suggestive evidence it is hard to tell whether current
ANNs are good enough learners in this sense, and it strikes us as reasonable to
further investigate possible confusion by irrelevant factors that might override the
preference for the correct pattern.

Following WFL, we will explore the possible effect of irrelevant factors of the
kind just mentioned by looking at each LLM’s preference for gapped over un-
gapped continuations and comparing this preference when there is an upstream
filler and when there is no such filler. When an upstream filler is present, the
model’s preference for a gapped continuation (e.g., ‘annoy soon’) over the un-
gapped continuation (‘annoy you’) should be stronger than when an upstream
filler is absent. In other words, we will be looking at whole paradigms of the
shape we already saw in (1) and not just at those portions of the paradigm in
which a filler is present. Such a paradigm is illustrated for PG in (7) and for ATB
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in (8). Underlined words indicate the ±filler alternations. Words in bold indicate
the critical region that shows whether the continuation is gapped or not.

(7) PG
+gap −gap

+filler I know who John’s talking to
is going to annoy soon.

*I know who John’s talk-
ing to is going to annoy you
soon.

−filler *I know that John’s talking
to Mary is going to annoy
soon.

I know that John’s talking to
Mary is going to annoy you
soon.

(8) ATB
+gap −gap

+filler I know who John met re-
cently and is going to annoy
soon.

*I know who John met re-
cently and is going to annoy
you soon.

−filler *I know that John met Bob
recently and is going to an-
noy soon.

I know that John met Bob re-
cently and is going to annoy
you soon.

Extending our lenient condition for success used above, we will now con-
sider it a success for a given model on a particular paradigm if its preference for
the gapped continuation (regardless of its absolute magnitude or even its sign) is
higher in the presence of an upstream filler than in its absence. Above we intro-
duced the notation ∆ = Surprisal(ungapped continuation|shared prefix)−Surprisal(gapped
continuation|shared prefix) for the extent of the preference for the gapped contin-
uation over the ungapped continuation, and we wrote ∆+filler when the shared
prefix had an upstream filler. We will now consider also the analogous ∆−filler,
for the part of the paradigm where the shared prefix does not have an upstairs filler.
And we will consider it a success for the model if ∆+filler > ∆−filler. This lenient
condition of cross-paradigm success follows the logic of difference-in-differences
and is very much in line with WFL’s evaluation.20

In order to test the models across a large number of paradigms, with many
different lexical choices, we used the same grammars mentioned in the previous

20Of course, this new criterion still allows for various irrelevant factors to affect success. For
example, a model could become successful simply by deciding that ‘who’ corresponds to a high
probability for ‘soon’ and a low probability for ‘you’ anywhere in the sentence and that ‘that’
corresponds to the opposite. We set aside such worries here.
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section. In our earlier discussion we used the +filler pairs generated by the
grammar. In the present section we use also the corresponding −filler pairs, and
from each paradigm of +filler and −filler pairs we compute ∆±filler values.
Excerpts from the grammars are provided in Table 2 (for PGs) and Table 3 (for
ATB).

PG Grammar

S → ⟨PREAMBLE⟩ ⟨±F ⟩ ⟨±G⟩
⟨PREAMBLE⟩ → I know
⟨+F ⟩ → who ⟨NAME1⟩⟨GEN⟩ ⟨NP ⟩
⟨−F ⟩ → that ⟨NAME1⟩⟨GEN⟩ ⟨NP ⟩ ⟨NAME2⟩
⟨+G⟩ → ⟨CONN⟩ ⟨V ⟩ ⟨ADV⟩
⟨−G⟩ → ⟨CONN⟩ ⟨V ⟩ ⟨OBJ⟩ ⟨ADV ⟩
⟨GEN⟩ → ’s
⟨NP ⟩ → ⟨NP SIMPLE⟩ | ⟨NP COMPLEX⟩
⟨NP SIMPLE⟩ → ⟨GERUND⟩
⟨NP COMPLEX⟩ → ⟨N EMBEDDED⟩ ‘to’ ⟨V EMBEDDED⟩
⟨CONN⟩ → ‘is about to’ | ‘is likely to’ | ‘is going to’ | ‘is expected to’
⟨V ⟩ → ‘bother’ | ‘annoy’ | ‘disturb’
⟨OBJ⟩ → ‘you’ | ‘us’ | ‘Kim’
⟨GERUND⟩ → ‘talking to’ | ‘dancing with’ | ‘playing with’
⟨N EMBEDDED⟩ → ‘decision’ | ‘intent’ | ‘effort’ | ‘attempt’ | ‘failure’
⟨V EMBEDDED⟩ → ‘talk to’ | ‘call’ | ‘meet’ | ‘dance with’ | ‘play with’
⟨ADV ⟩ → ‘soon’ | ‘eventually’
· · ·
⇒ I know who John’s talking to is going to annoy soon. (+filler,+gap)

⇒ * I know who John’s talking to is going to annoy you soon. (+filler,−gap)

⇒ * I know that John’s talking to Mary is going to annoy soon. (−filler,+gap)

⇒ I know that John’s talking to Mary is going to annoy you soon. (−filler,−gap)

Table 2: Excerpt from the context-free grammar used to generate PG sentences for
the experiments in Section 4.3, and sample sentences generated from it. Under-
lined words alternate according to the ±filler condition; words in bold mark the
position where the ±gap condition becomes evident and surprisal is measured.

Figure 6 plots the LLMs’ performance for the cross-paradigm (difference-in-
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ATB Grammar

S → ⟨PREAMBLE⟩ ⟨±F ⟩ ⟨CONN⟩ ⟨±G⟩
⟨PREAMBLE⟩ → I know
⟨+F ⟩ → who ⟨NAME1⟩ ⟨V P1⟩ ⟨ADV 1⟩
⟨−F ⟩ → that ⟨NAME1⟩ ⟨V P1⟩ ⟨NAME2⟩ ⟨ADV 1⟩
⟨+G⟩ → ⟨CONN⟩ ⟨V P2⟩ ⟨ADV2⟩
⟨−G⟩ → ⟨CONN⟩ ⟨V P2⟩ ⟨OBJ⟩ ⟨ADV 2⟩
⟨CONN⟩ → ‘and is going to’
⟨ADV 1⟩ → ‘recently’ | ‘lately’
⟨ADV 2⟩ → ‘soon’ | ‘today’ | ‘now’
⟨CONN⟩ → ‘and is going to’
⟨V P1⟩ → ⟨V P1 SIMPLE⟩ | ⟨V P1 COMPLEX⟩
⟨V P1 SIMPLE⟩ → ‘met’ | ‘saw’
⟨V P2⟩ → ⟨V P2 COMPLEX⟩ | ⟨V P2 SIMPLE⟩
⟨V P2 SIMPLE⟩ → ‘hug’ | ‘slap’ | ‘kiss’
⟨OBJ⟩ → ‘you’ | ‘us’ | ‘Kim’
· · ·
⇒ I know who John met recently and is going to hug soon. (+filler,+gap)

⇒ *I know who John met recently and is going to hug you soon. (+filler,−gap)

⇒ *I know that John met Bob recently and is going to hug soon. (−filler,+gap)

⇒ I know that John met Bob recently and is going to hug you soon. (−filler,−gap)

Table 3: Excerpt from the context-free grammar used to generate ATB sentences
for the experiments in Section 4.3, and sample sentences generated from it. Un-
derlined words alternate according to the ±filler condition; words in bold mark
the position where the ±gap condition becomes evident and surprisal is measured.

differences) condition. All models except CHILDES LSTM have higher scores
for the present measure of ∆+filler > ∆−filler than they did for the earlier measure
of ∆+filler > 0 (Figure 5), and this holds for both PG and ATB. However, we can
see that only GPT-j and GPT-3 obtain scores that are convincingly high. But
GPT-j is trained on the equivalent of 500 lifetimes of human linguistic exposure,
and GPT-3 is trained on the equivalent of 100 lifetimes and fine-tuned further
on downstream language tasks. Even GPT-2, trained on the equivalent of ten
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lifetimes — and thus two orders of magnitude at least above what a child hears
by the time they have knowledge of PG and ATB — only reaches modest scores,
below 80%. And the smaller models obtain much lower scores. This includes the
English Wikipedia LSTM and Transformer, whose training corpus corresponds to
about 8 years of linguistic exposure, arguably the most realistic developmentally
in terms of size of all the models.

