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1. Introduction: Exploring the Behaviors of Constraint-based Theories  

Constraint-based theories in linguistics have long served a dual purpose: they not only 

provide a framework for analysis of linguistic phenomena, but they also have their own 

formal properties that make broad yet precise predictions about what can occur in human 

languages. As these theories have evolved, a tradition of research has emerged aiming to 

extract and test such predictions. Such work began with classical Optimality Theory (OT; 

Prince and Smolensky 1993) and Harmonic Grammar (HG; Legendre, Miyata, and 

Smolensky 1990) and has continued with the probabilistic descendants of these 

frameworks: Stochastic OT (Boersma 1998), Maximum Entropy grammars (Goldwater 

and Johnson 2003), and Noisy Harmonic Grammar (Boersma and Pater 2016).2  

We follow this research tradition here, examining some previously-unnoticed 

behaviors of Noisy Harmonic Grammar, hereafter NHG. All of these behaviors concern 

constraints that have been assigned a weight of zero. Our findings in brief are as follows. 

(a) As first noted by Flemming (2021), zero weighted constraints are not “turned off,” but 

continue to influence the candidate evaluation. As we will show, these influences can be 

substantial; indeed, in contexts of harmonic bounding, a zero-weighted constraint can 

completely rule out candidates that violate it. (b) In the simplest version of NHG, zero-

weighted constraints can reward, rather than penalize, candidates that violate them.  

                                                 
1 We would like to thank Edward Flemming, the LI reviewers, and the participants in the UCLA 

Phonology Seminar (Fall 2021) for helpful input on this squib. 

2 For diagnostic work on classical OT, see Prince and Smolensky 1993, Prince 1997, Anttila et al. 

2008, and Mai and Baković 2020; for classical HG, Bane and Riggle 2010, Jesney 2016, and Pater 2016; 

for Stochastic OT, Zuraw and Hayes 2017; for MaxEnt, Jesney 2007, Anttila and Magri 2018, and 

Flemming 2021; for Noisy Harmonic Grammar, Jesney 2007, Hayes 2017, Kaplan 2021, and Flemming 

2021, 2022. 
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These predictions depend on particular choices that must be made concerning 

negative weights and harmonic bounding. At the end of the squib we discuss whether 

these are good predictions, how they might be tested empirically, and how rival 

frameworks differ. 

2. Review of Noisy Harmonic Grammar 

We first review the basics of NHG; for the original presentation see Boersma and Pater 

2016.3 As in OT, NHG assumes a set of inputs, a set of candidates for each input, a set of 

constraints, and a procedure for selecting winners based on the constraint violations. 

Unlike in OT, the constraints are not ranked but weighted; i.e. assigned real numbers 

reflecting their strength. Every candidate is assigned a Harmony score, computed by 

multiplying weights by violation counts for every constraint, then summing across all 

constraints. In the original, nonstochastic version of Harmonic Grammar, there is a 

unique winner, which is the candidate with the lowest Harmony score.4 

Noisy Harmonic Grammar, in contrast, adds a probabilistic element to the evaluation 

of candidates; thus it is suitable for the analysis of the many linguistic phenomena that 

are gradient (see e.g. Bod, Hay and Jannedy 2003, Coetzee and Pater 2011). 

Representative work employing NHG includes Jesney and Tessier 2009, Coetzee and 

Kawahara 2013, and Kaplan 2021. To achieve probabilistic outputs, NHG adds a random 

noise value to each constraint’s weight.5 This value, 𝜀, is drawn from a Gaussian 

distribution that has a mean of 0 and a standard deviation that we set here at 1. We will 

refer to the sum of the base weight and noise factor 𝜀 as the perturbed weight; a separate 

set of perturbed weights is employed at each evaluation time, or application of the 

grammar. To illustrate, tableau (1) has two candidates and two conflicting constraints 

weighted at 4.95 and 4.6 

                                                 
3 Prepublication versions of this work date from 2008, though the essential reference to “clipping” 

discussed below is found only in later versions. 

4 The latter reflects our choice of sign conventions: we use positive weights for constraints that 

assess a penalty and positive integers to count violations; other authors have adopted different conventions. 

