Questions and their relatives in Sm’algyax*

Colin Brown
University of California, Los Angeles

1 Introduction

This paper presents a description of content questions or wh-questions in Sm'algyax (ISO 639-3 tsi, also known as Coast Tsimshian), a Maritime Tsimshianic language spoken in Northwestern British Columbia, and Southeastern Alaska. Questions in Sm'algyax are characterized by a complex system of extraction morphology indicating whether a transitive subject, intransitive subject, or object has been extracted. This tripartite system is surprising given that Sm 'algyax is an otherwise ergative patterning language in which intransitive subjects and direct objects pattern together with respect to person marking and agreement. We thus find that extraction processes reveal a grammatical distinction between intransitive subjects and direct objects, as is also attested in the Interior Tsimshianic languages (Rigsby 1986, Tarpent 1987, Davis and Brown 2011, Brown 2016, Forbes 2017).

In addition to core-argument extraction, Sm'algyax also boasts a number of configurations marking different types of adjunct and non-core-argument extraction. Again, we observe that while in-situ oblique elements often pattern identically to one another, extraction of these oblique elements differs substantially, highlighting underlying heterogeneity not observable in sentences with canonical word order.

I provide a detailed description of each configuration and show parallels to other kinds of movement/fronting such as focusing and relativization: so-called "A-bar" processes (henceforth \bar{A}-processes). Moving beyond local extraction, I provide a basic description of long-distance movement, showing parallels between local and long-distance movement.

This work's immediate contribution is clear. This is the first in-depth look at content questions and other processes, such as focusing and relativization in Sm'algyax - a critically endangered language with fewer than 100 fluent speakers (FPCC 2018). Though the scope of this paper is largely descriptive, I point out various theoretical questions and implications as they arise throughout the paper that I believe warrant deeper investigation and discussion in future work.

[^0]This paper proceeds as follows: in the remainder of this section I provide a background on Sm'algyax and the methodology used in my own fieldwork; in Section 2, I discuss clause typing, person marking, and determiners (referred to as "Connectives" in the Tsimshianic literature), which are crucial to accurately describing \bar{A}-processes in Sm'algyax. In Section 3, I outline the basic facts of $w h$-expressions, $w h$-movement, and extraction. In Section 4, I move onto a description of core-argument extraction with a focus on content questions, In Section 5, I discuss a number of non-core argument and adjunct questions. In Section 6, I discuss long-distance movement. In Section 7, I conclude, and discuss future avenues of investigation.

1.1 Sm'algyax background and methodology

Sm'algyax, also known as Coast Tsimshian or the Ts'msyen language, is a Tsimshianic language with fewer than 100 fluent speakers spoken in Northwestern British Columbia and Southeastern Alaska (FPCC 2018). The Tsimshianic family is divided between the Maritime branch and the Interior branch - the Maritime branch is made up of Sm'algyax (Coast Tsimshian) and Sgüüx̣s (Southern Tsimshian) while the Interior branch consists of Gitksan and Nisga'a.

All uncited examples come from my own fieldwork in Prince Rupert, British Columbia, with four fluent first language speakers of Sm'algyax: Velna Nelson, Ellen Mason, and Theresa Lowther (Txałgiiw/Hartley Bay), and Beatrice Robinson (Gitxaała/Kitkatla). The methodology employed corresponds to that outlined in Matthewson (2004): target strings and sentences are elicited by providing the consultant with a context and a sentence in English and asking for a translation into Sm'algyax, while acceptability judgements are elicited by providing the speaker with a sentence in Sm'algyax and asking for a judgement or comment on acceptability for that context, as well as a translation back into English (if felicitous) or a corrected form (if infelicitous). Examples cited as TSLA are pulled from the Sm'algyax Living Legacy Talking Dictionary accessible at https://www.webonary.org/smalgyax/.

2 Clause typing, person marking, and connectives

In this section I provide the background on Sm'algyax morphosyntax needed to discuss \bar{A}-movement in subsequent sections. This background includes the distinction between the two main clause types and the marking of arguments, which affects the distribution of the determiner-like CONNECTIVES, all of which interact with the processes of \bar{A}-movement.

2.1 Independent and dependent clauses

Sm'algyax word order is rigidly Verb-Subject-Object-Oblique (VSOX), except for the movement of phrases to a preverbal position which will be documented more completely in subsequent sections: ${ }^{1,2}$

> (1) Nah dzabas Ronnie pts'aan das Dick.
> nah dzap-i[-t] [=s Ronnie] [=a pts'aan] da [=s $\begin{array}{ll}=\mathrm{s} & \text { Dick] }\end{array}$
> PFV make-TR[-3.II] =PN Ronnie $=$ CN pole PREP =PN Dick
'Ronnie has fixed a totem pole for Dick.'
(Mulder 1994, 49)
Across the Tsimshianic family there are two main clause types, referred to here as INDEPENDENT and Dependent. ${ }^{3}$ This clause-type distinction affects the morphology that appears on the predicate including person marking, which in turn affects the determiner or connective system (Davis and Forbes 2015, Davis 2018). Independent clauses are typically verb initial, though some preverbal clitics, particles, and the aspectual morphemes $d m$ PROSPECTIVE and nah PERFECTIVE appear before the verb in either clause type. The suffix -i (the "transitive vowel") appears on transitive verbs in independent clauses and may function as a diagnostic for clause type across Tsimshianic (Brown et al. 2020). ${ }^{4}$ Examples (2) and (3) show independent clauses, which feature this transitive suffix: ${ }^{5}$

[^1](2) T'uusis Henry xbiis.
t'uus-i[-t]=s Henry=a xbiis
push-TR[-3.II]=PN Henry=CN box
'Henry pushes/pushed the box.'
Independent
(3) Gabit.
gap-i-t
eat-TR-3.II
'S/he eats/ate it.'
Independent
Dependent clauses occur in subordinate contexts, imperative constructions, or are triggered by the presence of a DEPENDENT MARKER, one of a heterogeneous class of prepredicative morphemes which includes at/aka NEGATION, yagwa PROGRESSIVE, and fa PROXIMAL. In (4) and (5) we see dependent clauses triggered by the dependent markers yagwa and aka, respectively - note that unlike (2) and (3) these examples lack the transitive suffix:
(4) Yagwat t'uusdit Henry xbiis.
yagwa=t t'uus-t=t Henry=a xbiis
PROG=3.I push-3.II=PN Henry=CN box
'Henry is/was pushing the box.' Dependent
(5) Akadit gapt.
aka=di=t gap-t
NEG=FOC=3.I eat-3.II
'S/he doesn't/didn't eat it.' Dependent
Another difference between the independent clauses in (2) and (3) and their dependent-clause counterparts in (4) and (5) concerns person marking, which we turn to now.

2.2 Person marking

There are four sets or "series" of person markers in Sm' algyax (Table 1). The distribution of these person-markers is sensitive to the independent/dependent clause-type distinction: in independent clauses, series II suffixes index agreement with the transitive (or "ergative") subject, and objects and intransitive subjects ("absolutive" arguments) surface as series III pronouns; in dependent clauses, series I suffixes index agreement with the transitive subject, while series II suffixes agree with objects and intransitive subjects. This is schematized in (2): ${ }^{6}$

2007, Matthewson 2013). For ease of readability, after this section, I only provide a single English translation as offered/accepted by my consultants.
${ }^{6}$ These series are referred to as series I-III after Rigsby (1986), based on their linear position in the clause. For example, series I clitics appear prepredicatively, while series II suffixes follow the predicate. Series I-III are referred to in much of the Sm'algyax literature following Boas (1911) and Dunn (1979) as "subjective", "objective" and "definite objective", respectively. Sasama ($2001,77 \mathrm{fn} .65$) points out that these terms are misleading as, for instance, an "objective" (series II) suffix can mark intranstive subjects and transitive subjects in addition to marking objects. I opt here for the theory-neutral terminology from Rigsby (1986) that is in use for much of the linguistic work on Interior Tsimshianic.

	$\begin{gathered} \text { I } \\ \text { Clitics } \end{gathered}$				IIIa Weak pronouns		IIIb Strong pronouns	
	SG	PL	SG	PL	SG	PL	SG	PL
1	n	(n) dip	-u	-m	-'nu	-'nm	'nüüyu	nüüm
2	m	m sm	-n	-sm	-n	-nsm	'nüün	'nüüsm
3								

Table 1: Sm'algyax person marking

	A	S	O
Independent	II	III	III
Dependent	I	II	II

Table 2: Basic person-marking system

We see examples of these person-marking configurations below. In the intransitive independent clause in (6), the intransitive subject (S) is marked with a series III(a) suffix. While in the transitive independent clause in (7), the object (O) surfaces as a series III(b) independent pronoun and the transitive subject, or "agent" (A), is marked by a series II verbal suffix: ${ }^{7}$
(6) Independent intransitive: Series III marks S

Baa'nu.
baa-'nu
run-1SG.III
'I ran'
(7) Independent transitive: Series II marks A; Series III marks O
'Nax'nuuyn(t 'niit).
'nax'nuu-i-n(=t 'niit)
hear-TR-2SG.II=PN 3.III
'You heard him.'
Example (7) also shows that third-person independent pronouns are able to be dropped if a suitable discourse antecedent is present.

In the intransitive dependent clause in (8), S is not marked by series III, but by a series II suffix. In the transitive dependent clause in (9), O is also marked by a series II suffix, while A is marked by a prepredicative series I clitic:

[^2](8) Dependent intransitive: Series II marks S

Akadi baayu.
aka=di baa-u
NEG=FOC run-1SG.II
'I didn't run.'
(9) Dependent transitive: Series I marks A; Series II marks O
Akandi 'nax'nuun.
aka=n=di 'nax'nuu-n
NEG=1.I=FOC hear-2SG.II
'I didn't hear you.'

Throughout this paper I include in the morpheme breakdown the presence of a proposed underlying third-person agreement marker [-t], following the proposal in Tarpent (1987) for Nisga'a, which is adopted in Hunt (1993, and following work) for Gitksan as well as Davis (2018) for Sm'algyax.
(10) Dependent intransitive: Series II marks S; deleted when adjacent to referent
Ła miiga maay. (not miikda)
ła miik[-t]=a maay
PROX ripe[-3.II $]=$ CN berry
'The berries are ripe.'

Consistent with the generalizations outlined in this section, the proposed suffixal series II agreement marker $-t$ agrees with ergative arguments in independent clauses and absolutive arguments in dependent clauses. However, it does not surface when followed directly by the DP it co-refers with, as is the case in (10). This deletion process is sensitive to a strict adjacency requirement: when elements such as sentential clitics appear between the predicate and its arguments, this t-deletion does not occur. We observe this in (11): the epistemic modal $=s n$ surfaces between the predicate and its argument, and - t appears. See the aforementioned sources for additional argumentation and discussion.
(11) Ła miiktsnł maay.
ła miik-t=sn=ł maay
PROX ripe-3.II=EPIS=IRR.CN berry
'The berries might/must be ripe.'
The system schematized in (2) has been referred to as "pivoting ergative" by Davis and Brown (2011) for Gitksan (Interior Tsimshianic), as it exhibits ergative agreement patterns on both sides of the clause-type conditioned split, with series II suffixes acting as the "pivot", due to the fact that they mark ergatives in independent clauses, and absolutives in dependent clauses.

Beyond the marking of core arguments, series II suffixes and III pronouns have additional roles. For instance, series III pronouns also function as strong pronouns in a left-peripheral position under \bar{A}-movement (12), and series II suffixes also mark possession (13):

'Nüün	dm	int	gaas
'nüün $[\mathrm{dm}$	in=t	gaa[-t $]=\mathrm{s}$	Meeli.

2SG.III PROSP AX=3.I take[-3.II]=PN Meeli
'It's you who will take Mary.'
(13) waabm
waap-m
house-1 PL.II
'our house'
Having described person marking across independent and dependent clauses, let us turn to the morphological marking associated with overt DPs.

