A CxG-inspired notation for glue

Avery A Andrews
Nov 2022, The Australian National University
draft; please do not criticize in print

LFG’s glue semantics has a bit of a reputation for impenetrability, per-
haps explicable by its original presentation in terms of linear logic deduc-
tions, which requires a a certain amount of background in relatively unfa-
miliar forms of logic.! Here I will present what I hope might be an easier
to learn notation, based mathematically on the theory of proof-nets, expe-
cially as developed by de Groote (1999) and Perrier (1999), but notationally
a development of the notation of Construction Grammar, as presented by
Kay & Fillmore (1999). Proof nets, as the name suggests, are a graphical
representation for a restricted range of linear logic proofs, whose use I have
discussed previously in Andrews (2010) and more demotically, in Andrews
(2012), but I think the present proposal is an improvement in intelligibility
over what is presented there. Construction grammar is an approach to the
entire theory of grammar, whereas we will be using the notation only to
represent the ‘meaning-contributions’ provided by lexical items from which
the meaning of the sentence is put together compositionally.

1 Simple Boxes and Assembly

A basic notational idea of Construction Grammar is to represent ‘construc-
tions’ (we won’t worry about what these are to be taken to be) as boxes, con-
taining sub-boxes into which other constructions are to be plugged (they are
also related by inheritance networks, which are not used here). For reasons
which will become apparent, we will want outer boxes to be shaded, and (the
first level of) contained boxes to be unshaded, so the meaning-contribution
for the verb chase might look like this, at a first approximation:

(1) Chase(X,Y)
Y X

The reversal of order of argument-variables between the meaning and the
row of unshaded boxes will be explained eventually.

In a sentence such as Fido chased Spot, we would represent the meaning-
contributions of Fido and Spot as shaded boxes containing no unshaded
ones, and we could represent semantic assembly by drawing arrows from
these shaded boxes to the unshaded ones in the meaning-contribution of the
verb:

Linear’ and other forms of ‘substructural’ logic, in which various principles used in
everyday reasoning about facts are dropped.

(2) Chase(X,Y)
Y X
Spot Fido

The intended meaning can then be produced by substitutions in a way that
is hopefully obvious.

Before proceeding, it would be good to say something about how, in this
approach, the syntax constrains the meaning, so as to exclude the other
obvious way that the boxes could be hooked up, and the meaning that
Spot chased Fido produced. The answer is that the boxes are introduced
with connections to the syntactic structure; a meaning-contribution together
with its syntactic specifications is called a ‘meaning-constructor’. For present
purposes, these can be represented graphically by dotted lines connecting
them to pieces of f-structure, with an ‘1’ symbol attached to the f-structure
correspondent of the lexical item (we will present the standard notation
later). The entry for chase for example associated the X=Chaser role with
the subject, and the Y=Chased role with the object:

SUBJ | } Chase(X,Y)
f OBJ [} ''''''''' Y X

This says that the Chase meaning is associated with the f-structure of the
verb node where chase is inserted, and that the X argument is found at the
SUBJ of that f-structure, the Y at the OBJ of the f-structure.

Plugging a shaded box into an unshaded box then requires that both be
associated with the same f-structure, so that the results for Fido chased spot
are:

(4)

i ; 3 Chase(X,Y)
SUBJ [PRED ‘Fido’}-.._ ol y X
PRED ‘Chase’ =
TENSE PAST T Fido
OBJ |:PR,ED ‘SpOt’i|"

)] Spot

We here ignore the contribution of the past tense, to control clutter. You
can see that the solid arrows that connect shaded to unshaded boxes require
the dotted lines to connect both boxes to the same f-structure.

However the syntactic constraints are only part of the story; the plugging
lines are also subject to various constraints on their own, that help define
what coherent semantic assembly is. These rulwa come not from Construc-
tion Grammar, but from the theory proof nets, where they are called ‘axiom
links’, because the represent the application of the deductive identity axiom
AF A. We will say a bit more about this later.

The inherently logical /semantic linking rules are:

(5) a. Every shaded box except one must be connected to one and only
one unshaded box.

b. Every unshaded box must be connected to one and only one un-
shaded box.

c. If we imagine that the connections constitute sections of a directed
path leading from shaded to unshaded, and that each unshaded
box has an automatic (and not depicted here) connection to its
immediately containing unshaded box then, from every shaded box
there must be a path to the sole unconnected shaded box, which
can be called the ‘final output’.

And one more rule with a bit of syntactic involvement:

(6) The final output must be associated (by dotted line) with the entire
f-structre.

These rules block a lot of results we don’t want, such as a semantic assembly
consisting of just the verb without its arguments (assuming that in situations
where arguments can be omitted from the overt form of an utterance, there
are mechanisms to supply them).

A more subtle situation that it blocks can be seen by considering the
tense feature that we have ignored so far. A constructor for tense can be
written like this:

(7) Past(X)

If we add this to (4), we can get the following result, where we also introduce
the refinement that when a meaning-contribution is introduced, you need to
replace its variables with new ones that are not used elsewhere, in order to
avoid various kinds of bad results:

Past(Z)
®) ;

A

\

Chase(X,Y)
Y X

A A

. N

Spot Fido

This will yield the result Past(Chase(Fido, Spot)).