5 The text gives the classical version of the theory as proposed by Boersma and Pater; for 

alternatives see Hayes 2017 and Flemming 2017, 2021. 

6 The value 4.95 is rounded for convenience; the exact value for deriving .75/.25 probability is 

closer to 4.95387. The calculations for this squib, which were carried out with a combination of Excel and 

OTSoft 2.6 (Hayes, Tesar, and Zuraw 2021), may be inspected in the Supplementary Materials. 



 

 3  

(1) Two conflicting constraints with similar weights, deriving .75/.25 probability 

  
PREFERMAJORITY 

(w = 4.95 + 𝜀1) 

PREFERMINORITY 

(w = 4 + 𝜀2) 

Harmony probability 

Input1 Majority 
 

1 4 + 𝜀2 .75 

 
Minority 1 

 
4.95 + 𝜀1 .25 

 

At each evaluation time, the constraint weights are perturbed by the values 𝜀1 and 𝜀2. 

Across evaluation times, perturbed weights fall into two overlapping Gaussian 

distributions, centered at the base weights 4.95 and 4, as shown in figure 1: 

Figure 1. Probability distributions for the perturbed weights in Tableau (1) 

 
In this case, since each candidate has just one violation of one constraint, the Harmony 

value of each candidate is equal to the perturbed weight of the constraint that it violates. 

Because of these distributions, the Minority candidate will have the greater Harmony 

penalty more often than not, but on some trials the opposite outcome will obtain. With a 

0.95 difference in base weights, the Majority candidate wins 75% of the time. More 

generally, the difference in probability depends on the difference in base weights.   

3. Harmonic Bounding and Negative Weights 

It is a widely held, though not universal, view that it is desirable for a constraint-based 

framework to impose the property of harmonic bounding (Prince and Smolensky 

1993:156): any candidate that has a strict superset of the violations of any other candidate 

can never win.7 Work advocating the use of theories that maintain harmonic bounding 

includes Anttila and Magri 2018, Mai and Baković 2020, and Kaplan 2021; skeptical 

work that actually relies on the absence of harmonic bounding for linguistic analysis 

includes Hayes and Wilson 2008, Kaplan 2011, and Hayes and Schuh 2019.  

                                                 
7 We address here only simple harmonic bounding, where a losing candidate is bounded by a single 

rival; for collective harmonic bounding see e.g. Samek-Lodovici and Prince 1999. 
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Classical OT is a clear example of a theory that respects harmonic bounding. 

Nonstochastic HG also respects harmonic bounding, provided that negative weights are 

prohibited. Such weights turn constraint violations into rewards (Keller 2000:314), 

reversing harmonic bounding relationships (Pater 2009). This is illustrated in (2) and (3) 

below, in which the candidate Bounder always defeats Bounded, which has a superset of 

its violations. Since the constraint INDIFFERENT penalizes the two candidates equally, any 

positive weight assigned to PREFERBOUNDER will ensure the defeat of Bounded.  

(2) Nonstochastic HG: harmonic bounding holds when weights are positive 

 
INDIFFERENT (w = 6) PREFERBOUNDER (w = 0.5) Harmony 

 Bounder  1 
 

6 

     Bounded 1 1 6.5 

 

If, in contrast, PREFERBOUNDER’s weight is negative, as in (3), the violation becomes a 

credit for the candidate Bounded, and this candidate will win, contrary to our original 

intent. (For the case of zero-weighted PREFERBOUNDER, which creates a tie, see section 

4.1.2 below.) 

(3) Nonstochastic HG: harmonic bounding fails if weights can be negative 

 
INDIFFERENT (w = 6) PREFERBOUNDER (w = −0.5) Harmony 

     Bounder 1 
 

6 

 Bounded 1 1 5.5 

 

Turning to NHG, we find that it is not enough simply to require the base weights to 

be positive, since even when this is so, the perturbed weight may be negative. This, too, 

defeats harmonic bounding: in the case of (2), noise will often cause PREFERBOUNDER to 

bear a negative perturbed weight, yielding a positive probability for Bounded. This 

scenario is shown in tableau (4), which includes the noise factors and the computed 

probabilities. 
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(4) Failure of harmonic bounding in one version of Noisy Harmonic Grammar 

 
INDIFFERENT (w = 6 + 𝜀1) PREFERBOUNDER (w = 0.5 + 𝜀2) Harmony Probability 

Bounder 1 
 

6 + 𝜀1 0.691 

Bounded 1 1 6 + 𝜀1 +  

0.5 + 𝜀2 

0.309 

 

In short, if harmonic bounding is to be maintained, the theory is in need of some repair to 

preclude this scenario.  

