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Abstract 

The capacity for language is a defining property of our species, yet despite decades of 

research evidence on its neural basis is still mixed and a generalized consensus is difficult to 

achieve. We suggest that this is partly caused by researchers defining “language” in different 

ways, with focus on a wide range of phenomena, properties, and levels of investigation. 

Accordingly, there is very little agreement amongst cognitive neuroscientists of language on 

the operationalization of fundamental concepts to be investigated in neuroscientific 

experiments. Here, we review chains of derivation in the cognitive neuroscience of language, 

focusing on how the hypothesis under consideration is defined by a combination of 

theoretical and methodological assumptions. We first attempt to disentangle the complex 

relationship between linguistics, psychology, and neuroscience in the field. Next, we focus on 

how conclusions that can be drawn from any experiment are inherently constrained by 

auxiliary assumptions, both theoretical and methodological, on which the validity of 

conclusions drawn rests. These issues are discussed in the context of classical experimental 

manipulations as well as study designs that employ novel approaches such as naturalistic 

stimuli and computational modelling. We conclude by proposing that a highly 

interdisciplinary field such as the cognitive neuroscience of language requires researchers to 

form explicit statements concerning the theoretical definitions, methodological choices, and 

other constraining factors involved in their work. 

Keywords: derivation chains; auxiliary assumptions; linguistic theory; cognitive 

science; neuroscience; psycholinguistics; language science  
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Cleaning up the Brickyard: How Theory and Methodology Shape Experiments 

in Cognitive Neuroscience of Language 

The field of cognitive neuroscience of language aims to understand the 

neurobiological basis of language in the brain. Based on decades of electrophysiological and 

neuroimaging studies, several researchers have attempted to use individual pieces of 

research (“bricks”) for building grand theories (“edifices”) of the brain basis of language (e.g., 

Bornkessel-Schlesewsky & Schlesewsky, 2013; Hickok & Poeppel, 2016; Friederici, 2017; 

Hagoort, 2016; Matchin & Hickok, 2020; Tyler & Marslen-Wilson, 2008; Ulman, 2004). 

However, this process of model building is not straightforward, especially because 

researchers have defined “language” in different ways, leading them to focus on different 

phenomena, properties, and levels of investigation. Moreover, researchers have used a wide 

range of methodological approaches to investigate “their” definition of language. 

Consequently, the “brickyard” (Forscher, 1963) of cognitive neuroscience of language is filled 

with idiosyncratically-shaped bricks (i.e., research results and directions) that might not 

necessarily fit together or easily map onto each other. This issue may be intrinsic to any field 

of neuroscience research investigating higher cognitive functions. Here, we examine issues in 

the study of the neuro-cognitive basis of language, highlighting problems as well as potential 

solutions. 

To better understand how individual bricks may be designed and organized to build 

an edifice of “language”, one can employ the derivation chain framework introduced by 

Meehl (1990). This framework describes how any theory under investigation depends on 

several premises, so-called auxiliary assumptions. Accordingly, conclusions drawn based on 

a given experimental outcome rest on the validity of these (hidden) auxiliary assumptions. If 

any of the auxiliary assumptions turns out to be false, the derivation chain from theory to 

statistical inference will be weakened or broken. This weakened derivation chain ultimately 

compromises the conclusions that can be drawn based on a particular experiment. In other 

words, the main theory is only as strong as its supporting auxiliary assumptions. These 

derivation chains, previously discussed in other fields (e.g., Scheel et al., 2021), are highly 
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appropriate to describe many chains of assumptions present in the cognitive neuroscience of 

language. 

In cognitive neuroscience of language, derivation chains can draw from at least two 

entire academic discipline, that is, modern linguistics and cognitive psychology, in addition 

to methodological auxiliaries specific to the methods used in the field. Yet, moving from 

linguistic theory to the design of a cognitive neuroscience experiment is not a simple process 

and necessarily already introduces a large number of auxiliary assumptions. In addition, 

further methodological auxiliary assumptions are adopted when designing an experiment, 

collecting data, and performing statistical analyses. Without paying sufficient attention to 

the specific elements of the resulting derivation chain, hypothesis tests in the field of 

cognitive neuroscience of language can be severely limited in informativeness and validity. In 

the present article, we discuss auxiliary assumptions (shorthand: A) of theoretical (AT) and 

methodological (AM) nature that constrain the implications of research in cognitive 

neuroscience of language. Here, we suggest that this derivation chain can be formulated as:  

Cognitive neuroscience of language = AT1 × AT2 × ATn × AM1 × AM2 × AMn 

Throughout the paper, our discussion of both theoretical and methodological auxiliary 

theories will draw upon the classical three-level framework for investigation in cognitive 

science introduced by Marr (1982). In this framework, the computational level describes the 

processing goal (e.g., a parse tree), the algorithmic level describes the underlying processing 

steps, and the implementational level refers to the theory of the actual neural 

implementation (Figure 1). Notice that a derivation chain can, in principle, start from any of 

these levels (i.e., a researcher may choose to start with theories located on the algorithmic or 

implementational level and thereby disregard others). 

In the following, we will first discuss how a wide range of assumptions imported from 

linguistics, psychology, and neuroscience constrain the theoretical foundations of most of the 

studies conducted in the interdisciplinary field of cognitive neuroscience of language (section 

“Theoretical Assumptions”). We will then consider an equally important factor affecting the 

reliability of the derivation chain, which refers to the assumptions made when translating 
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this interdisciplinary theoretical apparatus into an empirical investigation (section 

“Methodological Assumptions”). In particular, from the experimental design to the 

measurements and analysis, researchers incorporate a large number of assumptions in the 

derivation chain. Each of these decisions shape the contribution of a given study to the field 

of the cognitive neuroscience of language (see section “Example of a Derivation Chain: 

Zaccarella et al. (2017)”). 

Figure 1 

Derivation chains in cognitive neuroscience of language.  

 

Note. Auxiliary assumptions derived from theoretical accounts (AT) on three distinct levels 

of investigation according to Marr’s Framework (Marr, 1982): computational, algorithmic, 

and implementational. Each level relies on distinct descriptions of the phenomena under 

study (left). AT1 (top-row): A-temporal description of the sentence structure. AT2 (middle-

row): Explanation in terms of general cognitive concepts such as working memory and 

prediction. AT3 (bottom-row): Description in terms of involved brain regions or observed 

signals. These levels are mapped to data of various nature (middle). AT1 (top-row): 

Subjective judgements of the grammaticality of a sentence. AT2 (middle-row): Reaction 

times for different experimental conditions. AT3 (bottom-row): Spatial and temporal time 
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series of a brain signal related to neural activity. Each level roughly aligns with a specific 

scientific discipline (right). AT1 (top-row): Linguistics. AT2 (middle-row): Psychology. AT3 

(bottom-row): Neuroscience. 

1. Theoretical Assumptions 

The first step in any derivation chain is to identify the construct that one intends to 

investigate experimentally. While this may sound trivial to researchers from other fields, 

practitioners in cognitive neuroscience of language have hardly ever agreed on how to strictly 

define “language” and associated theoretical concepts. For example, some researchers 

consider language primarily as a means of communication (e.g., Beckner et al., 2009; Scott-

Phillips et al., 2009; Tomasello, 2008), whereas others treat language as an abstract formal 

process operating over representations that can be externalized in a spoken, written, or 

signed form (e.g., Chomsky, 2017; Friederici et al., 2017). Again others define language as the 

act of communicating in any form, including not just speech and sign but also 

communicative gesture (e.g., Arbib et al., 2008; Goldin-Meadow & Brentari, 2017; Özyürek, 

2014). For any particular definition or understanding of language, a certain interpretative 

context is therefore set and even within a particular definition of language, different aspects 

of language are in specific focus (see Box 1). Accordingly, the choice of basic definitions 

directly influences what a researcher will consider as the key constructs of interest, which 

manipulations will be adopted in a given experimental design, and how the collected data 

will be analyzed (see section “Example of a Derivation Chain: Zaccarella et al. (2017)”). 