The reader might have noticed that the rules constraining the plugging
links have the effect of reinforcing the geometrical /topological intuitions that
presumably underly Construction Grammar. For example if we are putting
together a puzzle in which many pieces have holes into which other pieces are
supposed to fit, it is quite natural that only one piece can fit into any hole,
and that one piece cannot fill two holes at once, and that a piece cannot fill
a hole in itself, as suggested by this rule-breaking example of mis-plugging:

(9) Past(Z)
Z

I believe that it should be possible to formulate these intuitions rigorously
in terms of topological notions, but have not worked out exactly how to do
that.

A significant aspect of linear logic and glue semantics is ‘types’. Formal
semantics tends to assume a system of essentially different ontological types,
starting with ‘entity’ (e) and ‘proposition’ (¢).2 So far we have only assumed
one, but could add a conventional type system as additional information
associated with the boxes, and requiring that for a positive box to be plugged
into a negative one, their types as well as their f-structure locations must
match. Types are an integral aspect of linear logic, so what we have done
so far can be described as an ultra-rudimentary system with one basic type.

Indeed, what we have produced is the easy part of ‘intuitionistic impli-
cational linear logic’ (IILL), which is implicit in the basic intuitions about
ways of putting things together that were used by Fillmore and Kay in their
development of construction grammar. It could be thought of as the logic
of things, some of which have slots for inserting other things, to produce
something different that uses up the items from which it was produced. For
example, if you have a stool seat with three holes into which legs can be in-
serted, and also three legs, you can put them in to produce a stool, but you

2See Casadio (1988), for an interesting discussion of the background of this, and Partee
(2006) and Partee & Borschev (2004) for further interesting discussion.

don’t have the seat or the legs anymore (so you can’t just use the original
parts to make a new stool, winding up with two in all).

But now we move on to (a notational equivalent of) full IILL. For this, the
easiest entry is perhaps quantifiers, especially the ‘generalized quantifiers’
of Barwise & Cooper (1981). The basic idea the is that quantifiers such as
every, some and most involve comparisons between sets:

(10) a. Fido loves everybody
b. Fido loves somebody/some people
c. Fido loves most people

To evaluate (a), in a rather oversimplified way, we compare that set of people
with the set set of entities that Fido loves, and accept the sentence is true
if every item in the former set is in the latter, false otherwise. For (b), we
want these sets to have some item in common, and for (c), we want the
intersection of the set of people with the set of entities that Fido loves to be
bigger than that of the set of people with the entities that Fido doesn’t love.
Part of the oversimplification here is that in normal usage, a sentence like
this would be evaluated only on the basis of Fido’s reactions to people he
actually meets. We are not concerned with the entire population of human
beings on Earth.

But how do we get a meaning like ‘the set of entities that Fido loves’ out
of what we have so far? With our present ingredients, we can’t, but need
some additions, on the semantic side, ‘lambdas’. These can be seen as a kind
of mathematical version of relative clauses. We could paraphrase a discourse
such as [saw somebody. They were tall as The person (that/who) Fido loves
is tall. More generally, in syntax, a relative clause can be thought of as a
sentence with a kind of variable/indeterminate element in it, along the lines
of ‘Fido loves (a person) z’, We can use this clause as if it were an adjective
by supposing that x refers to some specific individual, and checking whether
the sentence come out true under that supposition. It can then be thought
of as determining the set of people/ entities that Fido loves. The notation
for this is:

(11) Az.Loves(Fido, x)

Once we have lambdas, it is highly desireable for the semantics to have
something called ‘types’, to ensure useful formal properties, and make var-
ious things easier to understand. Here we would conventionally want the
type of the variable x to be e (entity), and of Loves(Fido,x) to be t (propo-
sition), and the type of the entire expression of (11) will be e—t, something
into which you feed an e to get a t.> We might also consider subdividing
the type e into ‘people’ and ‘things’, but considering the issues with higher

3In formal semantics, this would be most often written as <e,t>, but for the purposes

animals, the type concept is probably too rigid to be useful for this, and
something involving the substantive meanings more appropriate.

Thinking of the meaning of every as something that relates two sets, a
first stab at a meaning-contribution for every might be:

Every(X,Y)
X Y

(12)

We could use types in the semantics to require that both X and Y are of
type e—t, and stipulate that the meaning of person is of that type, but how
are we going to get anything like A\z.Loves(Fido, x)?

A way of thinking of it is that Every and similar meanings inject ‘test
entities’ into a predicate (a proposition with a hole in it, suitable for an
entity), to see whether they make the proposition true or not, so that they
can then operate on the sets of entities such that the proposition is true.
This suggests (at least if you already know about de Groote’s and Perrier’s
work on proof nets) that there could be a shaded box inside the negative
boxes of (12), which get linked to an unshaded box (essentially hole) in
something of type e—t. In the specific case of everybody, we can suppose
that its meaning already puts Person, of type e—t, into the X position, so
the meaning contribution we get looks almost like this:

(13) Every(Person,Y)

Y

But what do we put into the solid box, and how do we get a lambda-
expression?