Figure 6: Model accuracy on the difference-in-differences condition for the PG
and ATB datasets. Accuracy is measured as the ratio of cases where ∆+filler >
∆−filler, i.e., when the model shows a relative higher preference for a gap when
the gap follows a filler than when it does not.

The gradual improvement of LLM scores as the corpora become very large
suggests that current models are in principle capable of improving their approx-
imation of the pattern of wh-movement, but also that this improvement requires
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much more information than what is present in a corpus that corresponds to any-
thing a child might encounter. We return to the potential of richer training data to
improve an LLMs approximation of the patterns under consideration in the next
section. In the meantime we conclude that even with considerable help at test, the
performance of the LLMs provides no evidence against the APS.

5 A general inability to acquire a suitable prefer-
ence?

Recall WFL’s contention that LLMs show that a linguistically-neutral learner can
acquire knowledge of wh-movement from a realistic corpus. In the face of our
results from the previous section, WFL’s claim needs to be abandoned: current
LLMs provide no basis for such a conclusion. Of course, this is not the same as
saying that LLMs provide evidence for the APS: the failure of the LLMs might be
due entirely to their own limitations and not be informative about the richness of
the training corpora. In the present section, however, we will go one step further
and provide tentative evidence that the failure of the LLMs is due also to the insuf-
ficient richness of the training corpora and not just to weaknesses of the ANNs.
We do so by helping one of our models at training: we retrain the Wikipedia
Transformer model on an enriched corpus that includes multiple instances of PG
and ATB. As we show, the performance of the model improves significantly on
the enriched corpus, suggesting that the failure on the original corpus reflects the
poverty of that corpus.

The additional instances for the enriched training corpus are generated by tem-
plate, using a variant of the CFGs that we used in sections 4.2 and 4.3. To increase
the probability that an improved performance by the model will reflect generaliza-
tion rather than memorization, the structure of the additional instances is different
from those of the test sentences from Section 4.3. Example training and test sen-
tences are given in Table 4. The full CFGs used in creating the additional instances
are given in Appendix C.

From each CFG of each phenomenon (PG/ATB), we sampled 100 sentences
for the two grammatical conditions (+filler,+gap and −filler,−gap), total-
ing 200 extra sentences. These sentences were added to the original English
Wikipedia dataset, and the model was trained using the same regime as in Yedetore
et al. (2023) (itself based on the training regime in Gulordava et al., 2018). The
model was trained for 48 hours or until reaching the early-stop condition from
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PG

Training Examples
• I know who John’s attitude towards upset yesterday.
• I know who John’s friendship with will annoy soon.
• I know who John’s praising of amused lately.
Test Examples
• I know who John’s talking to is about to bother soon.
• I know who John’s playing with is going to annoy eventually.
• I know who John’s failure to dance with is going to disturb soon.

ATB

Training Examples
• I know who John saw yesterday and kissed today.
• I know who John helped recently and married today.
• I know who John hugged often and will insult soon.
Test Examples
• I know who John met recently and is going to complain to
Patricia about soon.
• I know who John said that Mary saw lately and is going to be
glad to hug now.
• I know who John asked Mary about lately and is going to claim
that Patricia will hug today.

Table 4: Example training and test sentences for the retraining task in Section 5.
A sample of simplified training PG and ATB sentences are added to the model’s
original training data (English Wikipedia), and the model is then tested on the full
battery of sentences from Section 4.3. The full CFGs for the training and test
datasets are given in Appendices A and C.

Yedetore et al. (2023) which stops the training if the validation loss does not im-
prove for more than two consecutive epochs. Due to the long training times of the
model, the results reported here are for one random seed with no hyper-parameters
search. Since the goal of this experiment was to demonstrate the model’s ability
to improve significantly given more data, this was sufficient.

The model’s performance on the training and test set, before and after retrain-
ing, is visualized in Figure 7.

For both ATB and PG the performance of the model improves significantly.
For ATB, the raw ∆+filler > 0 accuracy score improves from 13.7% to 35.8%,
and the difference-in-differences ∆+filler > ∆−filler score improves from 56.7%
to 97.2%. This is a dramatic improvement over the performance of the model on
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Figure 7: Accuracy for the retrained Transformer model, when trained on the
original Wikipedia vs. when trained on the same dataset with extra PG and ATB
sentences. The left figures plot accuracy for the +filler condition, and the right
figures plot accuracy for the difference-in-difference condition.
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its original corpus and is higher than the performance of other architectures when
trained on a much larger corpus. For PG, the raw score improves modestly, from
1.3% to 5.3%, while the difference-in-differences score improves from 14.4% to
65.5%. The raw score for PG certainly doesn’t inspire confidence that the model
has acquired the dependency. Recall, however, that this is not what we were after
here. Our question was whether the model is so weak that its poor performance
when trained on the original corpus reflects its inability to do better. The retrain-
ing results show that the model can do considerably better once the corpus is
sufficiently rich.

Caution is required in interpreting this result. Like all current LLMs, our
model is opaque, and we are limited in the conclusions that we can draw from it.
In particular, while we observe that it has improved when retrained on a corpus
that is enriched in a certain way, it is possible that there are other kinds of evidence
for the patterns under consideration that a good general-purpose learner would be
able to make use of and that our model cannot. What we found is consistent with
such evidence being in the original corpus. Our use of retraining data that were
structurally different from the test data was aimed at lessening this worry, since
improvement suggests an ability to generalize and not just memorize. This, in
turn, increases the plausibility that the model would have been able to generalize
from other kinds of relevant examples if the original corpus had been sufficiently
rich. But the opacity of the model prevents us from saying more, and our results
here must be qualified accordingly.

6 Conclusion
The APS has been central to linguists’ reasoning about innateness for a long time.
It has always been difficult, however, to estimate just how much information a
linguistically-neutral learner might hope to extract from a realistic input. Modern
ANNs promise to change this, and their linguistic knowledge and learning have
been the topic of research of a growing literature. We focused here on WFL,
who use LLMs to argue that the stimulus is rich enough when it comes to wh-
movement and that this dismantles the APS in this domain. We showed that this
conclusion is premature: by looking at parasitic gaps and across-the-board move-
ment we showed that several ANNs fail to reach a passable approximation of the
pattern of wh-movement.