2.3 Connectives

The final grammatical process we will discuss is the determiner system, referred to in the Tsimshianic literature as CONNECTIVES. In the interest of space I will limit my discussion here to the basics required to navigate the examples in subsequent sections - for a detailed description and analysis of connectives across Tsimshianic see Sasama (2001) and Davis (2018). Connectives are semantically vacuous clitics which attach to the phrase that appears to the left of the nominal they introduce. This is seen in (14): the connective $=a$ is associated with the common noun hana'a but phonologically attaches to the predicate sisaaxs which appears to the right of the noun. All non-predicative nominals must be introduced by a connective. ${ }^{8}$
(14) Sis'aaxsa hana'a.
sis'aaxs [=a hana'a]
laugh $=\mathrm{CN}$ woman
'The/a woman laughed.'
There are four connectives which make up this system: the proper-noun (or "determinate") connectives $=t$ and $=s$, and the common noun connectives $=a$ and $=t$. Proper-noun connectives appear with proper names, ascending kinship terms (such as mother and grandfather, but not daughter or grandson), series III pronouns (in some configurations), and demonstratives. Commonnoun connectives introduce every other class of nominal. The connective $=a$ uniformly introduces intransitive subject, transitive subject and object across both clause types:
(15) Independent intransitive: [=a S]

[^3]'The car arrived.'
(16) Independent transitive: [=a S$][=a \mathrm{O}]$

Dm gaba haasa hoon.
dm gap-i[-t] [=a haas] [=a hoon]
PROSP eat-TR[-3.II] =CN dog =CN fish
'The dog will eat the fish.'
(Anderson and Ignace 2008, 394)
(17) Dependent intransitive: [=a S$]$
$\begin{array}{lll}\text { Ła } & \text { dzaga } & \text { giik. } \\ \text { ła } & \text { dzak[-t }] & {[=\mathbf{a}} \\ \text { giik }]\end{array}$
PROX die[-3.II] =CN fly
'The fly is dead. ${ }^{9}$
(Sasama 2001, 98)
(18) Dependent transitive: [=a A] [=a O$]$

Yagwat sibaasda gyeda haas.
yagwa=t sibaas-t [=a gyet] [=a haas]
PROG=3.I scare-3.II $=$ CN person $=\mathrm{CN}$ dog
'The person scared the dog.'
Under certain conditions $=a$ may be replaced by $=t$, the so-called IRREALIS connective. This connective may appear in a number of non-declarative sentence types, including interrogatives, imperatives, and exclamatives, as well as alongside negation, epistemic modals, and evidentials. Examples of the irrealis connective are given below:
(19) Negation
$\begin{array}{lclc}\text { Akat } & \text { anooxdit } & \text { Larrył } & \text { onions. } \\ \mathrm{A}=\mathrm{ka}=\mathrm{t} & \text { anoox- } \mathrm{t}=\mathrm{t} & \text { Larry } & {[=\mathbf{t}}\end{array} \quad$ onions] $]$
'Larry doesn't like onions.'
(Sasama 2001)
(20) Polar question

Gabał	haasiił	hoon?
gap-i[t] [=\	haas]=ii [=1	hoon]
eat-TR-3.II $=$ IR	$\mathrm{dog}=\mathrm{Q}$	
'Did the dog eat	h?'	

In subsequent sections I will outline the role of common-noun connectives (both irrealis and nonirrealis) in extraction and questions. With this background in place let us now discuss $\overline{\mathrm{A}}$-movement.

[^4]
3 Ā-movement, questions, and wh-expressions

In contrast to Sm'algyax's canonical predicate initial word order (21a), wh-questions (21b), focusconstructions (21c), and relative clauses (21d) are characterized by the preposing (or "extraction") of a post-predicative word or phrase to a left-peripheral position in the clause:
a. Tgi k'apaaytga 'yuuta
tgi k'apaaytk=a 'yuuta
down fall=CN man
'The man fell down.'
b. Naayu tgi k'apaaytgit?
naa $=\mathrm{u}=\mathrm{a} \quad$ tgi k'apaaytk-it \qquad
who= $\mathrm{Q}=\mathrm{CN}$ down fall- SX
'Who fell down?'
c. Dzon tgi k'apaaytgit.

Dzon=a tgi k'apaaytk-it \qquad
John=CN down fall-sX
'It's John who fell down.' (a suitable answer to (21b))
d. Wilaayu 'yuuta tgi k'apaaytgit.
wilaay-u=a 'yuuta=a tgi k'apaaytk-it ___
know- $1 \mathrm{SG}=\mathrm{CN}$ man=CN down fall-SX
'I know the man who fell down.'
In this section I discuss the formation of $w h$-questions, the interrogative and non-interrogative uses of $w h$-expressions, and the interrogative enclitic $(d) u$, which appears optionally in root/matrix $w h$-questions.

3.1 Wh-expressions

There are three basic wh-expressions in Sm'algyax: naa 'who', goo 'what', and an underspecified wh-expression ndaa/ndeh. As shown in Table 3, these basic words combine with subordinating elements such as wil/wila/gan to form complex wh-expressions corresponding to 'when', 'how', 'why', etc. (these subordinators and non-core argument extraction configurations are described in detail in $\S 5$). In addition to the basic $w h$-expressions, there are two quantificational $w h$-expressions t 'masool 'how many (people)', and t'maays 'how many (things)'.

In content questions, the $w h$-expression appears in the prepredicative position, and may not appear in situ (either as a canonical question or an echo/surprise question):
a. Tgi k'apaaytga 'yuuta
tgi k' apaaytk=a 'yuuta down fall=CN man
'The man fell down.'

Table 3: Sm'algyax wh-expressions
b. Naayu tgi k'apaaytgit?
naa=u tgi k'apaaytk-it ___
who= Q down fall-sX
'Who fell down?'
c. \# tgi k'apaaytk-it/=t naa(=u)
down fall-SX/=PN who=Q
Intended: 'Who fell down?'
(23) Context: Mary is talking about her young child Pat, and mentioned that he ate sea lion. You are surprised by this:
a. \# gap-i $[-t]=s \quad$ Pat $=ł \quad$ goo
eat-TR-3.II=PN Pat=IRR.CN what
Intended 'Pat ate what??'
b. Goł \quad gabis \quad Pat??
goo=ł gap-i $[-\mathrm{t}]=\mathrm{s} \quad$ Pat
what=IRR.CN eat-TR-3.II=PN Pat
'What did Pat eat??' (Correction offered by speaker in context)
Though occuring infrequently, bare $w h$-expressions may appear in argument positions functioning as light nouns such as 'person' or 'thing'. This suggests that the interrogative reading of these $w h$-expressions is associated with extraction.
$\begin{array}{lr}\text { Ksiniidzu } & \text { naa. } \\ \text { ksi=niist-i-u=a } & \text { naa } \\ \text { out=see-TR-1SG.II=CN } & \text { who }\end{array}$
'I picked out a person.'

'He is keeping things in in his car.'
However, (non-interrogative) wh-expressions do optionally occur in a left-peripheral position in headless relative clauses.
(26) Context: John trapped two bears, one managed to get free and start running off

Guuyda	(goo)	k'eexgit.
guu-i-t $=\mathrm{a}$	goo=a	\underline{k}^{\prime} eexk-ət

shoot-TR-3.II=CN what=CN run.off-SX
'He shot the one that ran off.'
(27) Txal'waayu (naa) int ba'an boot.
txal'waa-i-u=a naa=a in=t baa-'n=a ___ boot
meet-TR-1SG.II=CN who=CN AX=3.I run-CAUS=CN boat
'I met the one who runs the boat.'
Indefinite/indeterminate nouns in Sm'algyax are most often composed of a wh-expression preceded by a particle that contributes quantificational meaning, including ligi 'some/any/or', txa'nii 'all', and at/akal'wah 'not'.
(28) Nah niidzu ligit naa
nah niits-i-u ligi=t naa
PFV see-TR-1SG INDEF=PN who
'I saw someone.'
(29) Giigida txa’nii goo ap ksa ła’at. giik-i-t=a txa'nii goo ap $k s a=a \quad ł a ’ a t$ buy-TR-3.II=CN all what VER only=CN ball 'She bought everything but the ball.'
(30) Giloo labayt 'nakan da 'wah goo. giloo=a libagayt 'naka-n da=a 'wah goo PROHIB=CN wrong reach.out-2SG.II PREP=CN NEG what 'Stop reaching for nothing.'

These wh-expressions marked with quantificational particles are able to appear in the initial/nonargument position, and do not receive an interrogative reading:
(31) Txa'nii goo wil baast.
txa'nii goo wil baas-t ___
all what COMP fear-3.II
'He is afraid of EVERYTHING.'
Not: 'What all is he afraid of?'

We also find that multiple $w h$-questions are not permitted. In (32) we observe that multiple wh-movement is not possible, and that English-style multiple wh-questions with an in-situ whexpression are likewise not possible. This second construction may be ruled out based on the observation above that a wh-expression must move to be interpreted as interrogative. This peculiar fact places Sm'algyax (as well as Gitksan (Bicevskis et al. 2017)) among the set of languages which systematically disallow multiple questions, such as Irish, Berber, Somali (Stoyanova 2008), as well as a number of languages of the Mesoamerican sprachbund (Caponigro et al. 2020).
a. \# naa(=u) goo(=u) in=t dzam[-t]
who=Q what=Q AX=3.I make[-3.II]
Intended: 'Who made what?'
b. \# naa(=u) in=t dzam[-t] goo(=u)
who $=\mathrm{Q}$ AX=3.I make[-3.II] what=Q
Discourse-linked content questions (translated with 'which') are formed with the complex wh-expression $k s i n d a a / k s i n d e h$ which appears before a noun, or may stand alone, in which case it is translated as 'which one':
a. Ksindeyu gan diduulsit?
ksi=ndeh=u gan diduuls-it \qquad
out=WH=Q tree live-SX
'Which tree is alive?'
b. Ksindeyu diduulsit?
ksi=ndeh=u diduuls-it \qquad
out=WH=Q live-SX
'Which one is alive?'
Many of the questions described above are marked by the $w h$-clitic $=(d) u$. I briefly describe its distribution in the following subsection.

3.2 Wh-clitic

Content questions may optionally be marked by the $w h$-clitic $=(d) u$. This element appears in any root (i.e. not embedded) content question, though it is often dropped in colloquial or rapid speech.

Naayut 'nüün?
naa=u=t 'nüüun
who=Q=PN 2SG.III
'Who are you?'
(35) Naat 'nüün?
naa=t 'nüün
who=PN 2SG.III
'Who are you?'

We observe in (36) that $=(d) u$ may not appear in embedded questions.

Güüdagu	naa \quad łimoom	sm'ooygit.
güüdax- $\mathrm{i}-\mathrm{u}=\mathrm{a}$	naa $(*=\mathbf{u})=$ a łimoom- $\mathrm{i}(*=\mathbf{u})=\mathrm{a}$	sm'ooygit
ask-TR-1 $\mathrm{SG}=\mathrm{CN}$	who $=\mathrm{Q}=\mathrm{CN}$ help- $\mathrm{TR}=\mathrm{Q}=\mathrm{CN}$ chief	

'I asked who the chief helped.'
The wh-clitic may surface either as [ju] or [du], optionally surfacing as either form directly following one of the three basic $w h$-expressions with no difference in meaning between the two forms: naayu/naadu (who=Q), goyu/godu (what=Q), ndeyu/ndedu (WH=Q).
$\begin{array}{ll}\text { a. } & \begin{array}{l}\text { Naayu } \\ \text { naa }=\mathbf{u}=\mathrm{a} \\ \text { baat? } \\ \text { who }=\mathrm{Q}=\mathrm{CN}\end{array} \\ & \text { run-SX }\end{array}$
'Who ran?'
b. Naadu baat?
naa=du=a baa-it
who $=\mathrm{Q}=\mathrm{CN}$ run- SX
'Who ran?'
Consultant's comment: "Same as Naayu baat."
The interrogative clitic exhibits variable positioning in the clause. It may always appear on the wh-expression, as in (38a). However, under certain circumstances, it may optionally appear in a position following the predicate, as in (38b). ${ }^{10}$
a. $\begin{aligned} & \text { Naayu } \quad \text { int } \quad \text { gaba ts'ik'aaws? } \\ & \text { naa }=\mathbf{u}=\mathrm{a} \quad \text { in=t } \quad \text { gap=a ts'ik'aaws }\end{aligned}$
who $=\mathrm{Q}=\mathrm{CN}$ AX=3.I eat=CN split.salmon
'Who ate the split salmon?'
b. Naał int gapdu ts'ik'aaws?
naa=ł in=t gap-t=u=a ts'ik'aaws
who=CN.IRR AX=3.I eat-3.II=Q=CN split.salmon
'Who ate the split salmon?'
Having presented these generalizations about content questions and extraction, let us turn to a more in-depth discussion of the extraction morphosyntax associated with core and non-core argument extraction in Sm'algyax. In the following sections I show that all \bar{A}-constructions, including wh-questions, relative clauses, and focus fronting, exhibit morphosyntactic cues reflecting the grammatical role of the extracted element (whether the extracted element is an intransitive subject, transitive subject, object or one of a number of classes of non-core argument).

[^5]
4 Core-argument extraction

The \bar{A}-movement of core arguments in Sm'algyax exhibits distinct extraction morphology indicating whether an Intransitive Subject (S), Object (O), or Transitive Subject or "Agent" (A) has been extracted. This tripartite system is perhaps surprising given that person-marking and number agreement in Sm'algyax does not generally mark a grammatical distinction between intransitive subjects and objects (or "absolutives"). In this section I outline this core-argument extraction morphology, and compare focus constructions, relative clauses, and embedded questions to highlight the surface isomorphism between these constructions. I opt here for embedded questions, as root/matrix questions are almost always volunteered to me by my consultants with the interrogative clitic $=(d) u$, which exhibits variable positioning in the clause and obscures the otherwise consistent morphosyntactic marking of these constructions. However, I also include examples of root questions marked with $=(d) u$, but limit discussion of the interrogative clitic.

4.1 Intransitive subject extraction

Extraction of an intransitive subject is marked morphologically by the presence of the morpheme -it (glossed as "subject extraction") that suffixes to the predicate, and the common-noun connective $=a /=t$ appearing on the extracted element in the left-peripheral position.