We suggest that the lack of agreement on the strict definition of “language” is also 

partially rooted in the fact that the derivation from linguistic theory into observational terms 

through empirical hypotheses is not always straightforward. It is by now widely known and 

established that neither linguistic theories nor processing theories directly map onto 

neurobiological processes and the units of analysis (for detailed discussions, see Baggio, 

2020; Embick & Poeppel, 2015; Martorell, 2018; Poeppel & Embick, 2013). That is, there is 

currently no established direct mapping from a theoretical linguistic construct (e.g., Merge), 

nor from the construct of a psycholinguistic model (e.g., working memory) to the basic units 
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of neuroscience (e.g., cell assemblies, frequency bands, etc.), that clearly defines the link 

between the computational, algorithmic, and implementational levels in our field (Figure 1). 

Therefore, researchers have many degrees of freedom in choosing their favorite construct, 

theoretical framework, processing theory, and hypothesis about their neural 

implementation. 

Here, we do not aim to establish a consensus about how to define “language” or what 

phenomena to focus on in future research, instead, we propose that researchers should be 

explicit in describing the starting point of the derivation chain used in the construction of a 

particular edifice. One reason for this is that even similar neural data can receive divergent 

interpretations by different researchers, depending on basic linguistic definitions and 

assumptions which they explicitly but more often also implicitly choose to adopt. Once 

derivation chains are made explicit, the current diversity of viewpoints may actually leave 

some room for integration in the long run. To use the analogy introduced above, we suggest 

that the different basic definitions and diverging research interests within the cognitive 

neuroscience of language might have led to the production of differently-shaped bricks and 

simultaneously to the construction of edifices that serve different purposes (i.e., a “chaotic 

brickyard”; Forscher, 1963). However, these different bricks do not necessarily need to 

contradict each other, and how they might fit together may become more clear once the 

underlying auxiliary assumptions are made explicit. For example, findings obtained in the 

context of studying language as primarily a means for communication may highlight aspects 

that are disregarded in an approach focusing on language as a computational system 

building up phrases and sentences, and vice versa. 

Finally, in addition to explicitly and implicitly made auxiliary assumptions, there may 

be occasions in which no commitment to a particular theoretical standpoint is or can be 

made at all. Many studies on the neural basis of sentence processing only implicitly commit 

to some form of structural representation of sentences without any explicit link or 

assumption to theoretical descriptions of sentence structure (i.e., as to whether these 

representations are derived from phrase structure or dependency grammars; see “Imports 
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from Linguistics” below). Sometimes, however, no commitment is made at all which can 

result in gaps in the derivation chain: For example, this may be the case when the meaning of 

phrases or sentences is studied without any assumptions made as to how these meanings 

may be represented (i.e., as models, Language of Thought formulae, conceptual graphs, etc.). 

The distinction between implicit assumptions and actual gaps in a derivation chain can be 

blurry in some instances, but both can have distinct consequences within the derivation 

chain framework: While implicit assumptions—that the researcher is not aware of—affect the 

interpretability of a derivation chain and thus the interpretation of an experiment’s results, 

actual gaps in a derivation chain can be the result of known disconnects between disciplines 

or result from limitations of the methods used (see section “Methodological Assumptions” 

below). 

In the remainder of this article, we will mainly use the study of syntax in linguistics, 

psychology, and neuroscience as one of the different sub-components of language in focus 

within the field of the cognitive neuroscience of language (see Box 1). However, we wish to 

emphasize that some fundamentals we discuss for syntax can be and have been applied to 

other sub-components such as, for example, semantics or phonology. 
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Box 1. Subcomponents of Language 

No matter what definition of “language” an individual researcher adopts, linguists have 

tended to describe the language system using a number of subcomponents. At least six 

major subcomponents of language can be identified, although the boundaries between 

them can be blurry: Phonetics, phonology, morphology, syntax, semantics, and 

pragmatics. Each subcomponent deals with different linguistic information types, ranging 

from acoustic information of single speech sounds to complex grammatical relations: 

 
 

AT1: Imports from Linguistics 

Linguistics examines “language” as such. Each individual researcher decides what 

elements of linguistics enter into the derivation chain of their experiment. In principle, 

researchers can choose to disregard modern linguistics altogether and perform 

neuroscientific experiments without any connection to linguistic theory. For example, a 

researcher may choose to present participants with recordings of single words randomly 

drawn from a thesaurus and contrast this with a control condition in which participants 

listen to non-speech noise. There may be good reasons to conduct an experiment along these 
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lines. However, the conclusions about language processing based on this experiment will 

likely be limited to the truism that in one condition the participants listened to linguistic 

stimuli, whereas in the other condition they did not. Crucially, even when this example 

(explicitly) disregards linguistic theory, the linguistic view that language is categorical in 

nature (i.e., there are no half-words) is automatically adopted (Chomsky, 1966, 2002). 

Moreover, words or signs are treated as discrete units despite the fact that this is never 

reflected in the nature of the auditory, written, or signed signal. In fact, apart from prosodic 

phrasal boundaries, there is no acoustic break signaling the begin and the end of individual 

words in the speech stream, nor holds or pauses indicating the beginning and end of signs in 

the visual stream of signs: In the case of prosodic phrase boundaries, listeners are known to 

perceive a boundary between syntactic phrases even without an acoustic break (Steinhauer et 

al., 1999). 

A case in point for the current discussion is the way in which different theories 

describe the grammar reflecting the idealized speakers’ abstract knowledge of language. The 

syntactic representation of a sentence can be described using many different frameworks, 

which in turn, come with a number of implicit and explicit auxiliary assumptions. According 

to different theory-specific proposals, the syntactic structure of a sentence can therefore be 

analyzed assuming either binary branching (e.g., Chomsky, 1988, 1995) or n-ary branching 

(Pollard & Sag, 1994), which results in rather different-looking structural descriptions (see 

Figures 2A and 2C). Furthermore, a particular linguistic theory may start from the 

assumption that well-formed sentences have a so-called Deep Structure satisfying some 

structural requirements and a Surface Structure that complies with positional relationships 

(as in the early versions of the Principles and Parameters theory within the generative 

grammar tradition; Chomsky, 1988); or alternatively that it should provide the complete 

derivation of a structure in its description (e.g., minimalism; Chomsky, 1995) at all times (see 

Figure 2A); or, conversely, that it should allow for the combination of “pre-assembled” 

structural elements already stored in memory (e.g., tree adjoining grammars; Joshi et al., 

1975; Joshi & Schabes, 1997; see Figure 2B). 
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Figure 2 

Different structural descriptions of an example sentence 
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Note. A: A minimalist derivation of the sentence “This paper reviews derivation chains”. 