Is it possible that some future linguistically-neutral learner will succeed where
the models that we have examined have failed? Of course. As we mentioned,

29



current models are too opaque and too poorly understood (and current training
corpora are too unrealistic developmentally) to definitively settle the question of
whether the APS for wh-movement holds. We note, however, that the architec-
tures we have considered are generally successful in approximating many other
aspects of linguistic data and that we evaluated the models using an extremely le-
nient criterion for success. And some of the models have been provided with very
generous amounts of linguistic input, in some cases several orders of magnitude
beyond what children receive. Given that none of the ANNs reached an adequate
approximation of the pattern for the relatively simple examples that we have con-
sidered — and given that at least one network did seem capable of improving its
approximation when retrained on a clearly rich corpus — we find it likelier that
the stimulus is simply too poor to warrant the acquisition of the relevant aspects
of knowledge from a corpus that is even remotely realistic developmentally by a
linguistically-neutral learner. And if that turns out to be the case, adult speakers’
knowledge of these aspects would mean that children are innately endowed in
ways that are not linguistically neutral.
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A Appendix: context-free grammars

A.1 PG
⟨S⟩ → ⟨S FG⟩
⟨S FG⟩ → ⟨PREAMBLE⟩ ⟨F ⟩ ⟨G⟩
⟨S XG⟩ → ⟨UNGRAMMATICAL⟩ ⟨PREAMBLE⟩ ⟨XF ⟩ ⟨G⟩
⟨S FX⟩ → ⟨UNGRAMMATICAL⟩ ⟨PREAMBLE⟩ ⟨F ⟩ ⟨XG⟩
⟨S XX⟩ → ⟨PREAMBLE⟩ ⟨XF ⟩ ⟨XG⟩
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⟨UNGRAMMATICAL⟩ → ‘*’
⟨GEN⟩ → ‘’s’
⟨OBJ⟩ → ‘you’ | ‘us’ | ‘Kim’
⟨NAME1⟩ → ‘Bob’ | ‘John’
⟨NAME2⟩ → ‘Mary’ | ‘Jennifer’
⟨NAME3⟩ → ‘James’ | ‘Michael’
⟨NAME4⟩ → ‘Patricia’ | ‘Linda’
⟨PREAMBLE⟩ → ‘I know’
⟨F ⟩ → ‘who’ ⟨NAME1⟩ ⟨GEN⟩ ⟨NP ⟩
⟨XF ⟩ → ‘that’ ⟨NAME1⟩ ⟨GEN⟩ ⟨NP ⟩ ⟨NAME2⟩
⟨G⟩ → ⟨CONN⟩ ⟨V ⟩ ⟨ADV 2⟩
⟨XG⟩ → ⟨CONN⟩ ⟨V ⟩ ⟨OBJ⟩ ⟨ADV 2⟩
⟨NP ⟩ → ⟨NP SIMPLE⟩ | ⟨NP COMPLEX⟩
⟨NP SIMPLE⟩ → ⟨GERUND⟩
⟨NP COMPLEX⟩ → ⟨N EMBEDDED⟩ ‘to’ ⟨V EMBEDDED⟩
⟨CONN⟩ → ‘is about to’ | ‘is likely to’ | ‘is going to’ | ‘is expected to’
⟨V ⟩ → ‘bother’ | ‘annoy’ | ‘disturb’
⟨GERUND⟩ → ‘talking to’ | ‘dancing with’ | ‘playing with’
⟨N EMBEDDED⟩ → ‘decision’ | ‘intent’ | ‘effort’ | ‘attempt’ | ‘failure’
⟨V EMBEDDED⟩ → ‘talk to’ | ‘call’ | ‘meet’ | ‘dance with’ | ‘play with’
⟨ADV 1⟩ → ‘recently’ | ‘earlier’
⟨ADV 2⟩ → ‘soon’ | ‘eventually’

A.2 ATB
⟨S⟩ → ⟨S FG⟩
⟨S FG⟩ → ⟨PREAMBLE⟩ ⟨F ⟩ ⟨G⟩
⟨S XG⟩ → ⟨UNGRAMMATICAL⟩ ⟨PREAMBLE⟩ ⟨XF ⟩ ⟨G⟩
⟨S FX⟩ → ⟨UNGRAMMATICAL⟩ ⟨PREAMBLE⟩ ⟨F ⟩ ⟨XG⟩
⟨S XX⟩ → ⟨PREAMBLE⟩ ⟨XF ⟩ ⟨XG⟩
⟨UNGRAMMATICAL⟩ → ‘*’
⟨GEN⟩ → ‘’s’
⟨OBJ⟩ → ‘you’ | ‘us’ | ‘Kim’
⟨NAME1⟩ → ‘John’
⟨NAME2⟩ → ‘Mary’
⟨NAME3⟩ → ‘Bob’
⟨NAME4⟩ → ‘Patricia’
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⟨PREAMBLE⟩ → ‘I know’
⟨F ⟩ → ‘who’ ⟨NAME1⟩ ⟨V P1⟩ ⟨ADV 1⟩
⟨XF ⟩ → ‘that’ ⟨NAME1⟩ ⟨V P1⟩ ⟨NAME3⟩ ⟨ADV 1⟩
⟨G⟩ → ⟨CONN⟩ ⟨V P2⟩ ⟨ADV 2⟩
⟨XG⟩ → ⟨CONN⟩ ⟨V P2⟩ ⟨OBJ⟩ ⟨ADV 2⟩
⟨ADV 1⟩ → ‘recently’ | ‘lately’
⟨ADV 2⟩ → ‘soon’ | ‘today’ | ‘now’
⟨CONN⟩ → ‘and is going to’
⟨V P1⟩ → ⟨V P1 SIMPLE⟩ | ⟨V P1 COMPLEX⟩
⟨V P1 SIMPLE⟩ → ‘met’ | ‘saw’
⟨V P1 COMPLEX⟩ → ⟨V P1 ABOUT ⟩ | ⟨V P1 TO⟩ | ⟨V P1 ADJ⟩ | ⟨V P1 EMBEDDED⟩
⟨V P1 ABOUT ⟩ → ⟨V ABOUT PAST ⟩ ⟨NAME2⟩ ‘about’
⟨V ABOUT PAST ⟩ → ‘asked’ | ‘told’
⟨V P1 TO⟩ → ⟨V TO PAST ⟩ ⟨NAME2⟩ ‘to’ ⟨V TRANS INF TO⟩
⟨V TO PAST ⟩ → ‘wanted’ | ‘asked’
⟨V TRANS INF TO⟩ → ‘call’ | ‘invite’
⟨V P1 ADJ⟩ → ‘was’ ⟨ADJ1⟩ ‘to’ ⟨V TRANS INF ADJ⟩
⟨ADJ1⟩ → ‘eager’ | ‘happy’
⟨V TRANS INF ADJ⟩ → ‘meet’ | ‘see’
⟨V P1 EMBEDDED⟩ → ⟨V EMBEDDING PAST ⟩ ‘that’ ⟨NAME2⟩ ⟨V TRANS PAST EMBEDDED⟩
⟨V EMBEDDING PAST ⟩ → ‘said’ | ‘insisted’
⟨V TRANS PAST EMBEDDED⟩ → ‘met’ | ‘saw’
⟨V P2⟩ → ⟨V P2 COMPLEX⟩ | ⟨V P2 SIMPLE⟩
⟨V P2 SIMPLE⟩ → ‘hug’ | ‘slap’ | ‘kiss’
⟨V P2 COMPLEX⟩ → ⟨V P2 ABOUT ⟩ | ⟨V P2 TO⟩ | ⟨V P2 ADJ⟩ | ⟨V P2 EMBEDDED⟩
⟨V P2 ABOUT ⟩ → ⟨V ABOUT FUTURE⟩ ‘to’ ⟨NAME4⟩ ‘about’
⟨V ABOUT FUTURE⟩ → ‘complain’ | ‘write’
⟨V P2 TO⟩ → ⟨V TO FUTURE⟩ ⟨NAME4⟩ ‘to’ ⟨V TRANS INF TO FUTURE⟩
⟨V TO FUTURE⟩ → ‘encourage’ | ‘beg’
⟨V TRANS INF TO FUTURE⟩ → ‘hug’ | ‘slap’ | ‘kiss’
⟨V P2 ADJ⟩ → ‘be’ ⟨ADJ2⟩ ‘to’ ⟨V TRANS INF ADJ2⟩
⟨ADJ2⟩ → ‘afraid’ | ‘glad’
⟨V TRANS INF ADJ2⟩ → ‘hug’ | ‘slap’ | ‘kiss’
⟨V P2 EMBEDDED⟩ → ⟨V EMBEDDING FUTURE⟩ ‘that’ ⟨NAME4⟩ ‘will’ ⟨V TRANS FUTURE⟩
⟨V EMBEDDING FUTURE⟩ → ‘claim’ | ‘predict’
⟨V TRANS FUTURE⟩ → ‘hug’ | ‘slap’ | ‘kiss’
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B Appendix: model failures
Worst 5 four-tuples of sentences per phenomenon (PG, ATB), per model (CHILDES
LSTM/Transformer, Wikipedia LSTM/Transformer, GPT-2, GPT-j, GPT-3). Sur-
prisal values are given in parentheses at the relevant position.