The answer will be that we put a lower-case variable into the shaded box,
and a lamba-binder with it around the upper case variable of the unshaded
box in the semantic formula, so that the finished product is:

(14) Every(Person, \z.Y")

Y

X

One question is what is the difference between the upper case and lower
case variables, and the answer is that the former are part of the assembly

of linear logic and glue semantics, an arrow notation is normally employed, often the
rather intimidating —o symbol rather than —, but I’ll use the latter here. The reason for
this is a relationship to implication in logic which will be discussed later.

mechanism, and can be understood in terms of simple substitution (if we re-
member to use different ones in each meaning-contribution!), while the latter
are part of the meaning language, and get interpreted by the significantly
more complex mechanisms of lambda-calculus. But until we look at that a
bit harder, we can gloss Axz.Y as ‘x such that Y us true’. Another issue is
the difference between what appears in the unshaded box and what appears
in the meaning formula. For perspicacity, we want the ‘initial meaning’ of
the unshaded box to be whatever gets piped in from the shaded box that
links to it, but then we need to add the lambda-binding, so putting that
into the meaning formula for the entire shaded box seems like a reasonable
thing to do. This is dealt with more systematically a later section, where a
more formal approach is taken, and the relationship to standard proof-nets
explained.

Now, the assembled meanings for Fido loves everybody can be represented
as:

(15) Every(Person, \z.Z)

A

/m7

[

Loves(X,Y)
=~ Y X
Fido

At this point, the propagation of semantic values through the network gets
a bit complicated, so I will show it in two steps:

(16) a. Every(Person, \x.Z)

VA

sy
[

Loves(z, Fido))
—~ Y X

A

[

Fido

b | Every(Person, A\x.Loves(z, Fido))
Loves(x, Fido)

|1 X

Loves(z, Fido) /

—> Y X

A

[

Fido

So far, we have only considered the meaning-contribution for every(body),
but not the constructor, which has to provide information about how this
connects to the syntax.

The classic problem is that every(body) is stuck inside a noun-phrase,
so how does it get to apply to an entire sentence? There is more than
one possible answer to this question, but here I will use the one proposed
in Andrews (2010), that reference to higher structures in involved. The
relevant technical LFG concept is ‘inside-out functional uncertainty’ (iofu).
This is here depicted by putting the 1 on an inner f-structure, corresponding
to the quantified pronominal NP:

(17)

Every(Person, \x.Z)

X

We can depict the connections between the f-structure and the semantic
contributions like this:

Every(Person, \z.Z)
(18) |SUBJ [PRED ‘Fido’} Ao A2
PRED ‘Loves’ 7
OBJ [PRED ‘Everyone’]-= 4
o || Loves(X,Y)
NS Y X
Fido

The 1 in (17) means that this is the f-structure of the NP the quantifier
is introduced in, so connecting the inner shaded x box to it means that

the variable x is associated with that syntactic position, which means it
is understood as the object of loves. Then the GF*, meaning ‘a sequence
of any number of grammatical functions, it doesn’t matter what they are’
is interpreted ‘inside out’ (or, ‘upside down’) to identify some containing
structure, in this case the immediately containing clause.*

This extension to the notation requires a further addition to the linking
rules:

(19) The path from a contained shaded box to the final output of the
hookup (multiple contributions connected by axiom links) must go
via the unshaded box immediately containing the shaded one (recall
that these paths include implicit links from an unshaded box to their
immediately containing shaded one).

The effect of this condition that a variable introduced by a contained shaded
box cannot wind up outside of the scope of a lambda.

2 Multiple shaded contained boxes? application
to an idiom

Quantifiers are a very traditional and perhaps to many people not very
exciting application of these techniques, and they furthermore do not raise
the issue of whether an unshaded box should be allowed to contain multiple
shaded ones. Here I will take a look at idioms such as these:

(20) Iread the crap/shit/hell out of that book

considered in a facebook posting by Omer Preminger.’

Roughly, what seems to be going on is that the normal direct object of a
verb is displaced into an out of object position, with one of a variety of emo-
tionally expressive nouns taking the object position (subject to numerous
restrictions discussed in the facebook thread). The construction seems to
submit, at least to a first approximation, to a treatment based on Asudeh,
Dalrymple & Toivonen (2013), which utilizes a capacity that glue semantics
has of appearing to rewrite grammatical relations.

In the facebook discussion, it was supposed that the construction ef-
fectively wrapped the verb meaning in an adverbial meaning similar to ex-
tremely thoroughly, and I think it is worth presenting an analysis along these
lines first, to introduce a useful thing that glue can do, which is cause some-
thing introduced in a prepositional phrase (out of) to be interpreted as the
direct object of the verb. This will only require one shaded inner box; after
working through it, we will upgrade to two.

4For discussion of problems with this approach, see Gotham (2022).
"https://www.facebook.com/omer . preminger/posts/1325774967772794

Below is a constructor that does what is needed for the vfirest versio,
associated with a noun such as shit that triggers this construction, where
SPEC=DEF is a notation for the requirement that the specifier of the NP
in this construction must be definite:®

(21) s .. Thoroughly(Ax.P(Z
OBJ 1|SPEC=DEF || ceit)

OBLoytof [} x

h.