[^6]The presence of a common-noun connective on the $w h$-expression in questions such as (39d) is obscured by the general vowel-final nature of $w h$-expressions, as the $=a$ connective systematically

[^7]deletes when appearing after vowels and sonorants (Anderson and Ignace 2008, Brown et al. 2020). Evidence that there is a connective in questions comes from those questions that feature the irrealis connective $=t$, which does not undergo this deletion. We see this in (40) - here $=t$ is licensed by the matrix-clause negation:
'I don't know who left.'
Root wh-questions do not differ substantially from embedded ones. They bear the same extraction morphology described above, however, they are additionally optionally marked with the interrogative clitic $=(d) u$ on the $w h$-phrase:
Naayu \quad sis'aaxsit?
naa=u [=a
sis'aaxs-it
who=Q $=$ CN laugh-SX
'Who laughed?'

Question
Subject extraction is schematized below. The wh/focused/relativized subject appears prepredicatively, followed by a common-noun connective and a predicate marked by the subject extraction suffix -it:

S extraction morphology
S=CN PRED-SX \qquad
In sum, the subject extraction morpheme -it appears in the extraction of subjects of intransitive predicates.

4.2 Object extraction

Object extraction is characterized by the presence of the transitive suffix $-i$ on the verb, and a person-marking configuration in which series II suffix indexes agreement with the transitive subject; object-extraction configurations therefore exhibit morphology characteristic of independent clauses. Although the transitive vowel does not surface in (43a)-(43d) due a morphophonological deletion process: $-i$ does not surface between a consonant and a vowel (/CiV/ \rightarrow [CV]), the examples in (44) with a pronominal subject show that the transitive vowel does appear in between consonants (/CiC/ $\rightarrow[\mathrm{CiC}])$.

(43) O extraction

$\begin{array}{ll}\text { (1) Güüdagada } & \text { ndeh wil waan. } \\ \text { güüdax-i-t=a } & \text { ndeh wil waal-n } \\ \text { ask-TR-3.II=CN wh COMP de/be-2SG.II } \\ \text { 'She asked how you are doing.' }\end{array}$
a. Gaba gyeda ts'ik'aaws.
gap- $\mathrm{i}[-\mathrm{t}]=\mathrm{a} \quad$ gyet=a ts'ik'aaws
eat-TR[-3.II]=CN person=CN split.salmon
'The people eat split dried salmon.' Baseline
b. Ts'ik'aawsa gaba gyet.
ts'ik'aaws [=a gap-i[-t]=a gyet ___]
split.salmon $=$ CN eat-TR[-3.II] $=$ CN person
'It's split dried salmon that the people eat.'
Focus
c. Niidzu ts'ik'aawsa gaba gyet.
niist-u=a ts'ik'aaws [=a gap-i[-t]=a gyet ___]
see-1SG.II=CN split.salmon $=$ CN eat-TR[-3.II] $=$ CN person
'I saw the split dried salmon the people ate.'
Relative clause
d. Güüdagu goo gaba gyet
güüdax-i-u=a goo [=a gap-i[-t]=a gyet __]
ask-TR-1 SG.II=CN goo =a eat-TR[-3.II]=CN person
'I asked what the people eat.'
Embedded question
a. Niidzu ts'ik'aawsa gabit.
niist-u=a ts'ik'aaws [=a gap-i-t __]
see-1SG.II=CN split.salmon =CN eat-TR-3=CN
'I saw the split dried salmon she ate.' Relative clause
$\begin{array}{ll}\text { b. Güüdagu } & \text { goo gabit. } \\ \text { güüdax-i-u=a } & \text { goo [=a gap-i-t } \quad \text { __] }]\end{array}$
ask-TR-1SG.II=CN goo =a eat-TR-3.II
'I asked what she ate.'
As we saw above for subject questions, root wh-questions may be additionally marked by the interrogative clitic $=(d) u$ without otherwise affecting the characteristic extraction morphology.
(45) Goyu 'nax'nuuyn?
goo=u [=a 'nax'nuu-i-n ___]
what $=\mathrm{Q}=$ CN hear-TR-2SG.II
'What did you hear?'
Question
I have suggested that the transitive vowel functions as extraction morphology in these object extraction cases, in spite of it also being present in the baseline transitive sentence (43a). I provide below two pieces of evidence that the transitive vowel is part of the characteristic extraction morphology of object extraction, and is not simply occurring here because these sentences feature transitive predicates.

The first piece of evidence comes from the appearance of the transitive vowel in clauses with dependent markers. Recall that dependent clauses are typically introduced by a dependent marker or are triggered by syntactic subordination. The examples below show a dependent marker $t a$
introducing a dependent clause, as diagnosed by the presence of the ergative indexing series I clitic, series II morphology indexing the absolutive argument, and the absence of the transitive vowel:
$\begin{array}{llcc}\text { (46) } & \text { Łat } \quad \text { dzapda 'yuuta waap. } \\ & \text { ła=t } \quad \text { dzap- } \mathrm{t}=\mathrm{a} \quad \text { 'yuuta }=\mathrm{a} \text { waap } \\ & \text { PROX=3.I } & \text { make-3. } \mathrm{II}=\mathrm{CN} & \text { man=CN house }\end{array}$
'The man is just beginning/just began to build the house.'
(Mulder 1994, 80)
(47) Łan nax'nuu wuts'iin.
ła=n nax'nuu[-t]=a wuts'iin
PROX=1SG.I hear[-3.II]=CN mouse
'I just heard a mouse.'
In object-extraction configurations with dependent markers, the transitive vowel appears, there is no series I agreement morphology, and the series II suffix indexes agreement with the transitive subject: all hallmarks of independent clauses.
(48) Godu nah ła gabit?
goo=du=a nah ła gap-i-t
what=Q=CN PFV PROX eat-TR-3.II
'What did he just eat?'
$\begin{array}{lll}\text { Godu } & \text { ła } & \text { 'nax'nuuyn? } \\ \text { goo=du=a } & \text { ła } & \text { 'nax'nuu-i-n }\end{array}$
what=Q=CN PROX hear-TR-2.II
'What did you just hear?'
Further evidence that the transitive vowel, and more generally independent clause morphology, is associated with object extraction comes from embedding. Embedded clauses with canonical word order in Sm'algyax are obligatorily dependent clauses, and therefore lack the transitive vowel -i. For example, in (50) the embedded clause t gapdit Bill bilhaa is marked with a series I ergative clitic $=t$, and lacks the transitive vowel. The embedded object extraction configuration ap ksa bilhaa gabis Bill in (51), conversely, lacks series I marking and is obligatorily marked with the transitive vowel. Again, this shows that the transitive vowel occurs as a direct reflex of the extraction of an object.
Wilaayut gapdit Bill bilhaa.
wilaay-i-u $\quad[(=a)=\mathbf{t} \quad$ gap- $\mathrm{t}=\mathrm{t} \quad$ Bill=a bilhaa $]$
know-TR-1SG.II $=\mathrm{CN}=3$.I eat-3.II $=$ PN Bill $=\mathrm{CN}$ abalone
'I know that Bill ate abalone.'

Wilaayu	ap	ksa	bilhaa	gabis	Bill.
wilaay-u	[=a ap	$\mathrm{ksa}=\mathrm{a}$	bilhaa=a	gap-i[-t]=s	
know-1SG.II=CN $=$ CN VER only $=\mathrm{CN}$ abalone=CN eat-TR-3.II=PN Bill					

'I know it was only abalone that Bill ate.'

Object extraction is schematized below. A common-noun connective follows a left-peripheral object, the transitive suffix appears on the verb, and a series II suffix indexes agreement with the transitive subject/agent (as indicated here by the subscript A):
(52) O extraction morphology
$\mathrm{O}=\mathrm{CN}$ PRED-TR $-\mathrm{II}_{A} \mathrm{~A}$ \qquad

4.3 Transitive subject extraction

The extraction of a transitive subject (or "Agent") is quite different from intransitive subject and object extraction. This configuration is marked by the preverbal agent extraction element in, and the appearance of a third person series I clitic $=t$. Unlike object extraction configurations, which pattern like independent clauses with respect to person marking (series II suffixes agree with the transitive subject) and the presence of the transitive vowel, agent extraction configurations pattern like dependent clauses: they feature a series I clitic and lack the transitive vowel, and the series II sufix indexes agreement with the object. ${ }^{12}$
(53) A extraction (see (43a) for baseline sentence)

$$
\begin{array}{llll}
\text { a. } \begin{array}{lll}
\text { 'Nüün } & \text { int } & \text { gaba }
\end{array} \quad \text { ts'ik'aaws. } \\
\text { 'nüün }[=\mathbf{a} & \text { in=t } & \text { gap[-t]=a } \quad \text { ts'ik'aaws }] \\
\text { 2SG.III }=\text { CN AX=3.I } & \text { eat[-3.II }]=\mathrm{CN} & \text { split.salmon } \\
\text { 'It's you who ate split dried salmon.' }
\end{array}
$$

Focus

'I know the people who eat split dried salmon.' Relative clause
$\begin{array}{lllll}\text { c. Güüdagu } & \text { naa } & \text { int } & \text { gaba } & \text { ts'ik' aaws. } \\ \text { güüdax-i-u=a } & \text { naa }[=\mathbf{a} & \text { in=t } & \text { gap[-t]=a ___ts'ik'aaws] }\end{array}$ ask-TR-1 SG.II=CN who $=$ CN AX=3.I eat[-3.II]=CN split.salmon 'I asked who eats split salmon.'

Embedded question
The absence of the transitive vowel is clearly observed in the relative clause and embedded question with a pronominal object in (54).

> a. Wilaayu gyeda int gapt.
> wilaay-u=a gyet $[=\mathbf{a} \quad \mathbf{i n}=\mathbf{t}$ gap-t ___]
> know-1SG.II=CN person =CN AX=3.I eat-3.II
> 'I know the people who eat it.'

Relative clause

[^8]$\begin{array}{llll}\text { b. Güüdagu } & \text { naa } & \text { int } & \text { gapt. } \\ \text { güüdax-i-u=a } & \text { naa }[=\mathbf{a} & \text { in=t } & \text { gap-t___] }\end{array}$ ask-TR-1 SG.II=CN who $=$ CN AX=3.I eat-3.II
'I asked who eats it.'
Embedded question

A root question, featuring the interrogative clitic $=(d) u$, predictably shares this A extraction morphology:
(55) A wh-question
$\left.\begin{array}{lll}\text { Goyu } & \text { int } & \text { łak'an? } \\ \text { goo=u } & {\left[\begin{array}{ll}=\mathrm{a} & \text { in=t } \\ \text { łak'-n }\end{array}\right]} \\ \text { what=Q }=\text { CN AX=3.I bite-2SG.II }\end{array}\right]$

Question
Agent extraction is schematized below. The extracted agent appears in the left-peripheral position, followed by the prepredicative agent extraction morpheme in and the third-person clitic $=t$; verbal agreement suffixes agree with the absolutive object: ${ }^{13}$
(56) A extraction morphology:

$$
\mathrm{A}(=\mathrm{CN}) \mathrm{AX}=3 . \mathrm{I} \text { PRED }-\mathrm{II}_{O} _\mathrm{O}
$$

In sum, the morphosyntax of Sm'algyax extraction exhibits a tripartite pattern in which intransitive subjects, transitive subjects, and objects receive unique marking:
(57) Argument extraction in Sm'algyax

Subject i S [=CN PRED-SX __] = (39)
Object : O [=CN PRED-TR- II_{A}
Agent:A $\left[(=\mathrm{CN}) \mathrm{AX}=3 . \mathrm{I}_{A}\right.$ PRED $\left.-\mathrm{II}_{O}-\right]=(53)$

I have suggested in (57) that both absolutive arguments, namely intransitive subjects and objects, behave distinctly with respect to extraction. Note, however, that the morphological material following the predicate in either extraction configuration may sometimes be surface identical. For example, in (58) the subject extraction morpheme and the sequence of the transitive vowel and third-person series II suffix both surface as [it]:
(58) S vs. O extraction: surface identical morphology
${ }^{13}$ The third person series I clitic $=t$ may optionally appear before or after the agent extraction morpheme in with no
change in meaning:
(1) Naayu naht in halagyagu?
naa $=\mathrm{u}=\mathrm{a} \quad$ nah=t in halagyak-u
who $=\mathrm{Q}=\mathrm{CN}$ PFV=3.I AX laugh.at-1SG.II
'Who laughed at me?'
a. Naayu tgi oksit?
naa=u=a tgi oks-it
who= $\mathrm{Q}=\mathrm{CN}$ down fall- SX
'Who fell?'
S extraction, -it suffix appears on predicate
b. Goyu gabit?
goo $=\mathrm{u}=\mathrm{a} \quad$ gap-i-t
what $=\mathrm{Q}=$ CN eat-TR-3.II
'What did she eat?'
O extraction, $-i$ suffix appears on predicate
A potential unifying analysis of the transitive vowel and subject extraction suffix might proceed as follows: ${ }^{14}$ (i) both S and O extraction trigger the appearance of an extraction suffix - i EXTRACT (formally distinct from the transitive vowel), (ii) both S and O extraction trigger the use of series II suffixes, which follow the extraction suffix. For O extraction, the series II suffix agrees with A, and for S extraction, the series II suffix functions as an expletive third-person S. This potential alternate analysis is applied to the examples in (58) below:

Unifying S and O extraction?
a. Naayu tgi oksit?
naa=u=a tgi oks-i-t
who= $\mathrm{Q}=\mathrm{CN}$ down fall-EXTRACT-3.II
'Who fell?'
S extraction, series II agrees w/ expletive S
b. Goyu gabit?
goo=u=a gap-i-t \qquad
what $=\mathrm{Q}=\mathrm{CN}$ eat-EXTRACT-3.II
'What did she eat?'
O extraction, series II agrees w/ A
This potential unifying analysis, however, fails to actually unify the processes of S and O extraction. The series II morphology in the intransitive extraction configuration would be indexing agreement with an intransitive subject (which occurs in dependent clauses), while the same suffix in the object extraction configuration would be indexing agreement with a transitive subject (which occurs in independent clauses). Whether or not this approach sketched out here is correct, we cannot straightforwardly unify the processes of S and O extraction.