B.1 PG – CHILDES LSTM

(9)

+gap −gap
+filler I know who Bob’s effort to

call is going to bother
eventually (14.75)

*I know who Bob’s effort to
call is going to bother you
(0.64) eventually

−filler *I know that Bob’s effort to
call Mary is going to bother
eventually (12.74)

I know that Bob’s effort to
call Mary is going to bother
you (1.70) eventually

∆−filler −∆+filler = −3.06

(10)

+gap −gap
+filler I know who Bob’s effort to

call is going to annoy
eventually (15.82)

*I know who Bob’s effort to
call is going to annoy you
(0.39) eventually

−filler *I know that Bob’s effort to
call Mary is going to annoy
eventually (13.65)

I know that Bob’s effort to
call Mary is going to annoy
you (1.23) eventually

∆−filler −∆+filler = −3.01

(11)

+gap −gap
+filler I know who Bob’s effort to

call is going to bother soon
(13.28)

*I know who Bob’s effort to
call is going to bother you
(0.64) soon

−filler *I know that Bob’s effort to
call Mary is going to bother
soon (11.53)

I know that Bob’s effort to
call Mary is going to bother
you (1.70) soon

∆−filler −∆+filler = −2.80
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(12)

+gap −gap
+filler I know who John’s dancing

with is going to disturb
eventually (15.03)

*I know who John’s dancing
with is going to disturb us
(1.82) eventually

−filler *I know that John’s dancing
with Mary is going to
disturb eventually (13.69)

I know that John’s dancing
with Mary is going to
disturb us (3.27) eventually

∆−filler −∆+filler = −2.80

(13)

+gap −gap
+filler I know who Bob’s failure to

meet is going to disturb
eventually (13.66)

*I know who Bob’s failure
to meet is going to disturb
us (1.63) eventually

−filler *I know that Bob’s failure to
meet Mary is going to
disturb eventually (12.41)

I know that Bob’s failure to
meet Mary is going to
disturb us (3.17) eventually

∆−filler −∆+filler = −2.79

B.2 PG – CHILDES Transformer

(14)

+gap −gap
+filler I know who Bob’s attempt

to play with is going to
bother soon (12.45)

*I know who Bob’s attempt
to play with is going to
bother us (1.55) soon

−filler *I know that Bob’s attempt
to play with Jennifer is
going to bother soon (10.69)

I know that Bob’s attempt to
play with Jennifer is going
to bother us (3.20) soon

∆−filler −∆+filler = −3.41

(15)

+gap −gap
+filler I know who Bob’s effort to

play with is going to bother
soon (12.27)

*I know who Bob’s effort to
play with is going to bother
us (1.02) soon

−filler *I know that Bob’s effort to
play with Jennifer is going
to bother soon (10.31)

I know that Bob’s effort to
play with Jennifer is going
to bother us (2.32) soon

∆−filler −∆+filler = −3.27
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(16)

+gap −gap
+filler I know who Bob’s attempt

to play with is about to
bother soon (12.78)

*I know who Bob’s attempt
to play with is about to
bother us (1.63) soon

−filler *I know that Bob’s attempt
to play with Jennifer is
about to bother soon (10.91)

I know that Bob’s attempt to
play with Jennifer is about
to bother us (2.89) soon

∆−filler −∆+filler = −3.13

(17)

+gap −gap
+filler I know who Bob’s attempt

to play with is expected to
bother soon (13.39)

*I know who Bob’s attempt
to play with is expected to
bother us (2.02) soon

−filler *I know that Bob’s attempt
to play with Jennifer is
expected to bother soon
(11.92)

I know that Bob’s attempt to
play with Jennifer is
expected to bother us (3.66)
soon

∆−filler −∆+filler = −3.10

(18)

+gap −gap
+filler I know who Bob’s failure to

play with is going to bother
soon (12.32)

*I know who Bob’s failure
to play with is going to
bother us (1.80) soon

−filler *I know that Bob’s failure to
play with Jennifer is going
to bother soon (10.63)

I know that Bob’s failure to
play with Jennifer is going
to bother us (3.14) soon

∆−filler −∆+filler = −3.03

B.3 PG – Wikipedia LSTM

(19)

+gap −gap
+filler I know who John’s intent to

call is going to bother
eventually (16.59)

*I know who John’s intent
to call is going to bother us
(4.90) eventually

−filler *I know that John’s intent to
call Jennifer is going to
bother eventually (13.47)

I know that John’s intent to
call Jennifer is going to
bother us (7.20) eventually

∆−filler −∆+filler = −5.42
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(20)

+gap −gap
+filler I know who John’s failure to

call is going to bother
eventually (16.07)

*I know who John’s failure
to call is going to bother us
(4.93) eventually

−filler *I know that John’s failure
to call Jennifer is going to
bother eventually (13.77)

I know that John’s failure to
call Jennifer is going to
bother us (7.89) eventually

∆−filler −∆+filler = −5.26

(21)

+gap −gap
+filler I know who John’s failure to

call is going to bother soon
(15.47)

*I know who John’s failure
to call is going to bother us
(4.93) soon

−filler *I know that John’s failure
to call Jennifer is going to
bother soon (13.68)

I know that John’s failure to
call Jennifer is going to
bother us (7.89) soon

∆−filler −∆+filler = −4.74

(22)

+gap −gap
+filler I know who John’s attempt

to talk to is going to bother
eventually (15.99)

*I know who John’s attempt
to talk to is going to bother
us (4.42) eventually

−filler *I know that John’s attempt
to talk to Jennifer is going to
bother eventually (14.78)

I know that John’s attempt
to talk to Jennifer is going to
bother us (7.65) eventually

∆−filler −∆+filler = −4.44

(23)

+gap −gap
+filler I know who John’s intent to

talk to is going to bother
eventually (16.62)

*I know who John’s intent
to talk to is going to bother
you (5.39) eventually

−filler *I know that John’s intent to
talk to Jennifer is going to
bother eventually (14.89)

I know that John’s intent to
talk to Jennifer is going to
bother you (8.06) eventually

∆−filler −∆+filler = −4.41
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B.4 PG – Wikipedia Transformer

(24)

+gap −gap
+filler I know who Bob’s attempt

to talk to is about to bother
soon (11.09)

*I know who Bob’s attempt
to talk to is about to bother
you (3.73) soon

−filler *I know that Bob’s attempt
to talk to Jennifer is about to
bother soon (7.94)

I know that Bob’s attempt to
talk to Jennifer is about to
bother you (10.53) soon

∆−filler −∆+filler = −9.95

(25)

+gap −gap
+filler I know who Bob’s attempt

to talk to is expected to
bother soon (10.01)

*I know who Bob’s attempt
to talk to is expected to
bother you (3.49) soon

−filler *I know that Bob’s attempt
to talk to Jennifer is
expected to bother soon
(7.23)

I know that Bob’s attempt to
talk to Jennifer is expected
to bother you (10.49) soon

∆−filler −∆+filler = −9.78

(26)

+gap −gap
+filler I know who Bob’s attempt

to talk to is expected to
bother eventually (10.76)

*I know who Bob’s attempt
to talk to is expected to
bother you (3.49) eventually

−filler *I know that Bob’s attempt
to talk to Jennifer is
expected to bother
eventually (8.07)