The derivation proceeds in a bottom-up fashion, starting from the most deeply embedded 

element in the sentence. Here “u” indicates uninterpretable features that have to be satisfied 

and subsequently deleted. The feature [uN] expresses the requirement of the verb (“review”) 

for a nominal argument (“derivation chains”). After the noun phrase (NP) (“derivation 

chains”) was merged, [uN] is removed. The features [uV] and [uD] on the small v express the 

requirement for a verb phrase (VP) (“review derivation chains”) and a determiner phrase 

(DP) (“this paper”). The VP is merged and the feature [uV] is deleted. The strong feature 

[V*] requires the movement of the verb “review”. The unsatisfied feature [uD] is projected 

further until a DP “this paper” is merged. The feature [uv] on the functional head T is 

removed after the vP has been merged. The strong feature [D*] requires the movement of the 

DP “this paper”. The T head assigns tense, person, and number features to the v via an 

agreement operation. B: A tree-adjoining grammar description of the sentence “This paper 

reviews derivation chains”. Initial trees are labeled α1, α2, α3, and α4. The final derived tree 

is labeled Γ. Downward-pointing arrows indicate the substitution sites, which are substituted 

by the respective trees α2, α3, and α4. C: An HPSG tree of the sentence “This paper reviews 

derivation chains”. 

 
The different syntactic analyses presented in Figure 2 all accurately capture the 

structure of the respective sentences according to the theoretical assumptions of each of the 

corresponding linguistic frameworks. From the point of view of the cognitive neuroscience of 

language, however, this raises two major questions: Firstly, is there any reason to adopt one 

approach of capturing sentence structure over the other? And secondly, what are the 

implications of adopting one or the other approach for the design of a cognitive neuroscience 

experiment? More precisely, we have to consider whether or not on some level of abstraction 

different linguistic theories may turn out to be notational variants (for discussions, see 

Johnson, 2015; Nefdt & Baggio, 2023). That is, does theory A actually predict effects that are 
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not predicted by theory B and if so, how would these differences manifest themselves in 

brain and behaviour so that they can be operationalized in an experimental design? 

There are no easy answers to these questions, because researchers may have different 

reasons to prefer one structural description over another. As long as the phenomenon they 

are attempting to investigate in their experiment does not critically depend on a particular 

aspect of a specific theory, the choice of theory and the concomitant theoretical imports (e.g., 

binary branching and complete derivation) may be arbitrary. However, if an experiment 

attempts to investigate, for example, the nature of the syntactic combinatorial operations in 

language, then the choice of a theoretical description directly affects the experimental 

design: In a minimalist analysis, it is assumed that the combinatorial operation is binary, 

combining only two elements at a time, whereas more than two elements can be combined at 

the same time under the assumption of n-ary branching. An experiment motivated by 

linguistic theory attempting to study syntactic combination would have to take this 

theoretical difference into account (also see section “Example of a Derivation Chain: 

Zaccarella et al. (2017)” below). 

AT2: Imports from Psychology 

Psycholinguistics, at the interface between psychology and linguistics, examines the 

psychological processes involved in comprehending and producing language and considers 

factors that go beyond the formal and frequently atemporal descriptions of theoretical 

linguistics. This is best illustrated with an example: While a listener (or signer) during online 

language comprehension encounters the leftmost element in a sentence first (e.g., “cats” in 

“cats chase mice”), the syntactic analysis of the sentence according to most linguistic 

theories, would usually start from the last encountered element in the sequence (i.e., “mice”). 

Traditional linguistic theories primarily address language competence, that is, the internal 

linguistic knowledge of the ideal speaker/signer-hearer/viewer (Chomsky, 1965), without 

being concerned about how comprehenders actually process them. In contrast, 

psycholinguistics mainly deals with language performance, the real (as opposed tot he 

idealized) speaker/signer-hearer/viewer’s actual online language use (Harley, 2013).  
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An intuitive way to understand the difference between competence and performance 

is that real-life comprehension and production are constrained by cognitive resources and 

contextual information. These constraining factors are particularly evident in center-

embedded structures such as in the example “The scientist that a journalist that a policeman 

knows cites is very famous.”, where it becomes very “expensive” (in terms of working 

memory resources) to link each subject to its corresponding verb without hesitation or 

rereading. From a theoretical-linguistic point of view, however, there is no limit to the 

number of potential embeddings (Miller & Chomsky, 1963)—that is, there is no rule in 

language that prevents the embedding of one sentence into another. Psycholinguistically, 

comprehenders get constrained by factors such as limited working memory performance, as 

it becomes increasingly difficult to comprehend structures that go beyond two (or three) 

embeddings (Blaubergs & Braine, 1974; Cecchetto et al., 2016; R. L. Lewis, 1993, 1996). 

Researchers have frequently opted to analyse the link between theory and behaviour 

in the context of Marr’s three-level framework of analysis (Figure 1), which allows for more 

precise descriptions of the distinction between competence and performance (for detailed 

discussions see Baggio et al., 2012; van Rooij & Baggio, 2021). This is because the intuitive 

distinction between competence and performance factors is likely too simplistic, as it 

disregards that the aggregate of performance factors constitutes more than just constraints 

on competence, whereas the aggregate of competence factors constitutes not just the absence 

of performance constraints (for discussion see Frixione, 2001; van Rooij, 2008; van Rooij & 

Baggio, 2021). That is, performance factors as such do not merely impose constraints on 

competence factors but constitute an empirical domain of facts on their own, so that the 

algorithms actually implementing a particular linguistic function are indeed more than just 

the sum of performance constraints while at the same time also being different from the 

relevant factors in a description on the computational level.  

This in turn implies that the derivation chain of studies in the cognitive neuroscience 

of language also adopts a number of concepts that originate from general psychology and 

which play a role during language processing: For example, working memory (e.g., 
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Fedorenko et al., 2006; Swets et al., 2007), executive functions (e.g., Baddeley et al., 2009; 

Shao et al., 2014), predictive processing (e.g., van der Burght et al., 2021; Weber et al., 

2006), or automaticity of higher mental processes (Pyatigorskaya et al., 2023). Distinct 

linguistic theories differ in the strength of their link to these psychological theories. For 

example, the assumption that linguistic structures or constructions can be stored in the 

mental lexicon is implemented in the Tree-Adjoining-Grammar formalism (Figure 2B) as 

well as Construction Grammar (Goldberg, 1995). In contrast, traditional versions of the 

Minimalist Program (Figure 2A) assume that linguistic constructions are not stored in the 

mental lexicon, but are instead thought to be fully derived. Within the context of Marr’s 

three-level network, this difference reflects formally different assumptions about the 

relationship between the computational and algorithmic levels of analysis, respectively the 

degree to which a grammatical theory resembles a computational description or includes 

algorithmic components (see also Jackendoff, 2003). While a more or less direct link 

between a description on the computational level to the algorithmic level does not make a 

certain linguistic theory more “psychologically real” than another, an explicit link to 

psychologically measurable constructs can be beneficial when investigating certain 

constructs experimentally . 

Performance factors must be taken into account in order to gain a more complete 

understanding of language in the brain because any experiment (including collecting 

judgments about the acceptability of a particular sentence) necessarily taps into 

performance. At the same time, the study of an idealized notion of competence alone can 

sometimes help to interpret the available data in a certain way that allows for a distinct level 

of understanding that would not necessarily emerge based on the study of the algorithmic 

and implementational level alone. For example, the study of language use alone may miss the 

suitable description of language structures as hierarchical organization of constituents 

(Frank et al., 2012), whereas this insight arises relatively early when looking only at 

structural descriptions of linguistic competence. Similarly, the degree to which some 

theoretical linguistic assumptions (e.g., constituency or the full derivation under a 
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Minimalist approach) can (and should) be reflected in actual behavioural measures (e.g., 

reaction times and response accuracy) remains an open question and subject to debate. 