However, language internal data from hiatus resolution suggests that the unifying analysis sketched in (59) is not correct. We find that the transitive vowel, in both its canonical and extraction related uses, surfaces as a glide [j] when it follows a vowel final predicate. Below we see that, in an independent clause, the transitive vowel surfaces as a glide when it follows a vowel final predicate such as txal'waa 'meet' - the transitive vowel is predictably absent in the dependent clause:
(60) Txal'waays Henry.
txal'waa-i[-t]=s Henry
meet-TR-3.II=PN Henry
'Henry met her.'

[^9]$\begin{array}{lll}\text { a. Akadit } \quad \text { txal'waas } \quad \text { Henry. } & \\ \text { aka=di=t } \quad \text { txal'waa[-t }]=\text { s } & \text { Henry } & \\ \text { NEG=FOC=3.I meet[-3.II]=PN Henry } & \\ \text { 'She didn't meet Henry.' } & \end{array}$
Object extraction from the same predicate triggers the appearance of the transitive vowel, again in its surface form as a glide:

Lig	lip naa	dm	txal'waayn,	ada midm	małat.
ligi	lip naa=a	dm	txal'waa-i-n	ada mi=dm	mał-i-t
	self who=	PRO	meet-TR-2.S	then 2SG.I=P	tell-T
	ver you mee	just	them.'		

The subject extraction suffix does not trigger glide epenthesis in the same environment, but undergoes partial deletion: the vowel is deleted, and only the [t] surfaces:
a. Baa gyet.
baa=a gyet
run=CN person
'A person ran.'
b. Wilaayu gyeda baat. (not baayt)
wilaay-u=a \quad gyet=a baa-it
know-1 SG.II=CN person=CN run-SX
'I know the person who ran.'

In spite of surface level resemblance between subject and object extraction, I suggest that this differing morphophonological behaviour, which is also observed in Gitksan (Forbes 2018, 160), points to a distinction between the morphosyntactic marking of these two configurations.

Extraction therefore reveals underlying syntactic heterogeneity with respect to absolutive arguments: S and O generally pattern together with respect to person marking and number agreement, but exhibit distinct marking under extraction (as pointed out in Gitksan in Davis and Brown 2011). ${ }^{15}$ Transitive subject extraction is quite different from intransitive subject and object extrac-
${ }^{15}$ There is one other further environment that distinguishes between S and O in Sm'algyax: intransitive independent clauses with a participant ($1 / 2$ person) subject may trigger a marked agreement pattern in which a series I clitic surfaces and agrees with the subject, which itself surfaces as a series III pronoun. There are no environments in which a series I clitic may agree with an object.
(1) Marked agreement: series I agrees with participant subject

$$
\begin{array}{ll}
\text { Nam } & \text { siipginsm. } \\
\text { na=m } & \text { siip-k-nsm. } \\
\text { PFV=2.I sick-PASS-2PL.III } \\
\text { 'You (pl.) were sick.' }
\end{array}
$$

These marked agreement configurations are described in more detail in Mulder (1994), Sasama (2001), Forbes (2018), Brown et al. (2020).
tion: a prepredicative morpheme in appears and triggers a dependent clause. In addition to this a third-person clitic t appears in agent extraction, potentially acting as a resumptive or expletive element. The additional presence of the $w h$-clitic $=(d) u$ sets apart (root) $w h$-questions from other \bar{A}-configurations such as relative clauses and focus fronting.

5 Non-core-argument and adjunct extraction

Non-core arguments and adjuncts, in their canonical positions, linearize to the right of any core arguments. In this section I discuss extraction of these elements. I show that in the majority of cases, we observe a configuration where an extracted element precedes a dependent clause headed by one of three subordinating elements (not unlike the agent extraction configuration described in §4). We also observe a configuration featuring a "bare" dependent clause: a clause exhibiting dependent clause morphology with no overt subordinating element. As we observed above for the core-argument extraction, we find that non-core arguments in their in-situ position are often identically marked (being introduced by the preposition (d)a), but extraction of these elements does not proceed identically. We again find that extraction exposes underlying heterogeneity that is not immediately apparent in sentences with canonical word order.

5.1 Extracting with a subordinating element

The extraction of non-core arguments and adjuncts is most commonly marked by the presence of one of three subordinating elements: wil, wila, and gan. I outline here the distribution and meaning contribution of these elements in questions, relative clauses, and focus constructions and show that most non-core argument extraction is characterized by the presence of wil, while the wh-expressions ndaa/ndeh, and goo combine with these subordinators to create adjunct questions. As we will see in detail in the following discussion, ndaa + wil results in a locative/'where' question, goo + wil results in a temporal/‘when' question, ndaa/goo + wila results in a manner/‘how’ question, and goo + gan results in a reason/‘why' question.
(63) Ndeyu nam wil niidzu?
ndeh $=u \quad$ nah $=m$ wil niits-u
where=Q PFV=2SG.II COMP see-1SG.II
'Where did you see me?'
(64) Goyu wil axłgn da Kxeen?
goo=u wil axłk-n da=a Kxeen
what=Q COMP arrive-2SG.II PREP=CN Prince Rupert
'When did you arrive in Prince Rupert?'
(TSLA)
(65) Goyu ma wila 'maga txaaw?
goo=u $\mathrm{m}=$ wila 'mak $[-\mathrm{t}]=\mathrm{a}$ txaaw
what=Q 2SG.II MANR catch[-3.II]=CN halibut
'How do you catch halibut?'
(66) Goyu gan sis'aaxsin?
goo=u gan sis'aaxs-n
whatQ REAS laugh-2SG.II
'Why are you laughing?'
The default configuration for relativizing, focusing, or questioning non-core arguments involves the subordinating element wil, which is glossed here as a complementizer. In sentences without extraction, wil introduces certain embedded clauses, often corresponding to 'that'-clauses in English. Clauses introduced by wil are always dependent clauses, as evidenced by the dependent clause person marking pattern wherein series I clitics agree with transitive subjects, and series II suffixes agree with intransitive subjects and objects, as well as the absence of the transitive vowel suffix:
(67) Intransitive dependent clause complement: Series II marks S

Lu aam goodu wil gatgoydiksism.
lu aam goot-u [wil gat-goydiks-sm]
in good heart-1SG.II COMP PL-arrive-2PL.II
'I am very happy that you all came.'
(TSLA)
(68) Transitive dependent clause complement: Series I marks A; Series II marks O

Lu aam goodu wilt niidzn.
lu aam goot-u [wil=t niist-n]
in good heart-1 SG.II COMP=3.I see-2SG.II
'I'm happy that he saw you.'
Typical double object constructions in Sm'algyax feature an absolutive-marked theme and a goal introduced by the preposition (d)a (69a). Extraction of the absolutive theme patterns with object extraction (69b) as described in §4:
a. Ky'ilam 'yuuta p'iildzap'il da haas.
ky'ilam-i[-t]=a 'yuuta=a p'ildzap'il [da=a haas]
give-TR[-3.II] $]=C N$ man $=C N$ toy \quad PREP $=C N$ dog
'The man gave a toy to the dog' Baseline

'What did the man give the dog?'
Absolutive object question
Extraction of the oblique goal features the complementizer wil which introduces a dependent clause (70). Note that the preposition does not appear in the left-peripheral position under this pattern, nor is it stranded: ${ }^{16}$

[^10]a. Naayu wilt ky'ilamda 'yuuta p'ildzap'il? naa=u wil=t ky'ilam-t=a 'yuuta=a p'ildzap'il
who=Q COMP=3.I give-3.II=CN man=CN toy
'Who did the man give the toy to?'
Oblique question
b. Güüdagu naa wilt ky'ilamda 'yuuta p'ildzap'il?
güüdax-i-u=a naa wil=t ky'ilam-t=a 'yuuta=a p'ildzap'il \qquad ask-TR-1 SG.II $=\mathrm{CN}$ who COMP=3.I give-3.II=CN man $=\mathrm{CN}$ toy
'I asked who the man give the toy to?'
Embedded oblique question
As in the core-argument $\overline{\mathrm{A}}$-processes described above, oblique relative clauses and focus constructions receive the same morphosyntactic marking that questions do.
a. Niidzu haas wilt k'yilamda 'yuuta p'ildzap'l.
niist-u haas wil=t ky'ilam-t=a 'yuuta=a p'ildzap'il \qquad
see-1SG.II dog COMP=3.I give-3.II=CN man=CN toy
'I saw the dog that the man gave the toy to.'
Oblique relative clause
b. Haas wilt k'yilamda 'yuuta p'ildzap'l.

Haas wil=t ky'ilam-t=a 'yuuta=a p'ildzap'il
dog COMP=3.I give-3.II=CN man=CN toy
'It was the dog that the man gave the toy to.'
Oblique focus
A number of other non-core argument nominals which are introduced by the preposition $(d) a$ extract identically. Below we see that the extraction of benefactives (72), causees in causative constructions (73), as well as locatives (formed with ndaa/ndeh + wil) (74) and realis/non-future temporals (formed with goo + wil) (75) all feature the wil complementizer and a dependent clause complement: ${ }^{17}$
(72) Benefactive extraction:
a. Sipaay'nu das Klalens.
si-paay-'nu [da=s Klalens]
make-pie-1.III PREP=PN Clarence
'I baked a pie for Clarence.'
b. Naayu wil sipaayn?
naa=u wil si-paay-n
who=Q COMP make-pie-2SG.II
${ }^{17}$ One of my consultants also forms 'when' questions with the underspecified wh-expression ndaa/ndeh followed by the clitic cluster $n=d a$ which consists of two clitics that appear in spaciotemporal environments; these questions also feature a dependent clause remnant:
(1) Ndeyu ndat dzapdit Meeli ts'ikts'ik?
ndeh $=\mathrm{u} \mathbf{n}=\mathbf{d a}=\mathrm{t} \quad$ dzap-t=t \quad Meeli=a ts'ikts'ik
wh=Q SPT=SPT=3.I do-3.II=PN Mary=CN car
'When did Mary fix the car?'
'Who did you make a pie for?'
(73) Causee extraction:
a. Gwiniitsnta fismaan hagwilhuu a didaat. gwin-niist-' $n-t-\mathrm{i}[-\mathrm{t}]=\mathrm{a} \quad$ fismaan=a hagwilhuu $[\mathrm{a}=\mathrm{a}$ di-daat] CAUS-see-CAUS-T-TR[-3.II]=CN fisherman=CN rope PREP=CN PL-crew
'The fisherman showed the rope to the crew.' ('show' = 'cause to see')
b. Naayu wilt gwiniitsnda fismaan hagwilhuu? naa=u wil=t gwin-niist-'n[-T]-t=a fismaan=a hagwilhuu ___ who=e COMP=3.I CAUS-see-CAUS-T-3.II=CN fisherman=CN rope
'Who did the fisherman show the rope to?'
(74) Locative extraction:
a. Nah niidzu a Kxeen.
nah niits-i-u $\quad[a=a \quad$ Kxeen $]$
PFV see-TR-1SG.II PREP=CN Prince Rupert
'I saw her in Prince Rupert.'
b. Ndeyu nam wil niidzu?
ndeh=u nah=m wil niist-u
wh=Q PFV=2SG.I COMP see-1SG.II
'Where did you see me?'
(75) (Realis) temporal extraction:
a. Axłga'nu da Kxeen gits'iipda. axłk-'nu \quad da=a Kxeen gits'iipda arrive-1 SG.III PREP=CN Prince Rupert yesterday 'I arrived in Prince Rupert yesterday.'
$\begin{array}{lllll}\text { b. Goyu wil } & \text { axłgn } & \text { da } & \text { Kxeen? } \\ \text { goo=u } & \text { wil } & \text { axłk-n } & \text { da=a } & \text { Kxeen }\end{array}$
goo-a
what=Q COMP arrive-2SG.II PREP=CN Prince Rupert
'When did you arrive in Prince Rupert?'
Comitative and instrumental arguments do not extract with wil, and instead are paraphrased by bi-clausal constructions, as indicated by the English translations.
(76) Comitative extraction:
a. Habida $\underline{\text { k }}$ ala aks dił wekt. hap-i-t=a k'ala aks [di=ł wek-t] go.PL-TR-3.II=CN upriver water with=IRR.CN brother-3.II
'He went to the river with his brother.'
b. Naał sduulda, fat goo k’ala aks?
naa=ł sduul-t=a \quad ła=t goo[-t] k'ala aks
who=IRR.CN companion-3.II=Q PROX=3.I go[-3.II] upriver water
'Who was his companion, when he went to the river'
(77) Instrumental extraction:
a. K'odzida hoon a t'u'utsk. k'ots-i-t=a hoon [a=a t'u'utsk] cut-TR-3.II=CN fish PREP=CN knife
'He cut the fish with a knife.'
b. Goł hayda, łat k'odza hoon?
goo=ł hay-t=a __ ła=t k'ots $[-t]=\mathrm{a}$ hoon
what=IRR.CN use-3.II=Q PROX=3.I cut[-3.II]=CN fish
'What did he use, when he cut the fish?'
Two additional classes of oblique argument are introduced by the preposition (d) a in their in-situ position in the clause do not extract with a wil clause. These are (i) oblique objects of psych/experiencer predicates such as baas '(be) afraid', buuysk 'expect', at'ü̈t '(be) repelled'; and (ii) quirky objects of a closed class of (di)transitive predicate such as siwaa 'give a name to someone' and giin 'give food to someone'. The first exceptional class is characterized by nominalization of the (psych) predicate, while the second class features a bare dependent clause: a dependent clause that is not introduced by a dependent marker such as in or wil:
(78) Prepositional theme of psych-verbs:
a. Baasi'nu a sgyet.
baas-'nu $\quad[a=a \quad$ sgyet $]$
afraid-1SG.III PREP=CN spider
'I am afraid of spiders.'
b. Goyu 'nabaasn?
goo=u 'na-baas-n
what=Q NMLZ-afraid-2SG.II
'What are you afraid of?' Lit. What is your fear?
(79)