I know that Bob’s attempt to
talk to Jennifer is expected
to bother you (10.49)
eventually

∆−filler −∆+filler = −9.70
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(27)

+gap −gap
+filler I know who John’s intent to

talk to is expected to bother
eventually (10.98)

*I know who John’s intent
to talk to is expected to
bother us (4.03) eventually

−filler *I know that John’s intent to
talk to Jennifer is expected
to bother eventually (8.32)

I know that John’s intent to
talk to Jennifer is expected
to bother us (11.06)
eventually

∆−filler −∆+filler = −9.69

(28)

+gap −gap
+filler I know who Bob’s decision

to talk to is about to bother
soon (10.66)

*I know who Bob’s decision
to talk to is about to bother
you (3.70) soon

−filler *I know that Bob’s decision
to talk to Jennifer is about to
bother soon (7.83)

I know that Bob’s decision
to talk to Jennifer is about to
bother you (10.50) soon

∆−filler −∆+filler = −9.63

B.5 PG – GPT-2

(29)

+gap −gap
+filler I know who Bob’s talking to

is going to annoy
eventually (16.51)

*I know who Bob’s talking
to is going to annoy you
(2.77) eventually

−filler *I know that Bob’s talking
to Jennifer is going to annoy
eventually (16.17)

I know that Bob’s talking to
Jennifer is going to annoy
you (4.70) eventually

∆−filler −∆+filler = −2.26

(30)

+gap −gap
+filler I know who Bob’s decision

to meet is about to bother
eventually (18.76)

*I know who Bob’s decision
to meet is about to bother
you (2.17) eventually

−filler *I know that Bob’s decision
to meet Jennifer is about to
bother eventually (18.42)

I know that Bob’s decision
to meet Jennifer is about to
bother you (4.04) eventually

∆−filler −∆+filler = −2.20
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(31)

+gap −gap
+filler I know who John’s decision

to call is likely to disturb
soon (14.28)

*I know who John’s
decision to call is likely to
disturb you (2.73) soon

−filler *I know that John’s decision
to call Mary is likely to
disturb soon (15.19)

I know that John’s decision
to call Mary is likely to
disturb you (5.84) soon

∆−filler −∆+filler = −2.19

(32)

+gap −gap
+filler I know who John’s talking

to is likely to disturb
eventually (16.82)

*I know who John’s talking
to is likely to disturb you
(1.81) eventually

−filler *I know that John’s talking
to Jennifer is likely to
disturb eventually (16.53)

I know that John’s talking to
Jennifer is likely to disturb
you (3.68) eventually

∆−filler −∆+filler = −2.16

(33)

+gap −gap
+filler I know who Bob’s decision

to call is likely to disturb
soon (14.31)

*I know who Bob’s decision
to call is likely to disturb
you (2.70) soon

−filler *I know that Bob’s decision
to call Mary is likely to
disturb soon (15.37)

I know that Bob’s decision
to call Mary is likely to
disturb you (5.91) soon

∆−filler −∆+filler = −2.15

B.6 PG – GPT-j

(34)

+gap −gap
+filler I know who John’s attempt

to talk to is about to annoy
soon (11.48)

*I know who John’s attempt
to talk to is about to annoy
you (1.62) soon

−filler *I know that John’s attempt
to talk to Mary is about to
annoy soon (12.86)

I know that John’s attempt
to talk to Mary is about to
annoy you (4.70) soon

∆−filler −∆+filler = −1.70

44



(35)

+gap −gap
+filler I know who John’s failure to

dance with is about to annoy
eventually (13.09)

*I know who John’s failure
to dance with is about to
annoy you (1.53) eventually

−filler *I know that John’s failure
to dance with Mary is about
to annoy eventually (13.60)

I know that John’s failure to
dance with Mary is about to
annoy you (3.69) eventually

∆−filler −∆+filler = −1.66

(36)

+gap −gap
+filler I know who John’s attempt

to talk to is about to annoy
eventually (12.23)

*I know who John’s attempt
to talk to is about to annoy
you (1.62) eventually

−filler *I know that John’s attempt
to talk to Mary is about to
annoy eventually (13.71)

I know that John’s attempt
to talk to Mary is about to
annoy you (4.70) eventually

∆−filler −∆+filler = −1.59

(37)

+gap −gap
+filler I know who John’s decision

to dance with is about to
annoy eventually (13.70)

*I know who John’s
decision to dance with is
about to annoy you (1.26)
eventually

−filler *I know that John’s decision
to dance with Mary is about
to annoy eventually (13.85)

I know that John’s decision
to dance with Mary is about
to annoy you (2.95)
eventually

∆−filler −∆+filler = −1.54

(38)

+gap −gap
+filler I know who John’s decision

to dance with is about to
annoy soon (12.74)

*I know who John’s
decision to dance with is
about to annoy you (1.26)
soon

−filler *I know that John’s decision
to dance with Mary is about
to annoy soon (12.92)

I know that John’s decision
to dance with Mary is about
to annoy you (2.95) soon

∆−filler −∆+filler = −1.51
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B.7 PG – GPT-3

(39)

+gap −gap
+filler I know who Bob’s talking to

is likely to annoy soon
(14.53)

*I know who Bob’s talking
to is likely to annoy you
(3.39) soon

−filler *I know that Bob’s talking
to Mary is likely to annoy
soon (13.53)

I know that Bob’s talking to
Mary is likely to annoy you
(7.20) soon

∆−filler −∆+filler = −4.81

(40)

+gap −gap
+filler I know who John’s talking

to is likely to annoy soon
(14.06)

*I know who John’s talking
to is likely to annoy you
(3.55) soon

−filler *I know that John’s talking
to Mary is likely to annoy
soon (13.59)

I know that John’s talking to
Mary is likely to annoy you
(7.60) soon

∆−filler −∆+filler = −4.52

(41)

+gap −gap
+filler I know who Bob’s playing

with is likely to annoy soon
(13.36)

*I know who Bob’s playing
with is likely to annoy you
(2.75) soon

−filler *I know that Bob’s playing
with Mary is likely to annoy
soon (13.46)

I know that Bob’s playing
with Mary is likely to annoy
you (6.94) soon

∆−filler −∆+filler = −4.09

(42)

+gap −gap
+filler I know who John’s talking

to is expected to annoy soon
(12.97)

*I know who John’s talking
to is expected to annoy you
(3.05) soon

−filler *I know that John’s talking
to Mary is expected to
annoy soon (12.61)

I know that John’s talking to
Mary is expected to annoy
you (6.56) soon

∆−filler −∆+filler = −3.87
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(43)

+gap −gap
+filler I know who Bob’s talking to

is likely to annoy eventually
(15.21)

*I know who Bob’s talking
to is likely to annoy you
(3.39) eventually

−filler *I know that Bob’s talking
to Mary is likely to annoy
eventually (15.18)

I know that Bob’s talking to
Mary is likely to annoy you
(7.20) eventually

∆−filler −∆+filler = −3.84

B.8 ATB – CHILDES LSTM

(44)

+gap −gap
+filler I know who John told Mary

about lately and is going to
encourage Patricia to slap
now (9.84)

*I know who John told
Mary about lately and is
going to encourage Patricia
to slap you (1.88) now

−filler *I know that John told Mary
about Bob lately and is
going to encourage Patricia
to slap now (9.24)

I know that John told Mary
about Bob lately and is
going to encourage Patricia
to slap you (3.35) now

∆−filler −∆+filler = −2.08

(45)

+gap −gap
+filler I know who John insisted

that Mary met recently and
is going to be afraid to kiss
now (8.53)

*I know who John insisted
that Mary met recently and
is going to be afraid to kiss
Kim (10.20) now