Processing-friendly models of language competence have begun to show that some 

behavioral facts on language comprehension in real speakers can be better explained if fine-

grained theoretical assumptions and specific directionality of derivation are taken into 

account (e.g., the type of lexical restrictions of the constituents involved in the structure; 

Chesi & Moro, 2015). Furthermore, a link between linguistics and processing was also 

addressed by Gibson (2000) suggesting a theory of linguistic complexity to explain 

components of sentence parsing, and by Levy (2008), proposing a probabilistic, expectation-

based theory accounting for syntactic processing difficulties. 

In general, the choice to begin conceptualizing an experiment from the algorithmic 

level of psychological theories of language processing (see Figure 1) or from the abstract 

analysis of language competence may lead not only to a focus on different phenomena, but 

may also lead to different interpretations of the data considered. This is evidenced by studies 

which have attempted to compare distinct models accounting for different performance 

factors (e.g., Chesi & Canal, 2019). 

AT3: Imports from Neuroscience 

Neuroscience primarily studies the mapping from the algorithmic level to the 

implementational level, which appears to be similarly challenging as the mapping between 

the computational to the algorithmic level in linguistics and psychology. Both psychology 

and neuroscience aim to study how language is processed from two different perspectives 

that may offer different explanations of the data observed. Yet, due to the general 

disconnection between psychology and neuroscience (e.g., Beste, 2021), the explanations 

offered by either cannot be straightforwardly translated. For example, it is currently not clear 

how different clusters observed in a functional magnetic resonance imaging (fMRI) study 

could be related to a difference in reaction times, or vice versa. There is of course much more 

to say about the different outlooks and the actual disconnects of psychology and 

neuroscience in general. For example, while a psychological theory relates to how a 
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particular kind of information (in our case: linguistic information) is being processed, it is 

currently still unclear how any kind of information is actually represented neurally (Gallistel, 

2017; Krakauer et al., 2017; Poeppel & Idsardi, 2022). Similarly, any psychological theory of 

(language) processing relies on a notion of memory, but it is currently unknown how 

neurons carry forward information in time (Gallistel & King, 2009; James Langille & Randy 

Gallistel, 2020; Trettenbrein, 2016). 

When designing an experiment on language using neuroscientific methods, 

researchers therefore face a three-way disconnect in their derivation chain (see Figure 1). For 

example, one of the defining properties of language is its discrete infinity, that is, the fact 

that we can effortlessly comprehend and produce sentences that we have never encountered 

before in our life. Having this in mind, different researchers in cognitive neuroscience of 

language have singled out this generative capacity of language that assembles constituents as 

their object of investigation. Some researchers have investigated the neural representation of 

word combination purely at the syntactic level (Zaccarella et al., 2015, 2017; Zaccarella & 

Friederici, 2015a), whereas others have adopted a broader perspective on the combination of 

discrete linguistic elements comprising syntactic, phonological, and semantic levels 

(Hagoort, 2013, 2019; Hagoort & Indefrey, 2014). On a certain level of abstraction, both 

groups of studies have attempted to understand how and where linguistic elements are 

combined in the brain. In contexts where both teams of researchers investigated syntactic 

combinatoriality, the interpretations of the respective neural data, which has shown 

significant overlap in language-relevant brain regions, at times still have diverged due to the 

different derivation chains employed: That is, partially similar operationalizations in 

experimental designs and the use same experimental method (i.e., fMRI) yielded partially 

overlapping experimental results with different interpretations motivated by theoretical 

choices (see section “Example of a Derivation Chain: Zaccarella et al. (2017)” below). 

Lastly, neuro-computational models have recently been proposed to bridge some of 

the gaps (e.g., Martin, 2020). For example, computational models of sentence processing 

have been proposed as explanations of how readers incrementally process ambiguous 
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sentences (Hale, 2014; 2016) as well as how working memory principles constrain sentence 

comprehension (Lewis et al., 2006). Evaluating model predictions against reading time data, 

these models constitute attempts at bridging the disconnect between linguistics and 

psychology though this approach is not without limitations (Guest & Martin, 2023; Ten 

Oever et al., 2022). Furthermore, such models have been used to explain the neural 

dynamics during naturalistic language comprehension (Brennan, 2016). Importantly, these 

computational models must be interpretable, in that they connect with or implement 

theoretical constructs from linguistics (Hale, 2022). In this spirit, as one suggested solution 

for dealing with the wealth of available linguistic theories within the field of cognitive 

neuroscience of language (see section “Imports from Linguistics”), neuro-computational 

models have been proposed to be able to evaluate different linguistic theories by applying 

models with different parameter specifications to neural data (Brennan, 2016). 

2. Methodological assumptions 

In addition to the auxiliary assumptions on the theoretical level, there are also 

auxiliary assumptions defined purely by methodological choices of the experimenter (Figure 

3). While some of these assumptions also affect other fields of cognitive neuroscience, some 

of them are specific to the cognitive neuroscience of language.  
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Figure 3 

Examples of methodology-derived auxiliary assumptions 

 

Note. Examples of methodology-derived auxiliary assumptions. The same hypothesis can 

involve different derivation chains at the methodological level. The different chains are built 

up from the chosen (highlighted in red) task, modality, stimuli, method, and analysis, among 

all the possible ones that can be employed (shaded). Each methodological choice comes with 

its own auxiliary assumptions, constraining the scope of the research question under 

investigation. AM: methodology-derived auxiliary assumptions; fMRI: functional magnetic 

resonance imaging; M/EEG: magneto/electroencephalography; MEPs: muscle evoked 

potentials; ROI: region of interest; TMS: transcranial magnetic stimulation. 

 

Language and stimuli 

AM1: The Language (Modality) Tested is one Where the Relevant 

Linguistic Phenomenon of Interest can be Tested. A key characteristic that sets 

language apart from many other cognitive domains is the diversity of forms of the world’s 
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more than 7,000 languages (UNESCO, 2021). Consequently, the ability of a given study to 

highlight general neuro-cognitive features and principles of language processing rests on the 

assumption that the language under investigation shares central properties that can be 

observed across languages (Baker, 2009; Evans & Levinson, 2009; Greenberg, 2005; 

Longobardi & Roberts, 2010). For instance, if a study reports on the neural correlates of 

syntactic processing without specifying the language used, the assumption is made that 

syntactic processing in language under investigation is representative of syntactic processing 

as such. Depending on the process, this auxiliary assumption may not be valid given the 

large cross-linguistic variability in syntactic structure. Indeed, various instances of cross-

linguistic differences on the neural level have been found (e.g., Bornkessel-Schlesewsky et 

al., 2011; Goucha et al., 2022). Ignoring this assumption might have amplified apparently 

conflicting findings in the literature. For example, investigations of syntactic processing in 

English have highlighted the role of the posterior temporal lobe (Law & Pylkkänen, 2021; 

Matar et al., 2021; Matchin et al., 2017, 2019), while studies conducted in German have 

pointed towards a central role of the left inferior frontal gyrus (Goucha & Friederici, 2015; 

van der Burght et al., 2019; Zaccarella & Friederici, 2015a). 