VA

The constructor supplies the variable x to the object position where shit
with its idiomatic sense is inserted. This means that a transitive verb such
as Read can form an open sentence such as Read(I,z), assuming ‘I’ as the
subject. This then gets returned to the complex unshaded box, so that P
is Read(I,), leading to Az.Read(I, x) being its ultimate contribution to the
meaning. A partial assembly is:

_ PRED ‘Pro’ .
SUBJ .
PERS 1 . Thoroughly(\z.P)(Z))
(22) [PRED ‘Read P .
OBJ T[SPEC:DEF} e L[
OBL,, { }

Value propagation causes P to be Read(I,z), producing
(23) Thoroughly(Ax.Read(I,x))(Z))

as the partially specified resulting meaning.

Whatever is sitting in the out of-object position (here abbreviated oo
will supply the meaning that is to be substituted for Z, but either before
or after dealing with that, we can apply the process of ‘beta-reduction’
to get rid of the lambda-expression, and substitute Z for x in P. Beta

5In standard LFG equational notation, this would be accomplished by a constraining
equation on the relevent lexical item for shit.

10

reduction is a calculation process for simplifying expressions where a lamba-
expression is applied to an argument by substituting the expression for the
argument for every instance of the variable ‘bound’ by the lambda, subject
to some safeguards. For a simple example from grade school arithmetic, the
expression (Az.2 + z)(3) beta-reduces to 2+3.

The safeguards are needed in order to assure that the results of beta-
reduction mean the same thing as the expression reduced, and we can avoid
the chore of learning about them by (a) using a different variable with each
lambda (b) not using any variables that are not ‘bound’ by a lambda. But
what is it for a variable to be bound by a lambda? To be clear enough about
this, we need to distinguish between ‘variables as kinds’ and ‘variables as
occurrences’. This is very similar to distinguishing between ‘book’ as a
composition with a text, author, publisher, etc, versus a physical object
(Cindy has written three books vs there are three books on the table (possibly
all the same volume in the ‘kind’ sense.)). So for example in Az.z * = we
have three occurrences of the variable (as kind) z, the second and third
bound by the lambda-expression involving the first. Now we can say that
an occurrence of the variable x is bound in an expression F iff it occurs in a
subexpression D of E (including the possibility that E is all of D of the form
Az.P). If a variable is not bound by something, it is free, so the bottom
line is that we don’t want any free variables in the (full) expressions we use,
and we want all the lambda-binders to use different variables. For a gentle
introduction to more on this subject, Coppock & Champollion (2022) is an
excellent freely available source. Now we procede to the use of two shaded
boxes in an unshaded one.

Although the semantic analysis we have so far this is not completely
terrible, I think it is less illuminating than it could be, and, in particular,
sheds no light on how expressions such as this might arise in the first place.
What I suggest here draws heavily on the proposal of Egan (2004) that
idioms are based on a pretence. Egan proposes this as a general analysis of
all idioms, which I won’t endorse here (and think there are probems with it),
but it nevertheless is illluminating, especially perhaps for the more recent
ones. The basic idea of this analysis is that the meaning of V the shit etc.
out of expressions might be better described as:

(24) X Ved Y like Y hitting Y it so hard that shit/crap etc came out of it.

What want an analysis on these lines to do is grab the meanings of both
the subject and the object, and, in effect, copy them (which the semantics
can do, although glue/linear logic by itself cannot), with one pair going to
the verb and the other going to the like clause. So were dealing with the
meanings of two arguments, subject and object, rather than just one, as in
the previous analysis. A tentative version of the meaning-constructor will
be this, where V(' is a convenient abbreviation for the meaning we propose:

11

(25)

........

suBJ | } -A.."'”'-YQ(X,KAy.A;:P')’“w..
OBJ f[SPEC =DEF| |- Y ~ p
OBL,, [} ' ' y x

This works like the previous analysis, with the meaning changed to involve
the subject as well as the object.

But there are some issues to discuss concerning the arrangement of the
two shaded boxes in the unshaded P box. What order should they appear in?
There is somewhere between very little and absolutely zero empirical content
to this issue, but we get the least confusing notation for the commonest
situation if we put them in the same relative order as the unshaded argument
boxes of a verb that would provide a meaning for P. So adding a verb to
(25) we get, (26), with clean hookup lines (but we omit the connections to
the f-structure because they would add even more clutter):

(20) ["ve(x, v, \y.az.P)
P
vy | [x
Yy i
Read(W, Z)
z | [w

Putting the lambda-bindings in the order used also assures that the so-
packaged verb meaning wants its arguments supplied in the same order as
the original verb. There is no empirical significance to this, but I think it
should help ameliorate confusion in the formulas. So we can make a bit of
progress on the proposed meaning of VC, presenting it as:

(27) VC(X,Y,V) = V(Y)(X) like X hitting Y so hard that shit/crap etc

came out of Y.

But what exactly is V(Y)(X)?

It is an example of what is usually called ‘currying’ a function of two ar-
guments, even though it would perhaps better be called Schonfinkelization,
because it was invented by the logician Moses Schonfinkel, although another
logician H.B. Curry was able to write considerably more about (crediting

12

Schonfinkel, although people mostly applied Curry’s name to it). It consists
of presenting a function that takes two arguments as one that takes one ar-
gument to another function, that applies to the other argument, to produce
the value. Explaining this more carefully requires taking a more ‘hardcore’
approach to glue, to which we procede now in the next section.