−filler *I know that John insisted
that Mary met Bob recently
and is going to be afraid to
kiss now (8.46)

I know that John insisted
that Mary met Bob recently
and is going to be afraid to
kiss Kim (12.17) now

∆−filler −∆+filler = −2.04

47



(46)

+gap −gap
+filler I know who John insisted

that Mary met recently and
is going to be afraid to kiss
today (8.56)

*I know who John insisted
that Mary met recently and
is going to be afraid to kiss
Kim (10.20) today

−filler *I know that John insisted
that Mary met Bob recently
and is going to be afraid to
kiss today (8.53)

I know that John insisted
that Mary met Bob recently
and is going to be afraid to
kiss Kim (12.17) today

∆−filler −∆+filler = −2.00

(47)

+gap −gap
+filler I know who John insisted

that Mary met recently and
is going to be afraid to slap
now (9.34)

*I know who John insisted
that Mary met recently and
is going to be afraid to slap
Kim (9.90) now

−filler *I know that John insisted
that Mary met Bob recently
and is going to be afraid to
slap now (9.29)

I know that John insisted
that Mary met Bob recently
and is going to be afraid to
slap Kim (11.85) now

∆−filler −∆+filler = −2.00

(48)

+gap −gap
+filler I know who John wanted

Mary to invite recently and
is going to be afraid to slap
now (9.41)

*I know who John wanted
Mary to invite recently and
is going to be afraid to slap
Kim (10.37) now

−filler *I know that John wanted
Mary to invite Bob recently
and is going to be afraid to
slap now (9.22)

I know that John wanted
Mary to invite Bob recently
and is going to be afraid to
slap Kim (12.16) now

∆−filler −∆+filler = −1.98
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B.9 ATB – CHILDES Transformer

(49)

+gap −gap
+filler I know who John asked

Mary about lately and is
going to be afraid to slap
now (10.21)

*I know who John asked
Mary about lately and is
going to be afraid to slap us
(3.41) now

−filler *I know that John asked
Mary about Bob lately and
is going to be afraid to slap
now (9.42)

I know that John asked
Mary about Bob lately and
is going to be afraid to slap
us (4.14) now

∆−filler −∆+filler = −1.51

(50)

+gap −gap
+filler I know who John said that

Mary saw recently and is
going to slap now (10.72)

*I know who John said that
Mary saw recently and is
going to slap us (3.14) now

−filler *I know that John said that
Mary saw Bob recently and
is going to slap now (10.18)

I know that John said that
Mary saw Bob recently and
is going to slap us (4.00)
now

∆−filler −∆+filler = −1.40

(51)

+gap −gap
+filler I know who John said that

Mary saw lately and is
going to be afraid to slap
now (9.88)

*I know who John said that
Mary saw lately and is
going to be afraid to slap us
(3.24) now

−filler *I know that John said that
Mary saw Bob lately and is
going to be afraid to slap
now (9.45)

I know that John said that
Mary saw Bob lately and is
going to be afraid to slap us
(4.21) now

∆−filler −∆+filler = −1.40
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(52)

+gap −gap
+filler I know who John asked

Mary to call lately and is
going to be afraid to slap
now (10.08)

*I know who John asked
Mary to call lately and is
going to be afraid to slap us
(3.59) now

−filler *I know that John asked
Mary to call Bob lately and
is going to be afraid to slap
now (9.83)

I know that John asked
Mary to call Bob lately and
is going to be afraid to slap
us (4.72) now

∆−filler −∆+filler = −1.38

(53)

+gap −gap
+filler I know who John said that

Mary saw recently and is
going to be afraid to slap
now (10.12)

*I know who John said that
Mary saw recently and is
going to be afraid to slap us
(3.78) now

−filler *I know that John said that
Mary saw Bob recently and
is going to be afraid to slap
now (9.98)

I know that John said that
Mary saw Bob recently and
is going to be afraid to slap
us (5.01) now

∆−filler −∆+filler = −1.37

B.10 ATB – Wikipedia LSTM

(54)

+gap −gap
+filler I know who John asked

Mary about recently and is
going to kiss soon (14.80)

*I know who John asked
Mary about recently and is
going to kiss us (8.39) soon

−filler *I know that John asked
Mary about Bob recently
and is going to kiss soon
(14.40)

I know that John asked
Mary about Bob recently
and is going to kiss us
(11.63) soon

∆−filler −∆+filler = −3.64
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(55)

+gap −gap
+filler I know who John met

recently and is going to beg
Patricia to kiss soon (15.45)

*I know who John met
recently and is going to beg
Patricia to kiss us (10.27)
soon

−filler *I know that John met Bob
recently and is going to beg
Patricia to kiss soon (15.46)

I know that John met Bob
recently and is going to beg
Patricia to kiss us (13.61)
soon

∆−filler −∆+filler = −3.33

(56)

+gap −gap
+filler I know who John asked

Mary about recently and is
going to be glad to kiss soon
(14.47)

*I know who John asked
Mary about recently and is
going to be glad to kiss us
(9.19) soon

−filler *I know that John asked
Mary about Bob recently
and is going to be glad to
kiss soon (14.54)

I know that John asked
Mary about Bob recently
and is going to be glad to
kiss us (12.59) soon

∆−filler −∆+filler = −3.33

(57)

+gap −gap
+filler I know who John was happy

to meet recently and is
going to kiss soon (13.61)

*I know who John was
happy to meet recently and
is going to kiss you (7.32)
soon

−filler *I know that John was
happy to meet Bob recently
and is going to kiss soon
(13.36)

I know that John was happy
to meet Bob recently and is
going to kiss you (10.36)
soon

∆−filler −∆+filler = −3.29
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(58)

+gap −gap
+filler I know who John told Mary

about recently and is going
to beg Patricia to kiss soon
(15.49)

*I know who John told
Mary about recently and is
going to beg Patricia to kiss
us (11.17) soon

−filler *I know that John told Mary
about Bob recently and is
going to beg Patricia to kiss
soon (15.26)

I know that John told Mary
about Bob recently and is
going to beg Patricia to kiss
us (14.20) soon

∆−filler −∆+filler = −3.26

B.11 ATB – Wikipedia Transformer

(59)

+gap −gap
+filler I know who John saw lately

and is going to write to
Patricia about now (8.22)

*I know who John saw
lately and is going to write
to Patricia about us (7.18)
now

−filler *I know that John saw Bob
lately and is going to write
to Patricia about now (8.21)

I know that John saw Bob
lately and is going to write
to Patricia about us (8.38)
now

∆−filler −∆+filler = −1.21

(60)

+gap −gap
+filler I know who John saw

recently and is going to
write to Patricia about now
(8.01)

*I know who John saw
recently and is going to
write to Patricia about us
(7.28) now

−filler *I know that John saw Bob
recently and is going to
write to Patricia about now
(8.11)

I know that John saw Bob
recently and is going to
write to Patricia about us
(8.53) now

∆−filler −∆+filler = −1.15

52



(61)

+gap −gap
+filler I know who John met lately

and is going to write to
Patricia about now (8.26)

*I know who John met
lately and is going to write
to Patricia about us (7.40)
now

−filler *I know that John met Bob
lately and is going to write
to Patricia about now (8.35)

I know that John met Bob
lately and is going to write
to Patricia about us (8.58)
now

∆−filler −∆+filler = −1.09

(62)

+gap −gap
+filler I know who John was happy

to see lately and is going to
write to Patricia about now
(8.46)

*I know who John was
happy to see lately and is
going to write to Patricia
about us (7.52) now

−filler *I know that John was
happy to see Bob lately and
is going to write to Patricia
about now (8.45)

I know that John was happy
to see Bob lately and is
going to write to Patricia
about us (8.54) now

∆−filler −∆+filler = −1.04

(63)

+gap −gap
+filler I know who John was happy

to meet lately and is going
to write to Patricia about
now (8.51)