 At a broader (geographical) level, language studies on so-called Western, Educated, 

Industrialized, Rich, and Democratic (WEIRD) populations (Henrich et al., 2010) often 

report findings on “language processing” in general (e.g., “Intonation guides sentence 

processing in the left inferior frontal gyrus”), while only explicitly mentioning the specific 

language studied (e.g., “German”) in the methods section. Studies on non-WEIRD 

populations generally mention the language investigated in a prominent way, e.g., in the title 

or abstract (e.g., Garrido Rodriguez et al., 2023; Matar et al., 2019; Ohta et al., 2017; Wu et 

al., 2019). The increased number of studies conducted on non-WEIRD languages in recent 

years allows cross-linguistic examinations (e.g., Malik-Moraleda et al., 2022), which 

represents a first step towards a clear definition of shared and language-specific 

neurocognitive basis of language processing. 
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Similarly important is to explicitly state the chosen language modality, and to what 

extent this decision shapes conclusions on language processing and the modalities in which 

they can be externalised and perceived. Visually perceived sign languages (Klima et al., 1979; 

Pfau et al., 2012) and the tactile languages of the deaf-blind (Checchetto et al., 2018; 

Edwards & Brentari, 2020) provide interesting testing grounds for supposed universal 

processes. At the same time, the choice of language and modality therefore already constitute 

the (frequently implicit) adoption of auxiliary assumptions. This decision concerns the 

question which (neuro-)cognitive processes are shared between comprehension and 

production but also spoken, written and sign language (Vigneau et al., 2011; Arana et al., 

2020; Trettenbrein, Papitto, et al., 2021) and which processes might be unique to each of 

these modalities (McQueen & Meyer, 2019). In other words, to what extent can processing 

mechanisms in a given domain be generalized to the language system as a whole, or are they 

limited to linguistic processing in the studied domain only. As such, a generic label such as 

“language processing” almost always represents an underspecification, unless the 

experimental task used has been established to capture a processing mechanism shared 

across modalities (e.g., Arana et al., 2020; Gastaldon et al., 2020; Giglio et al., 2021; Heim et 

al., 2010; Matchin & Wood, 2020). 

AM2: The Materials Employed are Capable of Testing the Hypothesis 

Without Introducing Confounds. The experiments conducted in our field usually 

consist of the presentation of isolated words, phrases, sentences, or discourses that vary 

along specific linguistic dimensions of interest. As in other cognitive neuroscientific 

domains, the materials employed need to be able to test the hypothesis of interest without 

introducing additional confounds. At present, there are several tools available that allow 

researchers to control for the perceptual aspects of materials employed in language research 

(e.g., Boersma, 2001; Trettenbrein & Zaccarella, 2021). However, additional dimensions of 

interest relate to the psycholinguistic properties of the words employed. For example, a 

researcher might want to ensure that the difference between two conditions (e.g., abstract 

and concrete nouns) is not confounded by differences in lexical frequency, or by 
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phonological or orthographic neighborhood (i.e., how many words are pronounced or 

written very similarly to a given target; Marian, 2017; Marian et al., 2012). This issue can be 

easily addressed by consulting linguistic corpora (i.e., databases) which allow to extract 

psycholinguistic variables of interests (e.g., length, frequency of occurrence) for the entries 

(e.g., words or signs) of a specific language. Accordingly, the use of these corpora ensures 

that the stimuli (of the distinct categories/variables/factors) are matched along the relevant 

linguistic dimensions (for a methodological discussion, see also Sassenhagen & Alday, 2016). 

In cases where corpus data is not available for a certain language (e.g., as for many sign 

languages), subjective ratings can be used to establish psycholinguistic parameters (e.g., 

Caselli et al., 2017; Trettenbrein, Pendzich, et al., 2021). 

An additional aspect of stimulus preparation in language studies relevant especially 

for electroencephalography (EEG) and magnetoencephalography (MEG) concerns pre-target 

words. For example, target words of interest that differ along specific linguistic dimensions 

of interest (e.g., “shirt” and “phone”) can be presented within sentences or phrases (e.g., “the 

driver wears a shirt” vs. “the driver wears a phone” when considering semantic plausibility). 

In turn, pre-target words (i.e., the contexts) need to be matched across relevant perceptual 

and psycholinguistic variables of interest, or counter-balanced across conditions (for 

examples, see Hasting & Kotz, 2008; Maran, Numssen, et al., 2022). If the pre-target words 

elicit sustained differences across conditions, common E/MEG pre-processing procedures 

such as baseline correction might artificially create an effect at the target word (for a detailed 

discussion see Steinhauer & Drury, 2012). 

Crucially, potential confounding variables can (and should) be included as regressors 

in the statistical model (Hamilton & Huth, 2020). An implicit assumption in psycho- and 

neurolinguistics research is that the information provided by the corpora is representative of 

the language as used by the participants in a study. Yet, this assumption can be violated, for 

example, if the corpus is based on relatively old texts that include archaic or disused words 

(see Brysbaert et al., 2011). This problem has led to the development of corpora based on 

more recent movie subtitles, because they seem to more closely match how language is used 
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in everyday life (Boada et al., 2020; Brysbaert et al., 2011; Cai & Brysbaert, 2010; Cuetos et 

al., 2011; Dimitropoulou et al., 2010; New et al., 2007; Soares et al., 2015; van Heuven et al., 

2014). Importantly, the development of accurate corpora for languages (e.g., as for some 

signed languages, indigenous languages, etc.) that still lack these extensive resources is an 

important goal for the years to come. 

In an attempt to overcome some of these issues, studies making use of so-called 

naturalistic stimuli have recently gained popularity (for reviews, see Alday, 2019; Hamilton 

& Huth, 2020; Willems, 2015). Rather than presenting carefully controlled stimuli as part of 

artificial laboratory tasks, these naturalistic approaches make use of sentences extracted 

from spoken corpora, short narratives, or audiobooks (Stehwien et al., 2020). Naturalistic 

stimuli have been successfully used to study phonetic feature encoding (Mesgarani et al., 

2014), syntactic representations (Bhattasali et al., 2019; Brennan et al., 2016; Hale et al., 

2018), linguistic predictions (Brennan & Hale, 2019; Heilbron et al., 2022; Shain et al., 

2020), and semantic processing (Brodbeck et al., 2018; Broderick et al., 2018; Huth et al., 

2016). Because of the increased ecological validity of the naturalistic stimuli, the assumption 

about the method’s ability to capture the process of interest (i.e., naturalistic language 

processing) should be more readily met. Yet, while the stimulus material may be 

unconstrained and more natural, these naturalistic approaches pose numerous analysis-

based choices that are, in turn, based on their own auxiliary assumptions. Traditional 

statistical techniques are often unable to account for the numerous confounding variables 

present in natural speech (Hamilton & Huth, 2020). Instead, testing for a variable of interest 

requires complex computational tools with parameters defined by the experimenter. This 

effectively leads to a shift in auxiliary assumptions related to the experimental design to the 

analysis phase of the experiment (see below).  