3 Getting more hardcore

We divide this section into two subsections, the first developing The present
approach is sufficient for applications, but, ultimately, to do glue you need
to know how it relates to the more widely encountered ones, and connecting
it to conventional proof-nets is the first step (there is plenty of literature
about the relations between proof-nets and deductions, the most widely
used format in the literature, although not very perspicuous, it seems to
me). I will approach this in two stages, first, aspects of formal semantics
which people familiar with formal semantics can skip, second, things more
specific to proof-nets.

3.1 Formal Semantics

The first step is to continue the discussion at the end of the previous section.
This requires us to say more about types. So far we have briefly discussed
types such as e—t; we now want to get a bit more general and therefore
formal about this. — is what is called a ‘type constructor’; it constructs
new types from old ones. In the formal definition of its use, parentheses
are put around the constructed type, so what we have been writing as e—t
is actually (e—t). This allows us to distinguish between (e—t)—t) and
(e—(e—t)), both types we have encountered, but writing so many paren-
theses can get tedious, so there is a convention of omitting ones that are
final, including outermost, leading to (e—t)—t and e—e—t for the above
two, and e—e—(e—e—t)—t for VC from the previous section.

The application of functions to arguments can be stated as the following
general rule:

(28) If f is of type A— DB, and a of type A, then f(a) is of type B.

And we have already discussed the notational convenyion of applying a
function to the parenthesized item immediately to the right, and then the
result of that to the next parenthesized item, so that if f is of type A—B—C,
and formulas a, b, ¢ of types A, B, C respectively, then f(a)(b) is of type c.

Since we have a type rule for function application, we should also want
one for lambda-abstraction:

(29) If = is a variable of type a, and P is an expression of type b, then A\z.P
is an expression of type a—b.

13

We are now ready to procede to the next step of explaining the relation
between the box box representation of proof-nets to the conventional one,
using trees sitting on their roots (rather than hung upside down from them,
as usual in linguistics). We also change our treatment of semantic values,
using lambda-calculus only rather than substitition for upper-case variables.

Moving on, the next step is to replace our use of upper case variables
with linear order. In order to bring the treatment closer to that of proof
nets, and elucidate the treatment of unshaded boxes containing shaded ones,
boxes contain sub-boxes will have two meanings, not just one: an initial
meaning, which can be sean as what the box starts out with, and a final
meaning, derived by combination with the sub-boxes. We will write inital
meanings at the bottom of boxes, final meanings at the top. But for boxes
that contain no inner boxes, the initial and final meanings are the same, so
we write them just once. The results for Fido chased Spot will then look like
this, before any meaning-propagation:

(30) s Z
Past
L~ Y X
Chase A\
Spot Fido

For a shaded box containing unshaded ones, the final meaning is produced
by starting with the initial meaning, and then applying each argument, in
the order of their unshaded boxes.

A first step would look like this:

(31) L~ 7
Past
Chase(Spot). . .
L[Spot X
Chase
Spot Fido

14

A second, like this:

(32) L 7
Past
Chase(Spot)(Fido)
L~ Spot Fido
Chase
Spot Fido

The last step, not written out in a diagram, produces the final result Past(Chase(Spot)(Fido))
as the final meaning of the unlinked box and therefore the meaning of the

assembly. It can be proved that this bottom up method will always work,

if the network obeys the rules governing linking.

3.2 Linear Logic, Proofs and Proof Nets

Glue semantics arose as a development from the discovery that the logic of
implication has the same structure as the lambda-calculus, which is called
the ‘Curry-Howard Isomorphism’ (CHI). We have already intimated this in
the discussion of the meaning of — along the lines of ‘if you give me some-
thing of type A, you will get something of type B. This corresponds to the
logical rule of ‘Modus Ponens’, which says that if you have the propositions
A and A—B (reading — is designating some kind of if; the philosophy of
if is very complicated), then you also have B. On the other hand lambda-
abstraction corresponds to to the rule of ‘Hypothetical Deduction’: if, from
A (and maybe some other assumptions), you can conclude B, then you can
conclude A— B (from those other assumptions, if any). What really gets the
CHI off the ground is the fact that the lambda-calculation of beta-reduction
also corresponds to a way of removing meaningless detours from proofs,
and there is another one called eta-reduction, to be briefly mentioned later,
which also does. For these reasons, — is often called the implicational type
constructor, with the item to its left called its antecedent, the thing to its
right its consequent. We will be using this terminology soon.

But the logic we are using is not ordinary logic as taught in beginning
logic courses, but ‘substructural’ logic, in which the use of premises is re-
stricted in various ways, in this particular logic, by the restriction that every
premise must be used once, and once only. When presented as a restriction
on reasoning about facts, this tends to strike people as insane, but it makes

15

sense for reasoning about resources that can be used up,” as we discussed
in connection with stool seat and legs: we can think of the seat as an item
of the type leg—leg—leg—rstool, and then deduce:

(33) leg—leg—leg— stool t= stool

where F (read ‘turnstyle’) is used to separate premises on the right from
conlusions on the left. In regular logic, it makes no sense to supply a premise
multiple times, but in both linear logic and use of physical resources, you
might need more than one copy of something, and if there is more than is
needed, there will be some left over. So with 4 leg premises, the conclusion
will be stool, leg.