*I know who John was
happy to meet lately and is
going to write to Patricia
about us (7.68) now

−filler *I know that John was
happy to meet Bob lately
and is going to write to
Patricia about now (8.57)

I know that John was happy
to meet Bob lately and is
going to write to Patricia
about us (8.72) now

∆−filler −∆+filler = −0.98
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B.12 ATB – GPT-2

(64)

+gap −gap
+filler I know who John said that

Mary saw lately and is
going to be glad to kiss soon
(14.91)

*I know who John said that
Mary saw lately and is
going to be glad to kiss you
(4.06) soon

−filler *I know that John said that
Mary saw Bob lately and is
going to be glad to kiss soon
(16.39)

I know that John said that
Mary saw Bob lately and is
going to be glad to kiss you
(7.08) soon

∆−filler −∆+filler = −1.53

(65)

+gap −gap
+filler I know who John said that

Mary met lately and is
going to be glad to kiss soon
(14.46)

*I know who John said that
Mary met lately and is
going to be glad to kiss you
(4.11) soon

−filler *I know that John said that
Mary met Bob lately and is
going to be glad to kiss soon
(15.85)

I know that John said that
Mary met Bob lately and is
going to be glad to kiss you
(6.93) soon

∆−filler −∆+filler = −1.43

(66)

+gap −gap
+filler I know who John said that

Mary met lately and is
going to be glad to kiss now
(12.15)

*I know who John said that
Mary met lately and is
going to be glad to kiss you
(4.11) now

−filler *I know that John said that
Mary met Bob lately and is
going to be glad to kiss now
(13.67)

I know that John said that
Mary met Bob lately and is
going to be glad to kiss you
(6.93) now

∆−filler −∆+filler = −1.29
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(67)

+gap −gap
+filler I know who John said that

Mary met lately and is
going to kiss soon (13.26)

*I know who John said that
Mary met lately and is going
to kiss you (5.31) soon

−filler *I know that John said that
Mary met Bob lately and is
going to kiss soon (15.08)

I know that John said that
Mary met Bob lately and is
going to kiss you (8.30)
soon

∆−filler −∆+filler = −1.18

(68)

+gap −gap
+filler I know who John was eager

to see lately and is going to
predict that Patricia will kiss
soon (11.50)

*I know who John was
eager to see lately and is
going to predict that Patricia
will kiss Kim (10.84) soon

−filler *I know that John was eager
to see Bob lately and is
going to predict that Patricia
will kiss soon (11.45)

I know that John was eager
to see Bob lately and is
going to predict that Patricia
will kiss Kim (11.95) soon

∆−filler −∆+filler = −1.16

B.13 ATB – GPT-j

(69)

+gap −gap
+filler I know who John told Mary

about lately and is going to
hug now (8.12)

*I know who John told
Mary about lately and is
going to hug us (6.59) now

−filler *I know that John told Mary
about Bob lately and is
going to hug now (8.88)

I know that John told Mary
about Bob lately and is
going to hug us (9.42) now

∆−filler −∆+filler = −2.07
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(70)

+gap −gap
+filler I know who John told Mary

about lately and is going to
hug today (8.69)

*I know who John told
Mary about lately and is
going to hug us (6.59) today

−filler *I know that John told Mary
about Bob lately and is
going to hug today (9.54)

I know that John told Mary
about Bob lately and is
going to hug us (9.42) today

∆−filler −∆+filler = −1.98

(71)

+gap −gap
+filler I know who John said that

Mary met recently and is
going to be afraid to hug
now (7.54)

*I know who John said that
Mary met recently and is
going to be afraid to hug us
(4.59) now

−filler *I know that John said that
Mary met Bob recently and
is going to be afraid to hug
now (9.06)

I know that John said that
Mary met Bob recently and
is going to be afraid to hug
us (8.07) now

∆−filler −∆+filler = −1.96

(72)

+gap −gap
+filler I know who John said that

Mary met recently and is
going to be afraid to slap
now (10.08)

*I know who John said that
Mary met recently and is
going to be afraid to slap us
(4.22) now

−filler *I know that John said that
Mary met Bob recently and
is going to be afraid to slap
now (10.79)

I know that John said that
Mary met Bob recently and
is going to be afraid to slap
us (6.81) now

∆−filler −∆+filler = −1.88

56



(73)

+gap −gap
+filler I know who John told Mary

about recently and is going
to be afraid to hug today
(10.32)

*I know who John told
Mary about recently and is
going to be afraid to hug us
(6.16) today

−filler *I know that John told Mary
about Bob recently and is
going to be afraid to hug
today (11.78)

I know that John told Mary
about Bob recently and is
going to be afraid to hug us
(9.46) today

∆−filler −∆+filler = −1.84

B.14 ATB – GPT-3

(74)

+gap −gap
+filler I know who John told Mary

about lately and is going to
be afraid to hug now (8.21)

*I know who John told
Mary about lately and is
going to be afraid to hug
you (5.06) now

−filler *I know that John told Mary
about Bob lately and is
going to be afraid to hug
now (8.39)

I know that John told Mary
about Bob lately and is
going to be afraid to hug
you (8.09) now

∆−filler −∆+filler = −2.85

(75)

+gap −gap
+filler I know who John told Mary

about lately and is going to
slap now (9.43)

*I know who John told
Mary about lately and is
going to slap you (4.70) now

−filler *I know that John told Mary
about Bob lately and is
going to slap now (10.25)

I know that John told Mary
about Bob lately and is
going to slap you (8.27) now

∆−filler −∆+filler = −2.75
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(76)

+gap −gap
+filler I know who John told Mary

about lately and is going to
slap soon (7.22)

*I know who John told
Mary about lately and is
going to slap you (4.70)
soon

−filler *I know that John told Mary
about Bob lately and is
going to slap soon (8.33)

I know that John told Mary
about Bob lately and is
going to slap you (8.27)
soon

∆−filler −∆+filler = −2.47

(77)

+gap −gap
+filler I know who John told Mary

about lately and is going to
be glad to slap soon (9.32)

*I know who John told
Mary about lately and is
going to be glad to slap you
(3.35) soon

−filler *I know that John told Mary
about Bob lately and is
going to be glad to slap
soon (9.52)

I know that John told Mary
about Bob lately and is
going to be glad to slap you
(5.82) soon

∆−filler −∆+filler = −2.27

(78)

+gap −gap
+filler I know who John told Mary

about lately and is going to
be glad to slap today
(10.41)

*I know who John told
Mary about lately and is
going to be glad to slap you
(3.35) today

−filler *I know that John told Mary
about Bob lately and is
going to be glad to slap
today (10.64)

I know that John told Mary
about Bob lately and is
going to be glad to slap you
(5.82) today

∆−filler −∆+filler = −2.24
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C Appendix: context-free grammars for retraining
task (Section 5)