Data acquisition 

AM3: The Neuroscientific Research Technique/Method is Capable of 

Providing Data Which can be Used to Test the Hypothesis of Interest. Similarly to 

other cognitive neuroscience domains, reserachers in the field of cognitive neuroscience of 
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language can rely on a large number of neuroimaging, neuro-stimulation and neuro-

modulation techniques. For instance, neuroimaging techniques such as fMRI, EEG, and 

MEG provide correlational evidence on the link between brain functioning and cognition, 

whereas brain stimulation techniques (Bergmann & Hartwigsen, 2021; Hartwigsen & 

Silvanto, 2022) and lesion studies (Matchin et al., 2022; Vaidya et al., 2019) allow to draw 

causal inferences. Additionally, distinct research techniques show a difference in temporal 

precision, susceptibility to artifacts (e.g., Abbasi et al., 2021; Luck, 2005; Ouyang et al., 

2016) and to cancellation of signals from a particular brain area (e.g., Devlin et al., 2000; 

Gorno-Tempini et al., 2002; Jezzard & Clare, 1999; Ojemann et al., 1997), and sensitivity to 

the orientation of the electrical currents (e.g., Ahlfors et al., 2009, 2010; Cohen & Cuffin, 

1991). Consequently, each neuroscientific technique poses its own methodological 

constraints regarding the conclusions that can be drawn based on its data. These distinct 

methodological constraints might be the reason why, in language research, conclusions 

drawn based on EEG, MEG, and fMRI data might not always converge (Lau et al., 2013; 

Wang et al., 2021). Some of these methodological constraints apply to cognitive neuroscience 

research in general—here we focus on the specific methodological issues that require extra 

consideration in language research in particular. 

For instance, differences in the temporal resolution of neuroimaging methods  

become particularly important considering that language comprehension is characterized by 

a series of early automatic and late controlled processes (for reviews, see: Bornkessel & 

Schlesewsky, 2006; Friederici, 2011; Maran, Friederici, et al., 2022). As such, it is important 

to note that distinct neuroimaging techniques vary in temporal precision (He & Liu, 2008) 

and therefore might capture distinct processing stages. For instance, EEG and MEG provide 

a direct measure of brain activity (Lopes da Silva, 2013) that best captures transient, 

feedforward neural activity (Kochari et al., 2021; Vartiainen et al., 2011; Wang et al., 2021). 

In contrast, the temporal resolution of fMRI is largely insensitive to such transient, 

feedforward neural activity (Arthurs & Boniface, 2002; Bunge & Kahn, 2009; Furey et al., 

2006; Segaert et al., 2013; Vartiainen et al., 2011). Consequently, fMRI might be more 
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suitable to capture downstream, late-stage effects that are sustained or variable in time.  

Accordingly, whether studies with high and low temporal resolution are actually capturing 

similar linguistic processes remains unclear, possibly limiting the integration of their 

findings. Consideration of convergence and divergence across imaging modalities can yield 

new insights into the contributions of multiple components of the language network. 

Another important aspect which should be considered, especially for studies on language 

comprehension, is the fact that the distinct experimental environments in which 

neuroimaging studies (e.g., a noisy MRI environment) take place affects the patterns of 

neural activation (Andoh et al., 2017; Pellegrino et al., 2022). 

While neuroimaging methods such as MEG, EEG, and fMRI cannot provide causal 

evidence for the functional relevance of particular brain regions, this issue can be overcome 

using transcranial magnetic stimulation (TMS; Polanía et al., 2018). When combined with 

concurrent EEG measurements (TMS-EEG), TMS can be used to study the causal 

involvement of different cortical areas in language processing as proposed by neurobiological 

models of language (e.g., Friederici, 2011, 2012; Hagoort, 2019) with an extremely high 

temporal resolution. However, there are also several disadvantages to the use of TMS in 

language research: One obstacle is the uncomfortable stimulation of surface muscle tissue 

when TMS is applied over frontolateral and temporoparietal language areas, which are brain 

regions considered of central relevance for language processing in most of the recent models 

in the field (Friederici, 2017; Hagoort, 2019 Matchin & Hickok, 2020). Such discomfort 

needs to be taken into account when thinking of appropriate control (sham) conditions (e.g., 

see Duecker & Sack, 2015). When combined with simultaneous EEG measurements, the 

stimulation of this muscle tissue leads to the generation of long-lasting and distinctly large 

muscle artifacts that make it hard to interpret the underlying EEG signal (Salo et al., 2020). 

The development of new real-time visualization tools (Casarotto et al., 2022) can be used in 

an attempt to minimize muscle twitches before the start of the measurements. This approach 

is not only important when interested in early components of the EEG response to TMS, but 

also because these muscle twitches are clearly perceived by the participants and therefore 
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result in unspecific brain responses (Conde et al., 2019). Furthermore, the loud clicking 

sound also induces an electrophysiological response, which cannot be easily masked (Russo 

et al., 2022) when interested in auditory language processing. These sensory problems need 

to be carefully taken into account when designing a TMS-EEG experiment probing language. 

For instance, one could think of creating good (linguistic) control conditions in terms of 

stimulus materials, in which the TMS-related conditions (i.e., muscle twitches, clicking 

sound) are equal (i.e., interaction effects). 

It should also be noticed that, when TMS is employed, a large number of parameters 

need to be set by the experimenter (e.g., the choice of an online or offline stimulation 

protocol), which might influence whether a neurostimulation study will provide causal 

evidence or not (Qu et al., 2022), ultimately affecting the derivation chain strength. Another 

phenomenon when using TMS to study language processing are compensatory effects within 

the large-scale, distributed language network (Hartwigsen, 2018). For example, during 

auditory language processing, the listener needs to rapidly analyze the sound, meaning, and 

structure of spoken words in order to associate the heard sound patterns with meaningful 

concepts. These complex processes require the interaction of numerous brain regions.  Given 

the large-scale nature of the language network, there is great potential for adaptive plasticity 

in order to compensate for a focal perturbation of a key region when using TMS (Hartwigsen, 

2018). In line with this, evidence shows that unifocal perturbation with (repetitive) TMS is 

often not sufficient to perturb various language-related processes (see, e.g., Kroczek et al., 

2019; Maran, Numssen, et al., 2022), whereas the use of combined perturbation of two brain 

regions leads to an observable effect (e.g., Hartwigsen et al., 2016; Schroën et al., 2020). 

Such adaptive plasticity, however, makes it difficult to study the causal dynamics underlying 

language processing using TMS. The use of condition-and-perturb approaches (Hartwigsen 

et al., 2012) can increase the perturbation load on the language network, and might be 

necessary to distinguish between the lack of a causal involvement of a brain region in a 

process and the initiation of compensatory mechanisms. Consequently, the attribution of a 

cognitive function to any cortical region may be skewed. The conclusions on structure-
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function relationships from lesion studies are similarly complex, since they, too, rest on the 

(implicit) auxiliary assumption that no plastic changes have taken place. 

In sum, when using neuroscientific research techniques, the various auxiliary 

assumptions involved introduce their own constraints on the inferences that can be drawn. 

In the case of language research in particular, however, special care needs to be taken 

because important regions in the language network are posed with imaging modality-specific 

limitations: TMS over the inferior frontal and anterior temporal lobes is particularly 

uncomfortable due to the proximity to facial muscle tissues, and as mentioned before, 

anterior temporal regions are difficult to capture using fMRI due to signal distortions (Devlin 

et al., 2000; Jezzard & Clare, 1999). Or, as Meehl might have put it, the implicit assumption 

that a given neuroimaging or neurostimulation technique is equally suitable for different 

parts of the cortex (e.g., AM: the signal of a given neuroscientific method is uniform 

throughout the cortex) might lead to weakening of the derivation chain in various language 

research agendas. 