For glue, we have been and will continue to operate under the assumption
that we want a final output of type ¢, but this is unnecessarily restrictive;
there are various other possibilities that might be suitable to the environ-
ment. For example, questions are sometimes analysed as being of type e—t;
a good answer is information that identifies an e to which this implication
can be applied, so as to produce more information than present in the pre-
suppositions to the question.® Similarly, if a group of people are looting
abandoned structures, a collection of returns of type e—t (predicate nom-
inals) might be appropriate: ‘a crowbar! a sledgehammer!, pliers!!!. How
the environment determines what kind of final results are suitable would be
an aspect of formalized or semi-formalized pragmatics.

3.3 Conventional Proof Nets

Now we explain the relationship between the box notation and conventional
proof nets, which use trees, but sitting rightside up on their roots, rather
than hung upside-down in the sadistic manner of linguistics. These trees
are thought of as being a syntactic analysis of their type, which can be
represented in various ways, but here I'll use shaded and unshaded boxes
with various kinds of content, starting with just the types:°

"Even if somebody is reasoning about facts, somebody very interested in the structure of
arguments might be interested in how often each premise is used, which basically amounts
to allowing each (copy of a) premise to be used only once, and all premises to be so used.

8For example, the question What will we have for dinner presupposes that we will have
food, rather than, say, dirt, so food is a bad answer, while roast spice chicken is a good
one (at least if we have or can get the ingredients).

9This is pretty close to the representation of de Groote (1999) and much related work;
that of Perrier (1999), who developed the interpretation methods, is substantially different
in appearance

16

(34)) 7

~_

e e—t

~_

e—e—t

It should be evident that a shaded box could be regarded as a right branching
‘spine’ of shaded nodes, one for each unshaded box, which provides the left
branch of the node, the antecedent of an implication, with the right being
the consequent. And we also want meanings, which we will write underneath
the types; examples to come soon.

The proof-net format is also different in another way; it is presented as
a deductive argument with the premises to the left of a = symbol, and to
the right of this we put a single conclusion, which will be an unshaded box.
Shading is also construed as ‘polarity’, with values positive and negative,
unfortunately, not with complete agreement about which nodes are positive
and which negative. We will consider shaded boxes to be ‘positive’, on the
basis of the intuition that they are supplying content, with the unshaded
boxes negative, but the reverse is common (perhaps inspired by terminology
from electricity, where Ben Franklin got it backwards?)

Axiom-links work like before, but as a consequence of the general setup,
they go only from leaf-nodes, labelled with a basic type. They are repre-
sented by overbars (no arrows) connecting the nodes:

(35)
\
e t
e e—t t t
e e e—e—t t—t c
Fido Spot Chase Past

This style of diagram reveals the basis for the name a bit more clearly;
they connect two instances of the same type, the shaded once constituing
the premise, the unshaded one the conclusion, of an instance of the axiom
A F A. But the full story about how the diagrams represent deductive
proofs is beyond the scope of this exposition.

17

Values are transmitted over the axiom links as before, and the rule for
the conditionals is straightfoward: the value of the branch on the right (the
‘consequent’) is the value of the base applied to the value of the branch on
the left (the ‘antecedent’).

Unfortunately, since the semantic values tend to get longer as the calcu-
lation procedes, a full calculation for the current example won’t fit on the
page, but we can do the result for the Chase tree, on the basis that the
axiom links have propagated the values of the two arguments:

(36)) 7

Fido Chase(Spot)(Fido)

\/

e e—t
Spot Chase(Spot)

\/

e—e—t
Chase

So we see that the initial meaning of a shaded box represents the meaning
at the bottom of the spine, the final meaning the one at the tip.

Negative/shaded boxes and tree nodes have some similarity to nega-
tive/unshaded ones, but are also significantly different. A negative branch-
ing tree node has a positive antecedent (left branch) and negative consequent
(right branch). A positive antecedent node also gets a meaning-variable as-
signed as its semantic value. In the simplest case, this node will be an atomic
node, and the meaning will be propagated along an axiom link to somewhere,
which, in accordance with the tree-based counterpart to (19), will have to
return, (for linguistic applications, contained in other things), and is then
wrapped in a lambda-binding using the variable of the antecedent, to be-
come the meaning of the negative. We illustrate with the net for everybody
yells (no tense):

18

(37)

e t
Yell(z)
e t e—t t
x Yell(z) Az. Yell(x) everybody(Ax.Yell(x))
e—t (e—t)—t
Yell everybody

We leave out the turnstyle and connection to negative type ¢ node to its
right, both because it adds no new information, and won’t fit horizontally
on the page.

We can see here that in the simpler version of the box notation, we are
putting the final meanings of the unshaded boxes into the semantic positions
of the final meaning of the containing shaded box, telescoping a procedure
rendered more explicitly in the tree notation.

The tree notation reveals two further possible complexities, and dictates
what to do with them: either the antecedent of the consequent of a negative
node may itself be complex. Complex antecedents would be needed to deal
with Richard Montague’s original analysis of ‘intensional objects’ such as a
unicorn in Mary seeks a unicorn; the issue is discussed briefly for proof nets
in Andrews (2010: 156-157). It is also clear how to handle it in the box
notation; put a negative box inside a contained positive box. But I am not
entirely convinced that we really need this for linguistic semantics.