Quirky (di)transitive theme; naming verb recipients:

a.	Siwaatida	łguułgm	hana'axt	as
si-waa-t-i-t $=\mathrm{a}$	łguułk-m	hana'ax-t	$[\mathrm{a}=\mathrm{s}$	Emily.
	Emily $]$			
CAUS-name-T-TR-3II=CN chilld-ATTR woman-3.II	PREP=PN	Emily		

'She named her daughter Emily.'
$\begin{array}{llll}\text { Naayut } & \text { siwaada } & \text { łguułgm } & \text { hana’axt? } \\ \text { naa }=\mathrm{u}=\mathrm{t}\end{array} \mathrm{li-waa[-T]-t=a} \quad \begin{array}{ll}\text { łguułk-m } & \text { hana'ax- }\end{array}$
who-Q=3.I CAUS-name-T-3.II=CN child-ATTR woman3.II
'What did she name her child?'

In spite of the oblique arguments above being introduced by the same prepositional element (d)a, they do not extract uniformly. This again points to heterogeneity that is not straightforwardly apparent when these arguments appear in their in-situ positions. These exceptional oblique argument extraction configurations are also attested in Gitksan (described in Brown and Forbes 2018). I set the psych-verb configuration aside here, and briefly discuss cases such as (79) in §5.2.

The next type of question containing a subordinating element is marked by the morpheme wila MANNER which introduces a dependent clause. These "manner" clauses are often translated to English using 'how'.
(80) Aam wila miilkt.
aam wila miilk-t
good MANR dance-3.II
'He dances well' Lit: It's good how he dances.
(81) Aam wilat 'maga txaaw.
aam wila=t \quad mak $[-\mathrm{t}]=\mathrm{a} \quad$ txaaw
good MANR=3.I catch[-3.II]=CN halibut
'She catches halibut well.' Lit: It's good how she catches halibut.
Manner questions are formed with goo 'what' preceding wila:
a. Goyu wila miilgn?
goo=u wila miilk-n
what=Q MANR dance-2SG.II
'How do you dance?' Manner question
b. Güüdagu goo wila miilgn.
güüdax-i-u=a goo wila miilk-n
ask-TR.1SG.II=CN what MANR dance-2SG.II
'I asked how you dance.'
Embedded manner question
a. Goł wilat k’otsda łgu ’yuuta hoon?
goo=ł wila=t \quad 'ots- $\mathrm{t}=\mathrm{a} \quad$ łgu \quad yuuta $=a$ hoon
what=IRR.CN MANR=3.I cut-3.II=CN small man=CN fish
'How did the boy cut the fish?'
Manner question
b. Güüdagu goo wilat k'otsda łgu 'yuuta hoon?
güüdax-i-u=a goo wila=t k'ots-t=a \quad ggu 'yuuta=a hoon
ask-TR.1SG.II=CN what=CN MANR=3.I cut-3.II=CN small man=CN fish
'I asked how the boy cut the fish.' Embedded manner question
Consistent with all other extraction morphology, we see that wila also appears in relative clauses and focus-fronting constructions:
(84) Anoogu (goo) wila liimit.
anoox-i-u goo wila limi-t
like-TR-1SG.II what MANR sing-3.II
'I like how she sings.'
a. 'Nii wila hałeelst.
'nii wila hałeels-t
DET MANR work-3.II
'This is how it works.'
Manner focus
The final subordinating element found in extraction is gan REASON, which often appears in clauses translated as 'why' or 'that's why', and predictably triggers a dependent clause.

Hanaanga aytga ,yuuta gan waalt.
hanaan $\underline{k}=\mathrm{a}$ aytk $[-\mathrm{t}]=\mathrm{a} \quad$ 'yuuta gan waal-t
girl.PL=CN blame[-3.II]=CN man REAS happen-3.II
'The man is blaming the girls (for) why he's in trouble'
$\begin{array}{llll}\text { Dzakdida } & \text { łyoon gan } & \text { lu aam goot. } \\ \text { dzak-t-i-t=a } & \text { łyoon gan } & \text { lu aam } & \text { goot-t }\end{array}$
kill-T-TR-3.II=CN moose REAS in good heart-3.II
'He killed a moose that's why he's happy.'
In interrogatives, we find gan occurring with the wh-expression goo 'what' to express 'why' (or perhaps more literally 'what reason') questions. As with all of the configurations outlined in this subsection, the clause following the subordinator is a dependent clause. ${ }^{18}$
a. Sa oksga łgwoomłk.
sa oksk=a łgwoomłk
off fall=CN child
'The child fell.' Baseline
b. Goyu gan sa oksga łgwoomłk? goo=u=a gan sa oksk[-t]=a łgwoomłk what $=\mathrm{Q}=\mathrm{CN}$ REAS off fall[-3.II] $=$ CN child
'Why did the child fall?'
Reason question

'I asked why the child fell.'
Embedded reason question
${ }^{18}$ This subordinator may also appear with the wh-expression naa 'who' in questions such as the following:
(1) Naayu gan luwantga goodin dm laaltgit? naa=u gan luwantk=a goot-n dm laaltk-it who=Q REAS worry=CN heart-2.II PROSP slow-SX
'Who are you worried will be late?'
'Who is the reason you are worried that they will be late'
a. Giigida hoon.
giik-i-t=a hoon
buy-TR-3.II=CN fish
'She bought fish'
Baseline
b. Goyu gant giiga hoon?
goo=u gan=t giik[-t $]=\mathrm{a}$ hoon
who=Q REAS=3.I buy[-3.II]=CN fish
'Why did she buy fish?'
Reason question
c. Güüdagu goo gant giiga hoon.
güüdax-i-u=a goo gan=t giik[-t]=a hoon
ask-TR-1 SG.II=CN what REAS=3.I buy[-3.II]=CN fish
'I asked why she bought fish.' Embedded reason question
As above, this element may appear in (headless) relative clauses and focus constructions:
$\begin{array}{lllll}\text { a. } & \text { Akndi } & \text { anooga } & \text { goo } & \text { gan } \\ \text { aka }=\mathrm{n}=\mathrm{di} & \text { anoox }[-\mathrm{t}]=\mathrm{a} & \text { goo } & \text { gan } & \text { dawł-t }\end{array}$
NEG $=1$ SG.I=FOC like[-3.II] $=$ CN what REAS leave-3.II
'I don't like (the reason) why she left.' (Headless) reason relative clause
b. Gwa'a gant giiga hoon.
gwa'a gan=t giik[-t]=a hoon
this REAS=3.I buy[-3.II]=CN fish
'This is why she bought fish.'
Reason focus
In sum, a number of non-core-argument questions and $\overline{\mathrm{A}}$-movement processes are characterized by the extracted/wh-expression appearing in the left-peripheral position, followed by a dependent clause headed by a subordinating element, either wil, wila, or gan. The first element, wil appears in the extraction of oblique DPs, locatives, and temporals. The second element wila occurs in manner questions/constructions (those translated with 'how') and gan occurs in reason questions/constructions (those translated with '(that's) why'). This is schematized in (90).
a. $\mathrm{X}(=\mathrm{CN})$ [wil/wila/gan $\left.\mathrm{PRED}^{\mathrm{II}}{ }_{S}(\mathrm{~S}) \quad _\right] \quad \mathrm{X}$ extraction with intransitive predicate
b. $\mathrm{X}(=\mathrm{CN})$ [wil/wila/gan $=\mathrm{I}_{A}$ PRED- $\left.\mathrm{II}_{O}(\mathrm{~A})(\mathrm{O}) \quad _\right] \quad \mathrm{X}$ extraction with transitive pred.

5.2 Extracting with a bare dependent clause

The final configuration discussed here is characterized by the extracted element appearing in a left-peripheral position and the presence of what I refer to as a bare dependent clause: that is, a dependent clause with no overt subordinating particle such as wil, wila, or gan. This configuration occurs in the extraction of some temporal adverbs, as well as irrealis/future temporal questions (those featuring the future oriented dzindaa/dzindeh 'when'). We also find certain oblique arguments introduced by the preposition (d)a extract in this manner as well - including those selected by naming verbs. The bare extraction configuration is observed below. In (91a) we see the baseline
sentence which exhibits canonical word order over Verb Subject Object Oblique, with the oblique argument being the target for extraction. In (91b)-(91e) we see relativization, focusing, and whquestions featuring the extracted element appearing to the left of a dependent clause (which we can diagnose by the presence of series I ergative marking and the absence of the transitive vowel), with no overt complementizer or subordinator.

a. Siwaatida	łguułgm	hana'axt	as	Emily.
si-waa-ti-t=a	łguułk-m	hana'ax-t	[$\mathrm{a}=\mathrm{s}$	Emily]
CAUS-name-T	child-ATT	woman-3		

'She named her daughter Emily.'
Baseline
$\begin{array}{llll}\text { b. Anoogut } & \text { siwaada } & \text { łguułgm } & \text { hana’axt. } \\ \text { anook-i-u=t } & \text { si-waa[-T]-t=a } & \text { łguulk-m } & \text { hana'ax-t }\end{array}$
like-TR-1SG.II=3.I CAUS-name-T-3.II=CN child-ATTR woman-3.II
'I like what she named her daughter.'
(Headless) relative clause
$\begin{array}{llll}\text { c. } \begin{array}{ll}\text { Emilyt } & \text { siwaada } \\ \text { Emily=t } & \text { si-waa[-T]-t=a }\end{array} & \text { lguułgm } & \text { hana'axt. } \\ \text { lguulk-m } & \text { hana'ax-t }\end{array}$
Emily=3.I CAUS-name-T-3.II=CN child-ATTR woman-3.II
'She named her daughter EMILY.'
Focus
d. Naayut siwaada łguułgm hana'axt?
naa=u=t si-waa[-T]-t=a łguułk-m hana'ax-t
who-Q=3.I CAUS-name-T-3.II=CN child-ATTR woman-3.II
'What did she name her child?' Lit: Who did she name[...] Wh-question
e. Güüdagu naat siwaada łguułgm hana'axt.
güüdax-i-u=a naa=t si-waa[-T]-t=a łguułk-m hana’ax-t
ask-TR-1SG.II=CN who=3.I CAUS-name-T-3.II=CN child-ATTR woman-3.II
'I asked what she named her child.' Lit: I asked who[...] Embedded wh-question
Turning to adverbials, we find that the extraction of future oriented time adverbials also results in a bare-extraction configuration. This is observed below with the fronted adverbial dzigits'iip 'tomorrow' and the future-oriented wh-expression dzindaa/dzindeh 'when', both of which appear to be composed of the irrealis element $d z i$, and either the time adverbial gits'iip 'yesterday' or the general $w h$-element $n d a a / n d e h$:
a. Dm daawłit Dzeen dzigits'iip.
dm daawł=t Dzeen dzigits'iip
PROSP leave=PN Jane tomorrow
'Jane will leave tomorrow.' Baseline
b. Dzigyits'iip dm daawłs Dzeen.
dzigits'iip dm daawł[-t]=s Dzeen
tomorrow PROSP leave[-3.II]=PN Jane
'Tomorrow Jane will leave.'
Focus

| c.Dzindeyu dm
 dzi=ndeh=u dm\quaddaawłs
 daaw $[-\mathrm{t}]=\mathrm{s}$ | Dzeen?
 Dzeen |
| :--- | :--- | :--- |
| IRR=WH=Q PROSP leave $[-3 . \mathrm{II}]=$ PN Jane | |