To this end, Boersma and Pater (2016), following Keller 2000, suggest that weights 

that have been perturbed into the negative zone should undergo clipping, receiving by fiat 

the value zero instead of the assigned negative value; see also Magri 2015, addressing 

learnability for clipping. We agree that clipping can help enforce harmonic bounding, but 

it is insufficient on its own; observe that in (4), clipping a negative perturbed weight for 

PREFERBOUNDER to zero would create a tie between the two candidates, each receiving 

the Harmony score 6 + 𝜀1. Hence something needs to be said about how to deal with ties 

in NHG.  

Boersma and Pater’s suggestion is that when a tie occurs, the winner should be 

picked at random from among the tied candidates. This is in one respect a sensible 

choice, since it helps generate incorrect winners that can guide the learning of constraint 

weights; see Jesney and Tessier 2011. However, it does not solve the harmonic bounding 

problem. In (4), PREFERBOUNDER will go below zero 0.309 of the time when outputs are 

derived. Assuming clipping, these cases will result in a tie. Then, assuming the random-

selection method of tie resolution, the candidate Bounded will be picked 0.309/2 ≈ 0.154 

of the time. The harmonic bounding problem remains, for we have only halved the 

probability of the Bounded candidate rather than reduced it to zero.  

We propose instead that ties should result in trial cancellation: when an evaluation 

yields tied winners, no output is chosen, and we move on to the next trial. Thus all cases 

in which a harmonically bounded candidate might win are excluded: in (4) either 

PREFERBOUNDER is perturbed to a positive value, so Bounder wins in the ordinary way, 

or PREFERBOUNDER is perturbed to a negative value, in which case clipping creates a tie, 

which invokes trial cancellation.8 In the latter case, the evaluation must be attempted 

anew until trial cancellation is not triggered. In the case of (4), there will be plenty of 

                                                 
8 If PreferBounder is perturbed exactly to zero, trial cancellation is again invoked, and harmonic 

bounding is preserved. 
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cases over time in which PREFERBOUNDER is perturbed to a positive weight, yielding a 

verdict. The set of uncancelled trials will respect harmonic bounding.9 

In sum, we suggest that NHG can be prevented from generating harmonically 

bounded winners by deploying a combination of clipping and trial cancellation.10 We will 

explore the consequences of adopting (or not adopting) these procedures, as we turn to 

our main topic, the effects of zero-weighted constraints. 

4. Assessing the Effects of Zero-Weighted Constraints  

Consider now an augmented version of tableau (1): we add an additional Input2 as well 

as a zero-weighted constraint to be called MAJORITYHELPER. MAJORITYHELPER is 

violated by the Minority candidate in Input2 only. Intuitively, MAJORITYHELPER is an 

“ally” of PREFERMAJORITY, because with a sufficiently positive weight it would indeed 

help the Majority candidate. However, our focus is on the special case where 

MAJORITYHELPER bears a weight of zero. The scenario is given in (5). 

(5) Assessing the effect of a zero-weighted constraint aligned with PREFERMAJORITY 

  
PREFERMAJORITY 

(w = 4.95 + 𝜀1) 

PREFERMINORITY 

(w = 4 + 𝜀2) 

MAJORITYHELPER 

(w = 0 + 𝜀3) 

Harmony P 

Input1 Majority 
 

1 
 

4 + 𝜀2 .75 

 
Minority 1 

  
4.95 + 𝜀1 .25 

Input2 Majority 
 

1 
 

4 + 𝜀2 ? 

 
Minority 1 

 
1 4.95 + 𝜀1 

+ 𝜀3 

? 