But we have already used them for complex consequents, in our treat-
ment of V the shit out of. Looking at the trees helps to clarify some issues
involving the ordering of the variables in the contained shaded boxes and
their lambdas. Here is a tree representation of the VC idiom composed with
a verb:

19

(38)
e t
x R(y)(x)
\ \/
e e—t
Ae.R(y)(z)
\/
e—e—t /
/\y./\x.}@/

e t e (e—e—t)—t
Read(y)(x) A VC(B)(A)
\/ \/
e e—t e e—(e—e—t)—t
Read(y) B VC(B)
\/ \/
e—e—t e—e—(e—e—t)—t
Read V the crap out of

No semantic value provided for the unconnected node, because it wouldn’t
fit. Note that the variable for the argument we want to supply first to the
‘incorporated’ verb (here Read) is the one lowest on the spine of negative
nodes, last, highest.

We see that a ‘semantically incorporated’ transitive verb that is func-
tioning as the type e—e—t argument of something like VC should have its
lambdas in the same linear order as the contained unshaded boxes, if the VC
meaning is to apply arguments to them in the same order as they are applied
to the verb. It is my suspicion that there is actually a problem in having to
think about the linear order of occurrences in semantic representations, but
actually resolving this problem is tricky.

We conclude by introducing a much more compact, but not so readable,
notation which can also be used for meaning-constructors in their usual
format in the LFG literature. In this format, a LFG meaning-constructor
consists of a lambda-calculus semantic formula on the left, separated by a
colon, which has a linear logic formula on its left. The constructors are
introduced in the lexicon, where the atomic formulas in the linear logic for-
mulas are normally represented as f-structure designators such as (1 SUBJ)

20

or T=J). When an item is used in a structure, it is instantatiated and the
label for its f-structure is used instead. But there is one more thing; glue
has mostly assumed a ‘semantic projection’ coming of f- structure, called o,
but there was according to Andrews (2010) no convincing argumentation
for it, so it has been omitted here. More recently, works such as Asudeh,
Giorgolo & Toivonen (2014) and Findlay (2016) have developed more em-
pirically founded uses for the semantic projection, but they are beyond the
scope of this paper.

So for chase you would see something like (a) in a lexical entry, (b) in a
structure:

(39) a. Ay.\x.Chase(x,y) : (1 OBJ),—(1SUBJ),—7,
b. A\y.\x.Chase(x,y) : gs—hs—gs

The semantic types are usually omitted, as we have done with the box
notation.

Now recall that in the regular proof-net notation, the trees are nothing
but expanded presentations of the formulas, and there is no reason we can’t
just connect the atomic formulas directly to represent a proof, if we are
confident in the readers’ ability to understand it (and in our own not to
make stupid mistakes). Then, the proof for the meaning of Fido chased
Spot could be represeted like this:

(40) Ay.Az.Chase(x,y) : gs—hs—fs

Spot :hs
Fido 1 gs

This is pretty compact, but not perspicuous to the beginner.

The proof net notation, especially in this version, is on the whole more
compact than the deductive formulations, but with one interesting excep-
tion. In deduction, you can apply a conditional with a complex antecedent of
a type such as (e—t)—t, such as, say, everybody directly to a premise of the
form e—t, say, yells, to get the result everybody(yells). In proofnet glue, you
can’t do this, but have to work from the various atomic formulas (which are
what is connected by axiom links) to get the result everybody(Az.yells(x)).
The rule of eta-reduction, which we mentioned before, converts this latter
into the former. One can imagine extensions to the theory of proof-nets that
would deliver the more direct approach, but nobody has bothered to try to
work them out rigorously, and indeed, Jay & Ghani (1994) have argued,
on grounds I confess to not understanding, that the eta-expanded forms as
produced by proof nets are better.!?

107t is maybe worth commenting that formal semanticists seem to write things like

21

4 Limitations

This concludes the exposition of this diagramming technique, but I now
want to say a bit about its limitations.

First, does not have a good representation of ‘tensors’, which have been
proposed for various purposes, especially the treatment of anaphora and
resumptive relative clauses in Asudeh (2004; 2012). Proof nets have be
extended to handle these without issues, but the representation presented
here struggles, and the geometric/topological intuition doesn’t seem to be
maintainable, as far as I have been able to tell. Another issue is monads,
employed for various purposes in publications by Asudeh & Giorgolo (2016;
2020). I am not aware of any proof-net representation for monads at all,
but I think it would be possible to do a preliminary, syntax-based analysis
of the semantic composition of an utterance, using proof nets ignoring them
(effectively, pretending that whatever monads were being used were the
identity monad), and then putting in the monadic steps as needed into the
proof represented by the proof net.

Neither of these are serious problems for this notation seen as an ex-
pository aid, because if you are ready to take on tensors, you can handle
conventional proof nets, and if you are ready for monads, deductions will
not be a problem either.

5 Further Reading

A wide-ranging but incomplete discussion of the background to glue seman-
tics is Crouch & van Genabith (2000). A deeper (but for me relatively read-
able and illuminating) presentation of the basic ideas of proof equivalence,
normalization, and the Curry-Howard Isomorphism, which are fundamental
to the ideas behind glue semantics, is Girard, Lafont & Taylor (1989), while
Troelstra (1992) is a standard introduction to linear logic, fairly accessible
as such things go.