'When will Jane leave?'
Question
d. Güüdagu dzindeh dm daawłs Dzeen. güüdax-i-u dzi=ndeh dm daawł[-t]=s Dzeen ask-TR-1 SG.II IRR=WH=Q PROSP leave[-3.II]=PN Jane
'I asked when Jane will leave.'
Embedded question
This contrasts with the extraction of non-future oriented time adverbials and 'when' questions as seen in (75) and below. These are instead marked with wil.

```
Gits'iip wil gilks axgis Dzon
gits'iip wil gilks axk[-t]=s Dzon
yesterday COMP back arrive[-3.II]=PN John
'Yesterday John arrived.'
```

The bare extraction pattern is schematized below: ${ }^{19}$
a. $\mathrm{X}(=\mathrm{CN})\left[\mathrm{PRED}^{\mathrm{II}} \mathrm{I}_{S}(\mathrm{~S}) \quad _\right]$
b. $\mathrm{X}\left[=\mathrm{I}_{A}\right.$ PRED- $\left.\mathrm{II}_{O}(\mathrm{~A})(\mathrm{O}) \quad _\right]$

X extraction with intransitive predicate
X extraction with transitive predicate
This concludes the discussion on non-core argument and adjunct extraction. We find a number of configurations are utilized in the extraction of these elements, including dependent clauses headed by a subordinator (wil, wila, gan), a bare dependent clause, as well as a handful of exceptional and periphrastic configurations. Similar to what is observed in the domain of core-argument extraction, a number of non-core arguments that are marked identically in their in-situ position (that is, introduced by the preposition $(d) a$) do not extract identically. The main configurations are summarized below.
(95) Non-core argument/adjunct extraction in Sm'algyax:

wil	(intransitive)	X [wil PRED- II_{S}	$=(72)$
	ransitive)	$\mathrm{X}\left[\mathrm{wil}=\mathrm{I}_{A}\right.$ PRED- II_{O}	(73)
wila	(intransitive)	X [wila PRED-II ${ }_{S}$	= (82)
	(transitive)	X [wila I_{A} PRED- II_{O}	$=(83)$
gat	(intransitive)	X [gan PRED-II ${ }_{S}$	$=(87)$
	(transitive)	X [gan $=\mathrm{I}_{A}$ PRED- II_{O}	(88)
"bare"	(intransitive)	X [(=CN) PRED- II_{S}	= (92)
	(transitive)	X [$=\mathrm{I}_{A}$ PRED- II_{O}	(01)

Let us now turn briefly to long-distance extraction.

[^11]
6 Long-distance extraction

In addition to the local extraction configurations described in the previous sections, Sm'algyax also allows long-distance extraction wherein an element is extracted from an embedded clause to appear in a left-peripheral position of a higher clause. In this section I show that long-distance extraction bears extraction morphology in both the embedded clause(s) and the matrix clause, and that the same morphosyntactic parallelism between wh-movement, focus movement, and relative clause formation observed in local extraction is also observed in long-distance extraction. I also show that while long-distance movement is possible, it is not boundless. Sm'algyax obeys a number of islands to movement such as adjunct islands, complex noun phrase islands, and wh-islands (Ross 1967). One notable exception, however, is the apparent availability of extraction from subject islands, as noted by Forbes (2017) for Gitksan.

6.1 Long-distance extraction morphology

Long-distance extraction in Sm'algyax bears extraction morphology in both the embedded and matrix clauses. Let us begin with the extraction morphology that appears in the embedded clause (where the extracted element is base generated). As observed in local extraction in §4 and §5, embedded clause extraction morphology reflects the grammatical role of the extracted element. We see this below in (96)-(98), where the extraction morphology (in bold) associated with S (ubject), O (bject), and A (gent) extraction appears in the embedded clause from which an S, O or A has been wh-moved, relativized, or focus fronted. Note, however, that the left-edge common-noun connective associated with extraction does not appear in the embedded clause. For instance, if there were a connective in the embedded clause, we would expect to see the unattested form in (96d) *Naayu anooltis $d z i$ 'isa dm galmiilgit.
(96) Long-distance S extraction:
$\begin{array}{llcl}\text { a. Anooltis } & \text { dzi'is } & \mathrm{dm} & \text { galmiilgu. } \\ \text { anool-t-i[-t] }=\mathrm{s} & \text { dzi'is } & \text { [dm } & \text { galmiilk-u] }\end{array}$ allow-T-TR[-3.II]=PN grandmother PROSP play-1 SG.II
'Grandma allowed me to play.' Baseline
b. Niidzu łgwoomłga anooltis dzi'is dm
niist-i-u=a lgwoomłk [=a anool-t-i[-t]=s dzi'is ___ [dm
see-TR-1SG.II=CN child $\quad=$ CN allow-T-TR-3.II $=$ PN grandmother PROSP
galmiilgit.
galmiilk-it ___]]
play-SX
'I saw the boy that grandma allowed to play.' Relative clause
c. Ap ksat Bidaa anooltis dzi'is dm
ap ksa=t Bidaa [=a anool-t-i[-t]=s dzi'is ___ [dm
VER only=PN Peter $=$ CN allow-T-TR-3.II=PN grandmother PROSP
galmiilgit.
galmiilk-it ___]]
play-sX
'It was only Peter that grandma allowed to play.'
Focus
d. Naayu anooltis dzi'is dm galmiilgit?
$\mathrm{Naa}=\mathrm{u}\left[\begin{array}{lll}=\mathrm{a} & \text { anool-t-i[-t] }] \quad \mathrm{dzi} \text { is ___ } \quad[\mathrm{dm} \quad \text { galmiilg-it ___] }]\end{array}\right.$
who $=\mathrm{Q}=\mathrm{CN}$ allow-T-TR[-3.II]=PN grandmother PROSP play-SX
'Who did grandma allow to play?'
Question
Long-distance O extraction:
a. Anooltis dzi'is nm ts'ilaaya
anool-t-i[-t $]=s \quad$ dzi'is $\quad[\mathrm{n}=\mathrm{dm} \quad$ ts'ilaay $[-\mathrm{t}]=\mathrm{a}$
allow-T-TR[-3.II]=PN grandmother 1SG.I=PROSP visit[-3.II]=CN
'nasiip'insgu.
'na-siip'insk-u]
POSS-friend-1SG.II
'Grandma allowed me to visit my friend.' Baseline
b. Nah txal'waayu hana'a anooltis dzi'is dm
nah txal'waa-i-u=a hana'a [=a anool-t-i[-t]=s dzi'is $[\mathrm{dm}$
PFV meet-TR-1SG.II=CN woman $=\mathrm{CN}$ allow-T-TR[-3.II]=PN grandmother PROSP
ts'ilaayin.
ts'ilaay-i-n ___]]
visit-TR-2SG.II
'I saw the woman that grandma allowed you to visit.' Relative clause
c. 'Niis Luusi anooltis dz''is dm ts'ilaayin.
'niit=s Luusi $\left[\begin{array}{lll}=\mathrm{a} & \text { anool-t-i }[-\mathrm{t}]=\mathrm{s} \quad \text { dzi'is ___ }[\mathrm{dm} \quad \text { ts'ilaay }-\mathrm{i}-\mathrm{n} \quad \ldots\end{array}\right]$
3.III=PN Lucy $=$ CN allow-T-TR[-3.II]=PN grandmother PROSP visit-TR-2SG.II
'It was Lucy that grandma allowed you to visit.'
Focus

(98) Long-distance A question:
a. Wilaayu $\ddagger g u$ 'yuuta anooltis dzi'is dm
wilaay-i-u=a lgu 'yuuta $[=\mathrm{a}$ anool-t-i $[-\mathrm{t}]=\mathrm{s} \quad$ dzi'is $[\mathrm{dm}$
know-TR-1SG.II=CN small man =CN allow-T-TR-3.II=PN grandma PROSP

int	ts'ilaays	Lucy.
in=t	ts'ilaay=s ___ Lucy]]	
AX=3.I visit=PN	Lucy	

'I know the boy that grandma allowed to visit Lucy.' Relative clause
b. 'Nüün anooltis dzi'is dm int ts'ilaaya hana'a. 'nüün [=a anool-t-i[-t $]=\mathrm{s}$ dzi'is [dm in=t ts'ilaay=a__ hana'a]] 2SG.III $=$ CN allow-T-TR-3.II=PN grandma PROSP AX=3.I visit=CN woman 'It's you that grandma allowed to visit the woman.'
c. Naayu anooltis dzi'is dm int ts'ilaaya naa=u $[=\mathrm{a} \quad$ anool-t-i[-t $]=\mathrm{s} \quad$ dzi' is ___ $\quad[\mathrm{dm} \quad$ in=t ts'ilaay $[-\mathrm{t}]=\mathrm{a}$ \qquad who=Q =CN allow-T-TR[-3.II]=PN grandmother PROSP AX=3.I visit[-3.II]=CN 'nasiip'insgit?
'na-siip' insk-t]]
poss-friend-3.II
'Who did grandma allow to visit their friend?'
Question
We also observe that long distance movement of obliques also triggers predicted extraction morphology in the embedded clause. Consistent with local oblique extraction described in §5.1, the long-distance extraction of the oblique goal in (99) triggers a dependent clause headed by wil, while in (100) we see the bare dependent-clause configuration, characteristic of extraction from naming-verbs outlined in §5.2.
(99) Long-distance oblique question (1):
a. Anooltis dzi'is nm ky'ilam p'ildzap'il
anool-t-i $[-\mathrm{t}]=\mathrm{s} \quad$ dzi'is $\quad[\mathrm{n}=\mathrm{dm} \quad$ ky'ilam $[-\mathrm{t}]=\mathrm{a}$ p'ildzap'il
allow-T-TR[-3.II]=PN grandmother 1 SG.I=PROSP give[-3.II]=CN toy
a haas.
$a=a \quad$ haas $]$
PREP=CN dog
'Grandma allowed me to give a toy to the dog.'
b. Goyu anooltis Dzi' is minm wil
goo=u $\left[\begin{array}{lll}=\mathrm{a} & \text { anool-t-i }[-\mathrm{t}]=\mathrm{s} & \text { Dzi'is ___ } \quad[\mathrm{m}=\mathrm{dm} \quad \text { wil }\end{array}\right.$
what $=\mathrm{Q}=\mathrm{CN}$ allow-T-TR[-3.II]=PN grandmother 2 SG.I=PROSP COMP
ky'ilam p'ildzap'il?
ky'ilam[-t]=a p'ildzap'il ___]]
give[-3.II]=CN toy
'What did grandma allow you to give a toy to?'
(100) Long-distance oblique question (2):

a. Anooltis	dzi'is	nm	siwaada	haas
anool- $\mathrm{t}-\mathrm{i}[-\mathrm{t}]=\mathrm{s}$	dzi'is	$[\mathrm{n}=\mathrm{dm}$	si-waa- $\mathrm{t}[-\mathrm{t}]=\mathrm{a}$	haas

allow-T-TR[-3.II]=PN grandmother 1SG.I=PROSP make-name-T-3.II=CN dog
as Mediik.
$\mathrm{a}=\mathrm{s} \quad$ mediik]
PREP=PN grizzly
'Grandma allowed me to name the dog Mediik (grizzly bear).'

The extraction morphology that appears in matrix or intermediate clauses varies depending on the valency of the predicate. For example, all the extraction configurations in (96)-(100) feature a matrix predicate marked with the transitive vowel. There are two possible explanations for the appearance of the transitive vowel here: (i) the matrix verb is transitive and there is no dependent marker present; the transitive vowel appearing here is not related to extraction, and simply appears in line with the canonical licensing conditions of this morpheme, or (ii) the transitive vowel indexes \bar{A}-movement. We observe in (101) and (102) evidence for option (ii).