 

As in (1), the weights of PREFERMAJORITY and PREFERMINORITY will result in 75% 

probability for the Majority candidate for Input1. These weights are sufficiently high that 

the effect of clipping is negligible for these constraints. We now calculate the 

probabilities for Input2; as it turns out, the outcome depends on whether we employ 

                                                 
9 One other conceivable case is if the two candidates have exactly the same violations, which would 

lead to an infinite loop as trial cancellation is repeatedly invoked. We assume that in such cases the 

candidates should be assigned equal probability by fiat. Note that these cases do not involve harmonic 

bounding. 

10 The approach described here could be described as “sample-then-clip.” An alternative pointed out 

by an LI reviewer is “clip-then-sample”: the perturbed weights are sampled from a normal distribution 

truncated at zero. Under this approach, Trial Cancellation is unnecessary. The effects described in section 

4.1 get stronger, because the perturbed weights clipped to zero under sample-then-clip never arise.  
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clipping or not (hence the question marks in (5)). The two cases must be considered 

separately.  

4.1 Clipping Imposed: Zero Weights, but Non-Zero Effects 

Under clipping we have determined that the probability of the Majority candidates in (5) 

are 0.75 for Input1 and 0.812 for Input2. Thus, even though MAJORITYHELPER has a zero 

weight, it has a modest empirical effect (per Flemming 2021); the zero weight does not 

turn it off. 

Why should this be so? The reason becomes apparent if one examines the perturbed 

weights assigned to MAJORITYHELPER across a series of trials. Because we are assuming 

clipping, on about half of the trials its weight will be zero and the outcome will be 

determined by the other constraints. On the other half of the trials, MAJORITYHELPER will 

have a positive weight, which will boost the Harmony penalty against the Minority 

candidate, thus raising the Majority candidate’s probability. In other words, clipping 

creates a weight distribution for MAJORITYHELPER that consists exclusively of non-

negative values. In this sense, MAJORITYHELPER was not really zero-weighted in the first 

place. 

4.1.1 Effect Size 

For purposes of actual linguistic analysis, it is useful to know how large the effect just 

described can be; if these effects are so small as to be empirically indetectible, there is 

little point in changing the theory to avoid them. In fact, we find that in (5) if 

MAJORITYHELPER is violated just once, the largest effect is about 0.106, occurring when 

PREFERMAJORITY is outweighed by PREFERMINORITY by 0.058. If MAJORITYHELPER can 

be violated more than once, the effect can become very large, approaching 0.5; this is 

found where PREFERMINORITY is weighted far above PREFERMAJORITY and 

MAJORITYHELPER is violated a great number of times, placing P(Majority) near zero for 

Input1 and near 0.5 for Input2. These effects are illustrated in sections 4 and 5 of the 

Supplementary Materials.  

4.1.2 More on effect size: the case of harmonic bounding 

Moving beyond the scenario of (5), we note a different case where the effect of a zero-

weighted constraint is as large as 0.5, namely under conditions of harmonic bounding. In 

(6) we give a revised version of (4) in which the weight of PREFERBOUNDER is set at 

zero. With clipping and trial cancellation in effect, the probability of the Bounded 

candidate comes out as zero. Had PREFERBOUNDER not been in the grammar, then the 

candidates Bounding and Bounded would have received 50/50 probability, per fn. 9. 
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(6) Harmonic bounding resulting from a zero-weighted constraint 

 
INDIFFERENT  

(w = 6 + 𝜀1) 

PREFERBOUNDER (w = 0 + 𝜀2) Harmony  P 

 Bounding 1 
 

6 + 𝜀1 1 

     Bounded 1 1 6 + 𝜀1 + 𝜀2 0 

 

The effect of PREFERBOUNDER arises as follows. Whenever 𝜀2 is negative, it triggers 

clipping, so that the perturbed weight of PREFERBOUNDER is zero. This creates a tie, and 

the trial is canceled. When 𝜀2 is zero, again there is a tie and the trial is canceled. When 𝜀2 

is positive, the Bounding candidate wins; hence, it wins in all non-canceled trials. The 

example is the clearest possible illustration of the point that giving a constraint a zero 

weight is not the same as removing it from the grammar. 