Data analysis 

AM4: The Analytic Approach is Capable of Testing the Hypothesis of 

Interest. Data from EEG and MEG language studies are traditionally analyzed focusing on 

event-related potentials (ERPs; Luck, 2005) or neural oscillations (Buzsáki & Draguhn, 

2004). On the one hand, several ERP components (e.g., ELAN, LAN, N400, P600) have been 

linked to specific stages of linguistic processing (e.g., phrasal building, morphosyntactic 

analysis, semantic composition, integration; see (Bornkessel-Schlesewsky & Schlesewsky, 

2008; Brouwer et al., 2017; Friederici, 2011; Fritz & Baggio, 2022; Hernández et al., 2022; 

Maran, Friederici, et al., 2022; Zaccarella & Friederici, 2015b). On the other, distinct neural 

oscillations seem to subserve the multiscale property of language, from the processing of 

phonetic and syllabic units to phrases, and ultimately to more complex aspects of 

comprehension (e.g., Benítez-Burraco & Murphy, 2019; Giraud & Poeppel, 2012; A. G. Lewis 

et al., 2015). 
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Focusing the analysis on either ERPs or neural oscillations reflects an implicit 

assumption made by the researcher on the nature of the hypothesized effect. ERPs are the 

result of averaging across trials, and accordingly capture only activity that is both time-

locked (i.e., in a constant time-relationship) and phase-locked (i.e., in a constant phase-

relationship) to a stimulus or process of interest (Luck, 2005). Accordingly, if a linguistic 

effect has a variable time-course over trials, or manifests itself via non-phase locked activity, 

it might not be adequately captured by ERP analyses (Kochari et al., 2021; Maran, Friederici, 

et al., 2022). Of note, the low temporal resolution of fMRI makes this method less affected by 

this potential issue (Kochari et al., 2021). Thus, when an ERP-based analysis is employed, 

researchers are implicitly assuming that their effect of interest manifests itself via time- and 

phase-locked neural activity. This is not a trivial assumption given that, for example, some 

jittering across trials might be present when acoustic stimuli are employed. 

In contrast to ERPs, analyses based on neural oscillations are better suited to account 

for the multi-dimensionality of M/EEG data (M. X. Cohen, 2011, 2014), because this type of 

analysis can capture the power and phase relationships of different frequency bands. This 

additional information can be used to compute several measures of functional and effective 

connectivity (e.g., coherence, phase-locking value) at the sensor- or source-level (Bastos & 

Schoffelen, 2016; Maran et al., 2016; Schoffelen & Gross, 2009). Given the large number of 

measures that can be extracted via time-frequency analysis, researchers often need to make 

implicit assumptions on the effect of interest when analyzing their data. The first choice is 

the frequency (or frequencies) of interest. This decision might not be straightforward when 

naturalistic stimuli are employed, given the intrinsic variability in time of linguistic 

information (e.g., syllables; Alday, 2019). Cluster-based permutation tests (Maris & 

Oostenveld, 2007) have been employed in some studies (e.g., Segaert et al., 2018) in order to 

address effects that might extend beyond the canonical frequency bands. Critically, this 

method bears some limitations on the specificity (e.g., in time, space or in frequency bin) of a 

significant effect (Sassenhagen & Draschkow, 2019), whose definition might require a follow-

up investigation tailored to investigate its exact extent. Additional assumptions are made 
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when choosing either to focus on changes in power or in phase of neural oscillations. These 

additional assumptions should be kept in consideration, because these measures might be 

differently sensitive to a particular experimental manipulation (Ding & Simon, 2013; Luo & 

Poeppel, 2007). Overall, these choices should be motivated by the extensively available 

literature on the ERP (Friederici, 2011; Hernández et al., 2022; Maran, Friederici, et al., 

2022) and oscillatory (Benítez-Burraco & Murphy, 2019; Giraud & Poeppel, 2012; A. G. 

Lewis et al., 2015; Meyer, 2018; Murphy, 2015) correlates of language processing. 

Furthermore, one should take into account the considerations on how basic 

neurophysiological mechanisms might subserve linguistic operations (Friederici & Singer, 

2015; Fries, 2015; Murphy, 2015). 

Aside from electrophysiological methods, analyses of neuroimaging data involve 

various researcher degrees of freedom that might shape their outcome. When analyzing 

fMRI data with a region of interest (ROI) based approach, it should be acknowledged that 

the approach (naturally) more constraining. Because it is spatially more constraining, it 

strongly depends on the validity of the assumption that the process of interest can be 

(uniquely) attributed to the region of interest. Similarly, novel analysis techniques with 

respect to the use of TMS have recently used modeling of the TMS-induced electric field in 

each individual subject. The magnitude of the electric field in a certain ROI can, in turn, be 

used to explain modulations in behavior in a number of language tasks (Kuhnke et al., 2020; 

Maran, Numssen, et al., 2022; Numssen et al., 2023; van der Burght et al., 2022). In this 

case, the auxiliary assumptions again imply that the process of interest can be localized to 

one or multiple ROIs, and that stimulation and task performance are linearly related.  

A special case of ROI-based analyses in fMRI research is a so-called localiser 

approach (e.g., Fedorenko et al., 2010). Here, the individual brain is masked using a 

functional contrast image involving a language processing and a baseline task, e.g., complex 

sentences vs. strings of unconnected pseudowords. While in some ways regarded as a more 

powerful approach than whole-brain analyses or group-based ROI-based analyses, the 

functional localiser approach necessitates researchers to justify the conditions that the 
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localiser contrast is based on, and to carefully explain how the functional localiser constrains 

the subsequent results.  

Finally, a recent development has seen the analysis of fMRI and M/EEG data 

combined with machine learning techniques, often using naturalistic stimuli. As an 

alternative to manually annotating the speech stimulus (e.g., Kaufeld et al., 2020), these 

analyses make use of a computational model that is trained on the stimulus input in order to 

predict the resulting brain responses. In the subsequent analysis, a comparison is made 

between the predicted and measured brain responses (Goldstein et al., 2022; Heilbron et al., 

2022). Importantly, the results of such neural analyses will strongly depend on the model 

assumptions. For example, GPT-2 (Radford et al., 2019), one of the most successful models, 

is designed to form a next-word prediction based upon a sequence of preceding words. As 

already mentioned above, this type of model might be employed to derive computational 

metrics (e.g., “surprisal”) which can be correlated with changes in brain activity or reading 

times.  In principle, such correlations might highlight neuro-cognitive processes related to 

predicting upcoming words’ features. However, the conclusions drawn from such studies 

necessarily rest on the assumption that the defining trait of a given model (e.g., prediction) 

captures key aspects of how humans process language. Furthermore, a significant correlation 

between a computational model and the human brain cannot justify by itself the conclusion 

that they are implementing the same process (Guest & Martin, 2023; Ten Oever et al., 2022). 

Accordingly, an examination of the model’s assumption and its compatibility with the 

notions in the fields of psycholinguistics and neurolinguistics is a fundamental step in the 

interpretation of a given study. Here, the auxiliary assumptions involved in computational 

approaches may be relatively less transparent than those involved in a traditional factorial 

design, especially for readers with limited computational background. It is therefore 

particularly important that in such studies the analytical assumptions are carefully justified 

and that any potential constraints on the results are discussed.  
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3. Example of a Derivation Chain: Zaccarella et al. (2017) 

In the following section, we provide an example analysis of the derivation chain 

involved in Zaccarella and colleagues (2017) to show how the adopted linguistic theory and 

employed methodology can influence the experimental design and the interpretation of the 

observed results. This section should be read as an example of reasoning about how a certain 

approach drives the experimental outcome, without attempting to disqualify the original 

interpretation. 