Dalrymple (2001) provides a thorough exposition of glue in the context of
a comprehensive presentation of LFG, with analyses of various constructions,
while Asudeh (2004; 2012) also provide thorough presentations with analysis
of anaphora using tensors. Asudeh (2022) is a recent overview, including
extensive citations to the literature.

Az.yells(x), rather than applying eta-reduction; I conjecture that the reason is that this
gives enough information about the valence of the item, without requiring any specific
decisions about what the basic types are, which is good, because that issue is not relevant
to many discussions.

22

References

Andrews, Avery D. 2010. Propositional glue and the correspondence archi-
tecture of LFG. Linguistics and Philosophy 33. 141-170.

Andrews, Avery D. 2012. Yet another attempt to explain glue. http://
AveryAndrews.net/Papers (Tutorials).

Asudeh, Ash. 2004. Resumption as resource management. Retrieved Novem-
ber 15, 2010, from http://http-server. carleton. ca/~asudeh/.
Stanford CA: Stanford University. (Doctoral dissertation).

Asudeh, Ash. 2012. The logic of pronominal resumption. Oxford University
Press.

Asudeh, Ash. 2022. Glue semantics. to appear in Annual Review of Lin-
guistics http://www.sas.rochester.edu/lin/sites/asudeh/pdf/
Asudeh-AR-corrected.pdf.

Asudeh, Ash, Mary Dalrymple & Ida Toivonen. 2013. Constructions with
lexical integrity. Journal of Language Modelling 1. 1-51.

Asudeh, Ash & Gianluca Giorgolo. 2016. Perspectives. Semantics € Prag-
matics 9. DOI: http://dx.doi.org/10.3765/sp.9.21.

Asudeh, Ash & Gianluca Giorgolo. 2020. Enriched meanings: natural lan-
guage semantics with category theory. Oxford University Press.

Asudeh, Ash, Gianluca Giorgolo & Ida Toivonen. 2014. Meaning and valency.
In Proceedings of LFG14, 68-88. CSLI Publications.

Barwise, Jon & Robin Cooper. 1981. Generalized quantifiers and natural
language. Linguistics and Philosophy 4. 159-219.

Casadio, Claudia. 1988. Semantic categories and the development of cate-
gorial grammar. In Emmon Bach R.T. Oehrle & Deirdre Wheeler (eds.),
Categorial grammar and natural language semantics, 95-123. Reidel.

Coppock, Elizabeth & Lucas Champollion. 2022. Invitation to Formal Se-
mantics. https://eecoppock.info/bootcamp/semantics-boot-camp.
pdf.

Crouch, Richard & Josef van Genabith. 2000. Linear logic for linguists. URL:
http://www.coli.uni-saarland.de/courses/logical - grammar/
contents/crouch-genabith.pdf (checked April 22 2013).

Dalrymple, Mary. 2001. Lezical Functional Grammar. Academic Press.

de Groote, Philippe. 1999. An algebraic correctness criterion for intuition-
istic multiplicative proof-nets. Theoretical Computer Science 224. Re-
trieved 15 November, 2010, from http://www.loria.fr/~degroote/
bibliography.html, 115-134.

Egan, Andy. 2004. Pretense for the complete idiom. Forthcoming in Nods.
URL: http://www.sitemaker.umich.edu/egana/files/idiom.2006.
11.09.pdf.

Findlay, Jamie. 2016. Mapping theory without argument structure. Journal
of Language Modelling 4. 293-338.

23

Girard, Jean-Yves, Yves Lafont & Paul Taylor. 1989. Proofs and types. Re-
trieved 15 November, 2010, from http://citeseerx.ist.psu.edu/
viewdoc /download ?7doi=10.1.1.85.5358&rep=repl&type=pdf.
Cambridge: Cambridge University Press.

Gotham, Matthew. 2022. Approaches to scope islands in Ifg+glue. In Miriam
Butt & Tracy Holloway King (eds.), Proceedings of Ifg2021. to appear.
Stanford CA: CSLI Publications.

Jay, C. Barry & Neil Ghani. 1994. The virtues of n-expanson. URL: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.39.613.

Kay, Paul & Charles J. Fillmore. 1999. Grammatical constructions and lin-
guistic generalizations: the what’s X doing Y? construction. Language
75. 1-33.

Partee, Barbara H. 2006. Do we need two basic types. In Hans-Martin Gaert-
ner et al. (eds.), Puzzles for manfred krifka. URL: www.zas . gwz-berlin.
de/40-60-puzzles-for-krifka/. Berlin.

Partee, Barbara H. & Vladimir Borschev. 2004. Genitives, types, and sorts.
In Ji-yung Kim, Yury A. Lander & Barbara H. Partee (eds.), Possessives
and beyond: semantics and syntaz, 29-43. URL: http://people.umass.
edu/partee/Research.htm. Amherst MA: UMass GSLA.

Perrier, Guy. 1999. Labelled proof-nets for the syntax and semantics of nat-
ural languages. L.G. of the IGPL 7. 629-655.

Troelstra, A. S. 1992. Lectures on linear logic. Stanford CA: CSLI Publica-

tions.

24