In the baseline sentence in (101), the intermediate clause t niisdit Meeli is clearly a dependent clause, as evidenced by the appearance of series I ergative morphology and the absence of the transitive vowel. This is contrasted with the long-distance question in (101), in which the intermediate clause niidzis Meeli lacks series I morphology, and is marked with a transitive vowel. The focus construction in (102) also shows this shift from the baseline dependent clause t anooldit $d z i ' i s$, which again bears series I morphology and lacks the transitive vowel, to the independent clause ap ksat Lusii anooltis dz'is which bears the transitive vowel and lacks series I agreement. This shows that intermediate and matrix clause morphosyntax is sensitive to these long-distance \bar{A}-dependencies.
 'I think that grandma allowed the boy to play.' Baseline
b. Ha'ligoodu ap ksat Lusii anooltis dz'is dm
ha'ligoot-u [$[=\mathrm{a}$ ap ksa=t Lusii anool-t-i[-t]=s dzi'is ___ [dm think-1SG.II =CN VER only=PN Lucy allow-T-TR-3.II=PN grandmother PROSP galmiilgit. galmiilk-it ___] play-SX
'I think it was only Lucy that grandma allowed to play.'
In addition to these transitive bridge predicates that embed clauses, there are also intransitive predicates that embed clauses. Below we see that the predicate anool 'allow' with the valency reducing suffix $-k(s)$ functions as a monovalent predicate that can take a DP or clausal complement (103).
(103)
a. Anoolksit Pita.
anool-ks [=t Pita]
allow-PASS =PN Peter
'Peter is allowed.'
b. Anoolksa dm galmiilks Pita.
anool-ks $\quad[=\mathrm{a}$ dm galmiilk[-t] dm Pita]
allow-PASS $=$ CN PROSP $\overline{\text { play }}[-3 . \mathrm{II}]=$ PN Peter
'Peter is allowed to play.'
Long-distance movement over an intransitive predicate triggers the appearance of the intransitive subject extraction morpheme, while the embedded clause exhibits predicted S, O, or A extraction morphology corresponding to the role of the extracted element:
(104) Intransitive bridge predicate morphology:
a. Naayu anoolksit dm galmiilgit?
naa=u [=a anool-ks-it ___ [dm galmiilk-it ___]]
who=Q =CN allow-PASS-SX PROSP play-SX
'Who is allowed to play?'
b. Goyu anoolksit dm gabit?
goo=u [=a anool-ks-it ___ [dm gap-i-t ___]]
what=Q =CN allow-PASS-SX PROSP eat-TR-3.II
'What is he allowed to eat?'
c. Naayu anoolksit dmt in gaba naasüü?
naa=u [=a anool-ks-it ___ [dm=t in gap[-t]=a__ naasüü $]$]
who=Q $=$ CN allow-PASS-SX PROSP=3.I AX eat[-3.II]=CN raspberries
'Who is allowed to eat raspberries?'
(105) Intransitive bridge predicate morphology:
a. Bida anoolksit dmt in ts'ilaays Lu'ux

Bida [=a anoolks-it ___ [dm=t in ts'ilaay=s ___ Lu'ux $]$]
Peter $=$ Cn allow-PASS PROSP=3.I AX visit=PN Lucy
'It's Peter who was allowed to visit Lucy.'
Focus
b. Niidzu łgu 'yuuta gu anoolksit dmt in ts'ilaays
niist-i-u=a lgu 'yuuta [gu anoolks-it ___ [dm=t in ts'ilaay=s gap
see-TR-1SG.II=CN small man REL allow-PASS PROSP=3.I AX visit=PN
Lu'ux.
Lu'ux]]
Lucy
'I saw the boy that is allowed to visit Lucy.'
Relative clause
A number of words which correspond to canonical bridge verbs are nominals in Sm'algyax, including ha'ligoot 'think', k'omtga goot 'hope', and hasax 'want'. These words are not marked with verbal morphology such as the transitive theme vowel $-i$, but are instead inflected with Series II person markers, which also function as markers of possession. Long-distance extraction over these bridge nominals is again marked as expected in the embedded clause. However, no extraction morphology apart from the common-noun connective occurs in the matrix clause:

Naał	ha'ligootdut	Meeli dawlit?
naa $[=1$	ha'li-goot- $\mathrm{t}=\mathrm{u}=\mathrm{t}$	Meeli [dawł-it ___] $]$
who =IRR.CN on-heart-3SG.II=Q=PN Mary leave-SX		
'Who does Mary think left?' $=$ who is Mary's thought. .		

(107)

Naayu	ha'ligoodn	int	sigüünksa	ła’ask?
naa=u	$[=\mathrm{a}$	ha'li-goot-n	$[\mathbf{i n = t}$	si-güünks[-t $]=\mathrm{a}$
___ ła'ask] $]$				

who $=\mathrm{Q}=\mathrm{CN}$ on-heart-2SG.II AX=3.I CAUS-dry[-3.II]=CN seaweed
'Who do you think dries seaweed?'
This absence of extraction morphology on the nominal bridge predicates above is consistent with (local) extraction of the arguments of possessed nominals:
(109) Goyu di pdeegn?
goo=u [$=\mathrm{a}$ di \quad pdeex- n$]$
what=Q =CN FOC crest/clan-2SG.II
'What is your crest?'
To conclude, we find that long-distance extraction is possible, and shares extraction morphology described in the local extraction sections. The clause from which the element is extracted bears predictable marking indicating whether an $\mathrm{A}, \mathrm{S}, \mathrm{O}$, or oblique has been moved, while the upstairs clause appears to bear morphology indicating the relationship between the matrix predicate and its clausal complement. For formally transitive bridge predicates which select an agent DP and a clausal complement, extraction from that clause registers object extraction morphology on the
bridge predicate (as in (96)). Intransitive predicates which select a clausal complement are marked with subject extraction morphology when extraction occurs from that clausal complement (as in (103)). Therefore in Sm'algyax, the extraction from a clausal complement mirrors the extraction of an argument. This is schematized below:
a. WH=CN PRED-SX

Local S extraction
b. WH $=\mathrm{CN}$ PRED-SX $[C P \ldots \ldots$....] Extraction over intransitive bridge predicate
a. WH=CN PRED-TR-II A

Local O extraction
b. WH=CN PRED-TR-II A [$C P \ldots \ldots \ldots$] Extraction over transitive bridge predicate

6.2 Barriers to extraction

Although we have seen in the section that extraction may cross clausal boundaries, this movement is sensitive to a number of well-known island constraints (Ross 1967). For example, attempts to extract from adjunct islands, complex noun phrases, and $w h$-islands result in ungrammaticality. The following ungrammatical examples, constructed in line with the morphosyntactic generalizations described in §6.1 for grammatical long-distance movement, were systematically rejected by my consultants:
(112) Adjunct Island:
a. Dawłit Meeli awil ła goydiks Bill.
dawł=t Meeli [awil ła goydiks=s Bill]
leave=PN Mary because PROX arrive=PN Bill
'Mary left because Bill arrived.'
b. * naa=u dawł-it Meeli ___ [awil ła goydiks-it ___] who=Q leave-SX Mary because Prox arrive-SX
Intended: ${ }^{*} \mathrm{Who}_{i}$ did Mary leave because (they ${ }_{i}$) arrived
c. Naayu goydiksit gan dawłs Meeli?
naa=u godiks-it ___ gan dawł=s Meeli
who $=\mathrm{Q}$ arrive-SX REAS leave=PN Mary
'Who arrived causing Mary to leave?' Volunteered correction of (112b)
(113) Complex noun phrase island:
a. Gabis Dzon hoon nah sip'iyaans Meeli.
gap- $\mathrm{i}=\mathrm{s} \quad$ Dzon [hoon nah si-p'iyaan- $\mathrm{i}[-\mathrm{t}]=\mathrm{s} \quad$ Meeli]
eat-TR=PN John fish PFV make-smoke-TR[-3.II]=PN Mary
'John ate the fish that Mary smoked.'
b. * naa=u gap-i=s Dzon [hoon nah sip'iyaan-i-t ___] who $=$ Q eat-TR $=$ PN John fish PFV make-smoke-TR-3.II
Intended: ${ }^{*} \mathrm{Who}_{i}$ did John eat the fish that $\left(\right.$ they $\left._{i}\right)$ smoked?
(114) $W h$-island
a. Wilaayda goo gant k'otsdit Lucy hoon.
wilaay-i-t=a [goo gan=t k'ots-t=t Lucy=a hoon]
know-TR-3.II=CN what REAS=3.I cut-3.II=PN Lucy=CN fish
'He knows why Lucy cut the fish.'
b. * Goo=u wilaay-i-t=a [goo gan=t k'ots-t=t Lucy __] what=Q know-TR-3.II=CN what REAS=3.I cut-3.II=PN Lucy
Intended: ${ }^{*}$ What $_{i}$ does he know why Lucy cut $\left(\mathrm{it}_{i}\right)$?
Focus fronting and relativization are also island sensitive:
a. * Pada dawł-it Meeli ___ [awil ła goydiks-it ___] Pat=CN leave-SX Mary because PROX arrive-SX
Intended: *It's Pat $_{i}$ that Mary left because (he_{i}) arrived Focus
b. * wilaay-i-u=a ’yuuta=a dawł-it Meeli ___ [awil ła know-TR-1sG.II=CN man=CN leave-SX Mary because PROX
goydiks-it ___]
arrive-SX
Intended: *I know the man that Mary left because $\left(\mathrm{he}_{i}\right)$ arrived Relative clause
This ungrammatical example in (113) also shows that resumption (in this case the overt series II suffix $-t$ indexing agreement with the extracted subject) does not ameliorate these island violating sentences.

In the presentation of cross-clausal extraction in (110), it is shown that intransitive matrix predicates may take clausal complements, and long-distance extraction from within this clause is possible. This would suggest that a well-known island constraint, the subject-island constraint (Ross 1967), is violable in Sm'algyax. The subject-island constraint, which prohibits movement from inside a sentential subject, is shown in English below:
a. [That John visited Mary] is unlikely.
b. *Who [that ___ visited Mary] is unlikely?

The ability to extract from clausal complements of intransitive predicates is also attested in Gitksan, as noted in Forbes (2017). Below we see the intransitive predicate aam '(be) good' allows an element to be extracted from its clausal complement. As in Sm'algyax, extraction over an intransitive bridge predicate triggers subject-extraction morphology.
(117) Gu=hl gay aam-it ___ [ji jap-xw-it ___]?
what $=$ CN $\overline{\text { CNTR good-SX }}$ IRR make-PASS-SX
'What would it be good if (it) were made?'
(Gitksan; Forbes 2017)
Given that other island constraints are obeyed, it is not immediately clear why subject islands would be violable. One possibility is that these clausal arguments are not actually in subject position, but instead occupy some distinct complement position. More careful investigation of these constructions across Tsimshianic needs to be done to adequately diagnose the syntactic position of these clausal elements.

7 Conclusion

In this paper I sought to introduce and describe \bar{A}-extraction in Sm'algyax. This constitutes the first detailed description of questions and \bar{A}-processes in Sm'algyax. I showed that extraction of a core argument exhibits a tripartite pattern: object and intransitive subject extraction both feature verbal suffixes - $-i$ and -it, respectively - while transitive subject extraction is marked by a subordinating element in. This three-way pattern may be unexpected considering case alignment in canonical clauses in Sm'algyax, which is ergative and does not typically differentiate between intransitive subjects and direct objects. As pointed out in Forbes (2017) for Gitksan, Ā-movement thus exposes underlying syntactic heterogeneity between both types of absolutive argument.

Beyond core argument extraction, I showed that the movement of oblique elements and adjuncts typically results in a configuration marked by the presence of a dependent clause, which may be introduced by a subordinator such as wil, wila, gan, or in certain cases may result in a "bare" dependent clause. A number of periphrastic and exceptional extraction configurations in this domain points to further underlying differences between elements that are often identically marked in their in-situ positions.

I have presented a number of additional facts that warrant a closer look in the future. We observe that multiple-wh-questions are not possible, and wh-expressions must undergo movement to be interpreted as interrogative elements (that is, there is no $w h$-in situ). In the domain of long-distance movement, we see that each clause bears extraction morphology, suggesting that this process occurs in a step-by-step (or successive cyclic (Chomsky 1986, 2000, 2001, 2008, Rackowski and Richards 2005, van Urk and Richards 2015)) fashion, leaving evidence of extraction in each intermediate clause, rather than moving in "one fell swoop". Also of interest is the presence of a determiner element, a "connective", in most extraction configurations. What is the role of the connective here? Does it hint at a potential analysis of these configurations as consisting of a $w h$-expression or focused element, combining with a headless relative clause (introduced by the common-noun determiner/connective). This kind of cleft or "pseudo-cleft" analysis has been proposed as a possible analysis of Gitksan questions in Davis and Brown (2011), and also is compatible with the syntax proposed for questions and clefts in many languages of the Pacific Northwest (Kroeber 1991, 1999, Davis et al. 1993, Jelinek 1998, Baptiste 2001).

In terms of intrafamily generalizations, I would like to flag the similarities between extraction in Sm'algyax and extraction in Interior Tsimshianic languages (Gitksan and Nisga'a), where these phenomena have garnered more description. We observe that the complex system of extraction in Sm'algyax is strikingly consistent across the family, with a few slight divergences between the different languages. Gitksan, for example, boasts identical or near-identical cognates to Sm'algyax's core-argument extraction morphosyntax (Rigsby 1986, Davis and Brown 2011, Brown 2016, Forbes 2017) as well as the morphosyntax associated with non-core argument extraction (Brown and Forbes 2018). One difference is that there is no Interior Tsimshianic cognate of Sm'algyax's wh-question clitic (d) u which appears only in $w h$-questions, and is a root-level phenomenon. The present survey of questions and movement in Sm'algyax lays a foundation for further intrafamily comparison and discussion.