To summarise  the study, fMRI was used to investigate the cortical regions involved 

in syntactic structure building. Healthy volunteers read sequences of three words presented 

word-by-word. In their 2-by-2 design, Hierarchy Type (Sentence versus Phrase) and Merge 

(+Merge versus -Merge) were included as within-subject factors (see Table 1). This resulted 

in the presentation of four conditions: a sentence (the ship sinks), a phrase (on the ship), and 

noun lists matched with the sentence and phrase sequences (stem ship juice and leek mouth 

ship, respectively). Participants were instructed to judge whether the sequence was a phrase, 

a sentence, or a list. In a univariate analysis, functional contrasts compared neural activation 

between the sentences/phrases and their respective noun-list conditions (Sentence vs. List 

and Phrase vs. List). This main effect was reflected in functional activation in the left inferior 

frontal gyrus (IFG) and superior temporal gyrus (STG). Since the sentence and phrase 

conditions required syntactic structure building whereas the noun-list conditions did not, the 

comparison between sentences and phrases and their respective list conditions was 

described as the main effect of Merge; the authors reasoned that composing the sequences 

into phrases and sentences required the computation Merge, whereas the list sequences did 

not.  
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Table 1. 

Experimental design of Zaccarella et al. (2017) 

  Merge 

  + - 

Hierarchy type Sentence DAS SCHIFF SINKT 
The ship sinks 

HALM SCHIFF SAFT 
stem ship juice 

Phrase AUF DAS SCHIFF 
on the ship 

LAUCH MUND SCHIFF 
leek mouth ship 

 

Import from Linguistics (AT1): Adopting a known hypothesis from linguistic 

theory, their choice had several implications: (1) The authors assumed that in the noun-list 

conditions words could not be integrated into structures; (2) the authors assumed that 

phrases and sentences were formed by Merge — a syntactic operation that builds syntactic 

structures out of single words. In doing so, the authors made a clear commitment to 

linguistic theories that accept Merge as a structure building operation (Chomsky, 1993; 

Berwick et al., 2013). (3) Lastly, the authors assumed that phrases and sentences differ with 

regard to their syntactic representations. 

Import from Psychology (AT2): Given the nature of the stimuli under analysis, 

(4) the study did not account for the directionality of structure-building processing in real-

time language comprehension, but just assumed that Merge would assemble words into 

phrases and sentences regardless of which two words would occur first in a certain trial (e.g., 

preposition + determiner in the phrase condition; determiner + noun in the sentence 

condition). This means that the authors assumed that Merge may work both top-down and 

bottom-up to form syntactic structures.  

Import from Neuroscience (AT3): In linking linguistics and psychology to 

neuroscience, the authors assumed that (5) Merge works on syntactic features that must be 

accessed at the lexico-syntactic level in some specific cortical region or cortical network to 

prompt compositional processing, and that (6) the binary-formed phrases must be stored 
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and represented in some abstract form in some specific neural assembly or cortical network 

and further reused. 

Methodological assumptions (AT4): On the methodological level, a number of 

choices can be discerned that further define the derivation chain of this study: (7) The visual, 

word-by-word presentation was chosen to mimic the incremental nature of spoken language. 

(8) The choice of fMRI rests on the assumption that structure building leads to a difference 

in neural activity that can be detected (via a difference in blood oxygenation) in a univariate 

contrast and which cannot distinguish between early/late processes and 

predictive/integrative processing at work during language comprehension. This assumption, 

in turn, presupposes that (9) Merge can be localized as an operation supported by one or 

several brain regions, which support syntactic structure building. 

Overall, this example illustrates how the composition of the chain leads to the 

conclusion derived from the study: localizing a certain linguistic operation specified in 

linguistic theory, i.e., Merge, in two cortical regions of the left hemisphere (i.e., the left IFG 

and STG). 

The analysis of the derivation chain in Zaccarella et al. (2017) ultimately reveals that 

the empirical findings of the study can actually be re-interpreted within the context of 

alternative models of the neurobiology of language which also posit operations for syntactic 

structure building (e.g., syntactic Unification; Hagoort, 2005; 2013). That is, the models of 

Friederici et al. (2017) and Hagoort (2005; 2013) rboth ely on auxiliary assumptions from 

linguistics (Friederici: Merge, Chomsky, 1995; Adger, 2003; Hagoort: Unify, Jackendoff, 

2002; Joshi & Schabes, 1997) and posit the existence of structure-building operations that 

are formally distinct (see Johnson, 2015; Nefdt & Baggio, 2023). Yet, the two accounts could 

only be distinguished at the neural level if the experimental design explicitly operationalizes 

the formal differences between them. In Zaccarella et al. (2017), the experimental 

manipulation compared sentences and phrases against mere lists of words in order to isolate 

neural processes related to syntactic structure building, yet did not tap into formal 

differences between Merge and (syntactic) Unification and may therefore be motivated by 
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either framework (see, e.g., Humphries et al., 2006; Snijders et al., 2009). We suggest that 

the neural data of this study remain uniformative with regard to which theoretical definition 

should be preferred over another. Instead, the a priori selection of the respective auxiliary 

assumptions seems to define how the neural data are interpreted. Future work attempting to 

operationalize formal differences between distinct cognitive operations (i.e., Merge and 

syntactic Unification) in experimental designs may shed light on these issues. 

Concluding Remarks 

The cognitive neuroscience of language is a wide field with a great diversity of 

experimental findings and approaches. We have argued that this diversity mostly results 

from the derivation chains being substantially long, complex, and mostly implicit in our 

field. Consequently, researchers encounter many degrees of freedom in forming their 

derivation chain, shaped by the numerous theoretical and methodological choices they make 

between hypothesis and experimental result. Researchers may choose to start their 

derivation chain on the computational level of the abstract description of linguistic 

competence. They may instead choose to start from performance factors relevant on the 

algorithmic level of language processing. Finally, they may disregard either for the most part 

and attempt to cut their derivation chain short by starting from neurobiology (i.e., the 

implementational level). While all these choices can be well-motivated and justified, we have 

argued here that most derivation chains in our field almost always import hidden 

assumptions from all three fields: linguistics, psychology, and neuroscience. 

We have no illusion that the field should suddenly reach a consensus on key 

terminology or approaches. Instead, in agreement with Scheel et al. (2021), we argue that a 

highly interdisciplinary field such as the cognitive neuroscience of language requires 

researchers to form explicit statements concerning their experiment’s derivation chain. The 

auxiliary theoretical assumptions as well as the constraining factors of the methodology 

employed in their work should be clearly motivated and discussed. Researchers should be 

aware of the numerous theoretical auxiliary assumptions attached to a theory when making 

inferences regarding the neurobiology of language. The same applies to methodological 
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auxiliary assumptions, which constrain the scope of a given experiment, limiting the research 

questions that can or cannot be addressed. If these explicit and implicit theoretical and 

methodological auxiliary assumptions, as well as possible gaps in the derivation chain, are 

not considered, an accurate appraisal of data in the field of cognitive neuroscience of 

language is compromised. 

Lastly, we would like to point out that the prevalence of different definitions and lack 

of a clear consensus in cognitive neuroscience need not be considered problematic. Instead, 

we suggest that the observed diversity of viewpoints should be considered complementary. 

We acknowledge that it is not always clear from the outset how the bricks made by different 

brickmakers could eventually be reassembled into one large edifice. However, we suggest 

that for the field to move towards the long-term goal of integration, an important first step is 

to help other researchers to identify how each brick was made. That is, researchers should 

carefully describe the complete derivation chain involved in their study. A more transparent 

discussion of the implicit and explicit auxiliary assumptions behind our experiments may 

therefore significantly improve research on the neurobiology of language.  
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