4.2 Clipping Not Imposed: Violators are Rewarded 

We return to the schematic example (5), which was intended to test the effects of zero-

weighted MAJORITYHELPER. We just showed that when clipping is in effect, 

MAJORITYHELPER helps the Majority candidate. In contrast, when clipping is turned off, 

it emerges that MAJORITYHELPER actually ends up hurting the Majority candidate for 

Input2; this candidate receives a probability of 0.709, somewhat lower than the 0.750 

obtained for Input1. In other words, absent clipping, NHG predicts that the effect of a 

constraint can be the opposite of what the analyst may have intended in formulating it. 

To understand how this reversal can arise, we return to the basic mechanisms of 

NHG. In figure 1 we showed how the two overlapping probability distributions for the 

perturbed weights of PREFERMINORITY and PREFERMAJORITY result in a 0.75 probability 

for the Majority candidate of Input1. For Input2, the effect of MAJORITYHELPER on the 

probability of the Minority candidate must also be included. To do this, we calculate the 

probability distribution of its Harmony penalty, which can be read off of tableau (5) as 

follows: 

(7) Probability distribution of Harmony value for tableau (5), Input2, Minority candidate 

H(Minority)     =  [w(PREFERMAJORITY) + 𝜀1] + [w(MAJORITYHELPER) + 𝜀3]  

 =  [ 4.95 + 𝜀1]  + [ 0 + 𝜀3] 

 

This probability distribution is the sum of two Gaussians, one of them arising from 

PREFERMAJORITY, the other from MAJORITYHELPER. The sum of two Gaussians x and y 

is also a Gaussian, whose mean is the sum of the means (here, 4.95 + 0), and whose 

standard deviation is obtained from the formula √σ𝑥
2 +  σ𝑦

2; in this case √12 +  12 ≅ 

1.414. This Harmony distribution can be compared with the one for the Minority 
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candidate for Input1, which has the same mean (4.95), but a standard deviation of just 1. 

Thus, MAJORITYHELPER is in effect a source of “pure noise,” which broadens the 

probability distribution of the Harmony penalty assigned to the Minority candidate. This 

is shown in figure 2, where the original “unbroadened” distribution is shown with a 

dotted line. 

Figure 2. MAJORITYHELPER broadens the probability distribution of Harmony  

 

It is this broadening that increases the number of cases in which the perturbed 

Harmony of the Minority candidate is less than that of the Majority candidate, leading to 

the counterintuitive shift. In particular, the left tail of the combined distribution reaches 

deeper into the territory of the Majority candidate’s distribution, resulting in more 

reversed outcomes, so that across trials the Minority candidate becomes more probable. If 

MAJORITYHELPER is violated multiple times, the Harmony distribution of the Minority 

candidate becomes even broader, and the observed effect is increased.11  

As before, we check what is the largest possible effect. When MAJORITYHELPER is 

violated once, the largest reversed effect occurs when PREFERMAJORITY is weighted 1.56 

higher than PREFERMINORITY; this changes Majority’s probability from 0.865 to 0.816, 

i.e. by 0.049. When MAJORITYHELPER is violated a large number of times, the maximum 

probability reduction approaches 0.5, as shown in the Supplementary Materials. 

Lastly, we note that the effects observed in this section are found even when the 

weight of MAJORITYHELPER is not actually zero, but merely small. To give an example, 

we have calculated that for (5), if there is no clipping, MAJORITYHELPER has a reversed 

                                                 
11 For more on the broadening of Harmony distributions and their empirical consequences, see 

Flemming 2021, 2022. 
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effect with weights ranging from zero to 0.214; above this value it helps the Majority 

candidate (see Supplementary Materials). 

5. Discussion 

5.1 Empirical Predictions 

To review, the discussion above establishes that zero-weighted constraints in NHG can 

be non-inert, and this non-inertness takes two forms. If clipping is assumed, a zero-

weighted constraint can reduce the probability of candidates that violate it, to a degree 

that varies according to other factors. If clipping is not assumed, a zero-weighted 

constraint can increase the probability of candidates that violate it, again with variation 

depending on other factors. We consider next what language data might bear on the 

predictions made above. We offer two cases. 