C.1 PG – retraining corpus
⟨S⟩ → ⟨S FG⟩
⟨S FG⟩ → ⟨PREAMBLE⟩ ⟨F ⟩ ⟨G⟩
⟨S XG⟩ → ⟨UNGRAMMATICAL⟩ ⟨PREAMBLE⟩ ⟨XF ⟩ ⟨G⟩
⟨S FX⟩ → ⟨UNGRAMMATICAL⟩ ⟨PREAMBLE⟩ ⟨F ⟩ ⟨XG⟩
⟨S XX⟩ → ⟨PREAMBLE⟩ ⟨XF ⟩ ⟨XG⟩
⟨GEN⟩ → ‘’s’
⟨OBJ⟩ → ‘you’ | ‘us’ | ‘Kim’
⟨NAME1⟩ → ‘Bob’ | ‘John’
⟨NAME2⟩ → ‘Mary’ | ‘Jennifer’
⟨NAME3⟩ → ‘James’ | ‘Michael’
⟨NAME4⟩ → ‘Patricia’ | ‘Linda’
⟨PREAMBLE⟩ → ‘I know’
⟨F ⟩ → ‘who’ ⟨NAME1⟩ ⟨GEN⟩ ⟨SUBJ⟩
⟨XF ⟩ → ‘that’ ⟨NAME1⟩ ⟨GEN⟩ ⟨SUBJ⟩ ⟨NAME2⟩
⟨G⟩ → ⟨G PAST ⟩ | ⟨G FUTURE⟩
⟨XG⟩ → ⟨XG PAST ⟩ | ⟨XG FUTURE⟩
⟨G PAST ⟩ → ⟨V P PAST ⟩ ⟨ADV PAST ⟩
⟨G FUTURE⟩ → ⟨V P FUTURE⟩ ⟨ADV FUTURE⟩
⟨XG PAST ⟩ → ⟨V P PAST ⟩ ⟨XG OBJ⟩ ⟨ADV PAST ⟩
⟨XG FUTURE⟩ → ⟨V P FUTURE⟩ ⟨XG OBJ⟩ ⟨ADV FUTURE⟩
⟨V P PAST ⟩ → ‘upset’ | ‘distracted’ | ‘worried’ | ‘annoyed’ | ‘amused’ | ‘delighted’
⟨V P FUTURE⟩ → ‘will’ ⟨V FUTURE⟩
⟨V FUTURE⟩ → ‘upset’ | ‘distract’ | ‘worry’ | ‘annoy’ | ‘amuse’ | ‘delight’
⟨XG OBJ⟩ → ⟨NAME4⟩ | ⟨OBJ⟩
⟨SUBJ⟩ → ‘attitude towards’ | ‘friendship with’ | ‘praising of’ | ‘fight with’ | ‘kissing with’ | ‘asking about’
⟨ADV PAST ⟩ → ‘yesterday’ | ‘recently’ | ‘often’ | ‘constantly’ | ‘today’ | ‘lately’ | ‘earlier’
⟨ADV FUTURE⟩ → ‘today’ | ‘soon’ | ‘tomorrow’ | ‘now’ | ‘quickly’
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C.2 ATB – retraining corpus
⟨S⟩ → ⟨S FG⟩
⟨S FG⟩ → ⟨PREAMBLE⟩ ⟨F ⟩ ⟨G⟩
⟨S XG⟩ → ⟨UNGRAMMATICAL⟩ ⟨PREAMBLE⟩ ⟨XF ⟩ ⟨G⟩
⟨S FX⟩ → ⟨UNGRAMMATICAL⟩ ⟨PREAMBLE⟩ ⟨F ⟩ ⟨XG⟩
⟨S XX⟩ → ⟨PREAMBLE⟩ ⟨XF ⟩ ⟨XG⟩
⟨GEN⟩ → ‘’s’
⟨OBJ⟩ → ‘you’ | ‘us’ | ‘Kim’
⟨NAME1⟩ → ‘John’
⟨NAME2⟩ → ‘Mary’
⟨NAME3⟩ → ‘Bob’
⟨NAME4⟩ → ‘Patricia’
⟨PREAMBLE⟩ → ‘I know’
⟨F ⟩ → ‘who’ ⟨SUBJ F ⟩
⟨XF ⟩ → ‘that’ ⟨SUBJ XF ⟩
⟨CONN⟩ → ‘and’
⟨SUBJ F ⟩ → ⟨ONE SUBJ F ⟩ | ⟨TWO SUBJ F ⟩
⟨SUBJ XF ⟩ → ⟨ONE SUBJ XF ⟩ | ⟨TWO SUBJ XF ⟩
⟨ONE SUBJ F ⟩ → ⟨NAME1⟩ ⟨V 1⟩ ⟨ADV PAST 1⟩ ⟨CONN⟩
⟨TWO SUBJ F ⟩ → ⟨NAME1⟩ ⟨V 1⟩ ⟨ADV PAST 1⟩ ⟨CONN⟩ ⟨NAME3⟩
⟨ONE SUBJ XF ⟩ → ⟨NAME1⟩ ⟨V 1⟩ ⟨NAME2⟩ ⟨ADV PAST 1⟩ ⟨CONN⟩
⟨TWO SUBJ XF ⟩ → ⟨NAME1⟩ ⟨V 1⟩ ⟨NAME2⟩ ⟨ADV PAST 1⟩ ⟨CONN⟩ ⟨NAME3⟩
⟨G⟩ → ⟨G PAST ⟩ | ⟨G FUTURE⟩
⟨XG⟩ → ⟨XG PAST ⟩ | ⟨XG FUTURE⟩
⟨XG PAST ⟩ → ⟨V P2 PAST ⟩ ⟨XG OBJ⟩ ⟨ADV PAST 2⟩
⟨XG FUTURE⟩ → ⟨V P2 FUTURE⟩ ⟨XG OBJ⟩ ⟨ADV FUTURE⟩
⟨G PAST ⟩ → ⟨V P2 PAST ⟩ ⟨ADV PAST 2⟩
⟨G FUTURE⟩ → ⟨V P2 FUTURE⟩ ⟨ADV FUTURE⟩
⟨XG OBJ⟩ → ⟨NAME4⟩ | ⟨OBJ⟩
⟨V 1⟩ → ‘saw’ | ‘hugged’ | ‘helped’ | ‘met’ | ‘pushed’ | ‘praised’ | ‘chased’ | ‘hired’ | ‘invited’ | ‘promoted’ | ‘warned’
⟨V P2⟩ → ⟨V P2 PAST ⟩ | ⟨V P2 FUTURE⟩
⟨V P2 PAST ⟩ → ⟨V 2 PAST ⟩
⟨V 2 PAST ⟩ → ‘kissed’ | ‘slapped’ | ‘insulted’ | ‘annoyed’ | ‘hurt’ | ‘mocked’ | ‘teased’ | ‘supported’ | ‘married’
⟨V P2 FUTURE⟩ → ‘will’ ⟨V 2 FUTURE⟩
⟨V 2 FUTURE⟩ → ‘kiss’ | ‘slap’ | ‘insult’ | ‘annoy’ | ‘hurt’ | ‘mock’ | ‘tease’ | ‘support’ | ‘marry’
⟨ADV PAST 1⟩ → ‘yesterday’ | ‘recently’ | ‘often’ | ‘constantly’
⟨ADV PAST 2⟩ → ‘today’ | ‘lately’ | ‘earlier’ | ‘regularly’ | ‘repeatedly’
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⟨ADV FUTURE⟩ → ‘today’ | ‘soon’ | ‘tomorrow’ | ‘now’ | ‘quickly’

61


	Background: innateness and the argument from the poverty of the stimulus
	The general setup
	Powerful and unbiased?
	Training on developmentally-realistic corpora?
	Inspecting LLM knowledge?

	LLMs succeed in very simple cases of wh-movement
	LLMs fail on slightly more complex (but still simple) cases of wh-movement
	An initial failure
	Lexical accident?
	A preference for ungapped continuations?

	A general inability to acquire a suitable preference?
	Conclusion
	Appendix: context-free grammars
	PG
	ATB

	Appendix: model failures
	PG – CHILDES LSTM
	PG – CHILDES Transformer
	PG – Wikipedia LSTM
	PG – Wikipedia Transformer
	PG – GPT-2
	PG – GPT-j
	PG – GPT-3
	ATB – CHILDES LSTM
	ATB – CHILDES Transformer
	ATB – Wikipedia LSTM
	ATB – Wikipedia Transformer
	ATB – GPT-2
	ATB – GPT-j
	ATB – GPT-3

	Appendix: context-free grammars for retraining task (Section 5)
	PG – retraining corpus
	ATB – retraining corpus