REFERENCES

Margaret Seguin Anderson and Marianne Ignace. Visible grammar: Twenty user friendly grammar modules for Sm'algyax. Prince Rupert, B.C.: Wap Sigatgyet, School District 52, 2008.

Maxine Rose Baptiste. Okanagan wh-questions. Master's thesis, University of British Columbia, 2001.

Katie Bicevskis, Henry Davis, and Lisa Matthewson. Quantification in Gitksan, pages 281-382. 07 2017. doi: 10.1007/978-3-319-44330-0_6.

Franz Boas. Tsimshian grammar. In Handbook of American Indian Languages. Washington: Government Print Office, 1911. Bulletin 40, volume 1.

Colin Brown. Extraction restrictions in Gitksan. Master's thesis, McGill University, 2016.
Colin Brown and Clarissa Forbes. Three (hidden) obliques in Gitksan. Handout presented at SSILA, January 2018.

Colin Brown, Clarissa Forbes, and Michael David Schwan. Clause-type, transitivity, and the transitive vowel in Tsimshianic. In D. K. E. Reisinger, Hannah Green, Marianne Huijsmans, Gloria Mellesmoen, and Bailey Trotter., editors, Papers for the 55th International Conference on Salish and Neighbouring Languages, pages 12-40. UBC Working Papers in Linguistics, 2020.

Ivano Caponigro, Harold Torrence, and Roberto Zavala Maldonado, editors. Headless Relative Clauses in Mesoamerican Languages. Oxford University Press, 2020.

Noam Chomsky. Barriers. Cambridge, MA: MIT Press., 1986.
Noam Chomsky. Minimalist inquiries: the framework. In Step by Step: Essays on Minimalist Syntax in Honour of Howard Lasnik. MIT Press, Cambridge, 2000.

Noam Chomsky. Derivation by phase. In Ken Hale: A life in language, pages 1-52. MIT Press, 2001.

Noam Chomsky. On phases. In Robert Freidin, David Michaels, Carlos P. Otero, and Maria Luisa Zubizaretta, editors, Foundational issues in linguistic theory: Essays in honor of Jean-Roger Vergnaud, pages 133-166. Cambridge, MA: MIT Press, 2008.

Henry Davis. Only connect! determiners, case and agreement in Tsimshianic. International Journal of American Linguistics, 84(4):471-511, 2018.

Henry Davis and Jason Brown. On A'-dependencies in Gitksan. In Papers for the 46th International Conference on Salish and Neighbouring Languages, pages 43-80. UBC Working Papers in Linguistics, 2011.

Henry Davis and Clarissa Forbes. Connect four! The morphosyntax of argument marking in Tsimshianic. In Papers for the 50th International Conference on Salish and Neighbouring Languages. UBCWPL, 2015.

Henry Davis, Dwight Gardiner, and Lisa Matthewson. A comparative look at wh-questions in Northern Interior Salish. In Paper presented at the 29th International Conference on Salish and Neighbouring Languages. August 19-21. Seattle, 1993.

John Asher Dunn. A reference grammar for the Coast Tsimshian language. Canadian Ethnology Service paper 55, Ottawa, ON, 1979.

Clarissa Forbes. Extraction morphosyntax and wh-agreement in Gitksan: The case for accusativity. In Proceedings of the 2017 Canadian Linguistic Association. Ryerson University, 2017.

Clarissa Forbes. Persistent ergativity: Agreement and splits in Tsimshianic. PhD thesis, University of Toronto, Toronto, ON, 2018.

FPCC. First Peoples’ Culture Council language needs assessment: Sm’algyax, 2018. URL https://maps.fpcc.ca/languages. Accessed Nov 18, 2021.

Katharine Hunt. Clause Structure, Agreement and Case in Gitksan. PhD thesis, University of British Columbia, 1993.

Eloise Jelinek. Wh-clefts in lummi. In Papers for the 33rd International Conference on Salish and Neighboring Languages, pages 257-65. Seattle, WA: University of Washington, 1998.

Kristín M. Jóhannsdóttir and Lisa Matthewson. Zero-marked tense: The case of Gitxsan. In Proceedings of NELS, volume 37, 2007.

Paul D. Kroeber. Comparative syntax of subordination in Salish. PhD thesis, University of Chicago, 1991.

Paul D. Kroeber. The Salish Language Family. University of Nebraska Press, 1999.
Lisa Matthewson. On the methodology of semantic fieldwork. International Journal of American Linguistics, 70(369-415), 2004.

Lisa Matthewson. Gitksan modals. International Journal of American Linguistics, 79(3):349-394, 2013.

Jean Mulder. Ergativity in Coast Tsimshian (Sm'algyax). PhD thesis, UC Berkeley, 1994.
Andrea Rackowski and Norvin Richards. Phase edge and extraction: A Tagalog case study. Linguistic Inquiry, 36:565-599, 2005.

Bruce Rigsby. Gitxsan grammar, 1986. Ms., University of Queensland, Australia.
John Robert Ross. Constraints on variables in syntax. PhD thesis, MIT, 1967.

Fumiko Sasama. A descriptive study of the Coast Tsimshian morphology. PhD thesis, Kyoto University, 2001.

Marina Stoyanova. Unique Focus: Languages without multiple wh-questions. John Benjamins Publishing, 2008.

Marie-Lucie Tarpent. A Grammar of the Nisgha Language. PhD thesis, University of Victoria, 1987.

Ts'msyen Sm'algyax Authority. Sm'algyax Living Legacy Talking Dictionary. URL https: //www.webonary.org/smalgyax/.

Coppe van Urk and Norvin Richards. Two components of long-distance extraction: Successive cyclicity in Dinka. Linguistic Inquiry, 46(1):113-155, 2015.

[^0]: *T'oyaxsut 'nuusm to Velna Nelson, Beatrice Robinson, Ellen Mason, Theresa Lowther of the others I have worked with on the Lax Yuuba Ts'msyen. Thank you to Margaret Anderson, Henry Davis, Harold Torrence, and Ethan Poole, two anonymous reviewers, IJAL Associate Editor Seth Cable, and editors David Beck and Doris Payne for the invaluable insights and comments that have helped shape this project. This research is supported in part by funding from the Social Sciences and Humanities Research Council, as well as the Harry and Yvonne Lenart Graduate Travel Fellowship.

[^1]: ${ }^{1}$ The four-line glossing convention used throughout can be understood as follows: the first/top line appears in the community orthography used throughout British Columbia, adapted from John Dunn's Sm'algyax orthography. The second line from the top utilizes the same orthography, but indicates morpheme boundaries; word-level morphophonological processes such as obstruent voicing before vowels are not marked at this level. The third line provides grammatical category labels in line with the Leipzig glossing rules. The fourth and final line provides an English translation.
 ${ }^{2}$ Abbreviations used in glosses are as follows: $1=$ first person, $2=$ second person, $3=$ third person, ATTR $=$ attributive, $\mathrm{AX}=$ agent extraction morpheme, CAUS $=$ causative, $\mathrm{CN}=$ common noun connective, $\mathrm{CNTR}=$ contrastive, $\mathrm{COMP}=$ complementizer, $\mathrm{DET}=$ determiner, EPIS $=$ epistemic modal, $\mathrm{FOC}=$ focus, $\mathrm{I}=$ series I clitic, $\mathrm{II}=$ series II suffix, $\mathrm{III}=$ series III pronoun, INDEF = indefinite, INS = instrumental, IRR = irrealis, MANR = manner clause subordinator, NEG = negative, $\mathrm{NMLZ}=$ nominalizer, $\mathrm{PASS}=$ passive, $\mathrm{PFV}=$ perfective, $\mathrm{PL}=$ plural, $\mathrm{PN}=$ proper noun connective, $\mathrm{POSS}=$ possessive, $\mathrm{PREP}=$ preposition, $\mathrm{PROG}=$ progressive, $\mathrm{PROHIB}=$ prohibitive, $\mathrm{PROSP}=$ prospective, $\mathrm{PROX}=$ proximal, $\mathrm{Q}=$ question particle, REAS $=$ reason clause subordinator, $\mathrm{REL}=$ relative, $\mathrm{SG}=$ singular, $\mathrm{SPT}=$ spaciotemporal particle, $\mathrm{SX}=$ subject extraction morpheme, $\mathrm{T}=$ transitive control suffix, $\mathrm{TR}=$ transitive, $\mathrm{VER}=$ verum, $\mathrm{WH}=$ underspecified contentquestion word. Abbreviations used in the text are as follows: $\mathrm{A}=$ transitive subject or "agent", $\mathrm{C}=$ consonant, $\mathrm{CP}=$ complementizer phrase, $\mathrm{DP}=$ determiner phrase, $\mathrm{O}=($ direct $)$ object, $\mathrm{PRED}=$ predicate, $\mathrm{S}=($ intransitive $)$ subject, $\mathrm{V}=$ vowel.
 ${ }^{3}$ Much of the prior literature on Sm'algyax refers to these clause types as "indicative" and "subjunctive", following the terminology introduced in Boas (1911). However, as we will see in detail in this section, this clause-type distinction is orthogonal to mood. I have here opted for the theory neutral terms used in Rigsby (1986) and later work on Interior Tsimshianic.
 ${ }^{4}$ Though the transitive vowel appears as $-i$ in glosses, it is more accurately characterized as a featureless vowel that assimilates to its consonantal environment, surfacing as [i] or [a], or as a glide [j]. The transitive vowel is often deleted due to a number of phonological processes. Brown et al. (2020) outline the environments which license the appearance of this morpheme as well as the (morpho)phonological conditions which result in the deletion of a proposed underlying transitive vowel. Throughout this paper I will indicate the presence of the transitive vowel, underlying or overt, in the second line of glossed examples.
 ${ }^{5}$ As indicated by the English translations, third-person agreement/pronouns are gender neutral. Sm'algyax also does not overtly encode grammatical tense, and unmarked sentences may be interpreted as past or present (non-future) tense, while future oriented sentences are marked with dm PROSPECTIVE (as in Gitksan Jóhannsdóttir and Matthewson

[^2]: ${ }^{7}$ I follow Forbes (2018) in analyzing series IIIa suffixes as phonologically weakened forms of the series IIIb pronouns. The generalization is as follows: when an absolutive pronominal element appears adjacent to a verb that is not inflected with series II person marking, the "weakened" series IIIa form surfaces - this is the case for independent intransitive sentences, as well as some independent transitive sentences which have a marked agreement pattern stemming from person-hierarchy effects (see Forbes 2018, Brown et al. 2020, for a description and discussion on these marked agreement patterns). When the verb is inflected with series II person marking, an absolutive argument will surface as a series IIIb pronoun - this is the case for independent transitive sentences.

[^3]: ${ }^{8}$ Throughout this paper there are many examples in which the second and third lines of examples show common-noun connectives that are absent in the first (orthographic) line. This is due to the phonological process of vowel deletion which is triggered in environments where the $=a$ connective directly follows a sonorant or vowel (Anderson and Ignace 2008).

[^4]: ${ }^{9}$ Though (17) and (18) function as matrix/root sentences, they are dependent clauses as they are introduced by the dependent markers $t a$ and yagwa, respectively.

[^5]: ${ }^{10}$ The post-predicative positioning of $=(d) u$ is unavailable if a participant (first or second person) series II suffix appears on the predicate, as well as in the case of subject extraction, where a special suffix -it appears (described in §4). I set aside this issue of clitic linearization.

[^6]: S extraction
 a. Sis'aaxsa gyet.
 sis'aaxs=a gyet
 laugh $=C N$ person
 'A person laughed' Baseline
 b. Pada sis'aaxsit.

 Pat [=a \quad sis'aaxs-it ___]
 Pat =CN laugh-SX
 'It's Pat who laughed.' Focus
 c. Wilaayu gyeda sis'aaxsit.
 wilaay-u=a gyet [=a sis'aaxs-it ___]
 know-1SG.II=CN person =CN laugh-SX
 'I know the person who laughed.'
 Relative clause
 d. Güüdagu naa sis'aaxsit.
 güüdax-i-u=a naa [=a sis'aaxs-it __]
 ask-TR-1SG.II=CN who =CN laugh-SX
 'I asked who laughed. ${ }^{11}$
 Embedded question

[^7]: ${ }^{11}$ In these examples with gï̈̈dagu 'I ask(ed)' it is not clear whether the embedded question is introduced by a connective a, as it is routinely deleted after a vowel. The embedded question with the third-person suffix - t does however show us that there is underlyingly a connective in these constructions:

[^8]: ${ }^{12}$ Unlike with S and O extraction, the presence of the common-noun connective following the extracted element in A extraction is variable, and generally a point of variation between speakers. A extraction in Interior Tsimshianic lacks the connective in this position (Tarpent 1987, Davis and Brown 2011).

[^9]: ${ }^{14}$ I would like to thank Seth Cable for helping me work through this discussion.

[^10]: ${ }^{16}$ In all of the configurations described in this subsection, the subordinator is obligatory.

[^11]: ${ }^{19}$ As with agent extraction, the presence or absence of the common-noun connective on the extracted element is not categorical.