(a) Reversal. NHG without clipping predicts that there should be constraints that 

assess a penalty when they are strong but provide a reward when they are weak. For 

Markedness, this means that the very same configuration can be evaluated anywhere 

from slightly good to very bad. A Faithfulness constraint can encourage faithfulness 

when strong, or discourage Faithfulness when weak. We know of no cases of either kind, 

and are therefore skeptical of NHG without clipping. 

(b) No turn-off. Even with clipping in place, NHG still predicts that zero-weighted 

constraints cannot be turned off; they alter output probabilities by non-trivial amounts. 

This prediction interacts in an intriguing way with the hypothesis of the Universal 

Constraint Set (Prince and Smolensky 1993:2), for it implies that certain frequency 

distributions should never occur. For instance, suppose that the constraint *ROLO (no 

nonhigh rounded vowels; Kaun 1995, 2004) is in the universal constraint set. Then 

(barring the introduction of ad hoc constraints) one cannot describe a system in which 

optional rounding harmony applies with equal frequency to low vowels (OA → OO) and 

high vowels (UI → UU). Giving *ROLO a weight of zero will not accomplish this.  

5.2 Alternatives  

The potential predictions just outlined distinguish NHG from alternative approaches to 

constraint-based stochastic grammar. While this squib is not the place for extended 

theory-comparison,12 we can address how these alternatives compare with NHG 

regarding the issues considered here. The points of comparison are (a) whether the theory 

                                                 
12 Some of the literature contributing to the debates is the following. MaxEnt, for: Hayes and Wilson 

2008, Zuraw and Hayes 2017, Hayes and Schuh 2019, Smith and Pater 2020, Flemming 2021, Hayes 2022; 

against: Anttila and Magri 2018, Anttila, Borgeson, and Magri 2019, Kaplan 2021. Stochastic OT, for: 

Boersma and Hayes 2001; against: Keller and Asudeh 2002, McPherson and Hayes 2016, Zuraw and Hayes 

2017; Classical NHG, for: Zuraw and Hayes 2017, Kaplan 2021; against: Flemming 2021, Hayes 2022; 

Exponential NHG: underexplored, no literature after Boersma and Pater 2016 of which we are aware. 



 

 11  

assigns zero probability to harmonically-bounded candidates, (b) whether zero-weighted 

constraints (or the closest analog) are turned off, (c) whether there are “reversal” effects 

as defined above, and (d) whether a zero-weighted constraint can act as a harmonic 

bounder. We cover the behaviors of three theories; for reasons of space we cannot present 

full demonstrations of these points here, though they are straightforward. 

MaxEnt grammars use a mathematical formula (Goldwater and Johnson 2003, ex. 

(1)) that translates Harmony into probability. In this theory: (a) harmonically bounded 

candidates can receive positive probability (though never the highest probability); (b) 

Giving a constraint zero weight turns it off completely, hence (c) the reversal syndrome 

described above cannot occur; and (d) zero-weighted constraints are likewise totally 

ineffective even in a harmonic bounding configuration. 

Exponential NHG (Boersma and Pater 2016) adds a further step to the Harmony 

computation: base weights are perturbed, and the result is then exponentiated, which 

always creates a positive value, even if the perturbed weight was negative. Therefore, the 

candidate competition never references negative weights. Properties: (a) harmonic 

bounding is respected. (b) No constraint is ever turned off, though the influence of a 

constraint on the outcome (cf. (5)) can approach zero as its weight tends toward −∞. (c) 

Since exponentiated weights are never negative, the reversal syndrome cannot arise. (d) 

Even constraints with highly negative base weights can create harmonic bounding. 

Stochastic OT (Boersma 1998) has a different structure from the other theories: 

constraint-specific “ranking values” are perturbed and sorted to create classical OT 

rankings, each employed for just one evaluation time. With respect to properties (a)-(d), 

the theory behaves qualitatively just like Exponential NHG. 

In sum, there are multiple frameworks currently under study that differ in the 

predictions about properties (a)-(d). In principle future empirical research can use these 

properties to help distinguish among these frameworks, as well as frameworks yet to be 

devised. 
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