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The rise and success of large language models undermines virtually every strong
claim for the innateness of language that has been proposed by generative linguis-
tics. Modern machine learning has subverted and bypassed the entire theoretical
framework of Chomsky’s approach, including its core claims to particular insights,
principles, structures, and processes. I describe the sense in which modern lan-
guage models implement genuine theories of language, including representations
of syntactic and semantic structure. I highlight the relationship between contem-
porary models and prior approaches in linguistics, namely those based on gradient
computations and memorized constructions. I also respond to several critiques of
large language models, including claims that they can’t answer “why” questions,
and skepticism that they are informative about real life acquisition. Most notably,
large language models have attained remarkable success at discovering grammar
without using any of the methods that some in linguistics insisted were necessary
for a science of language to progress.

Introduction

After decades of privilege and prominence in linguistics, Noam Chomsky’s ap-
proach to the science of language is experiencing a remarkable downfall. The
story is, in part, a cautionary tale about what happens when an academic field
isolates itself from what should be complementary endeavours. Chomsky’s ap-
proach and methods are often argued to be problematic (e.g. Harris 1993, Pullum
1989, Behme 2012, Postal 2012, Behme 2014), but it is yet to be widely recognized
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just how the underlying ideas have been undermined by recent computational
advances.

The state of the art in virtually all computational language tasks makes use
of deep neural networks (LeCun et al. 2015), often neural networks called trans-
formers (Vaswani et al. 2017, Brown et al. 2020, Bommasani et al. 2021). These are
models of text that are trained on huge datasets of internet-based text to predict
upcoming linguistic material (often at a sub-word but supra-character encoding).
Several advances have allowed these models to become wildly successful. First,
we have become able to train them on massive data sets. This is in part due to
advances in computing (e.g. computing derivatives in arbitrary models) and in
part the availability of huge collections of text from the internet. A typical lan-
guagemodel might be trained on hundreds of billions of tokens, estimated to cost
millions of dollars in energy alone. Second, the model architecture flexibly deals
with nonlocal dependencies and allows the prediction of a word to potentially
depend on material that is far away. The key consequence is that leading mod-
els are able to generate not only grammatical sentences, but entire discourses,
scripts, explanations, poems, etc. This pursuit has been led in recent years by AI
companies (Ahmed et al. 2023).

A nice example can be provided by the following, produced by ChatGPT when
prompted with only the text in bold. All examples in this paper show the first
response generated by ChatGPT to these queries by the author in early 2023.
Good queries often focus on weird or unusual requests in order to ensure that
the output is well outside of the training set.

Write a short story explaining how an ant could sink an aircraft carrier.
Once upon a time, in a far-off land, there lived a colony of ants. These ants were
not like any ordinary ants, they were highly intelligent and had the ability to
communicate with one another telepathically. They had been observing the hu-
mans and their ways for a long time, and they had become fascinated by the
massive aircraft carriers that the humans built and sailed across the seas.
One day, the leader of the ant colony, a wise old ant named Alex, had an idea.
He called all the ants together and said, ”My friends, we have the ability to think
and communicate like the humans do. We can also work together as a team to
achieve great things. I propose that we build a ship of our own, a ship that can
sink the human’s aircraft carrier.”
The other ants were shocked and amazed by Alex’s proposal, but they were also
excited by the idea. They immediately set to work, gathering twigs and sticks
from the forest floor, and using their own tiny bodies to weave them together.
Months passed, and the ants’ ship grew bigger and bigger. It was not as big as

2



1 Modern language models refute Chomsky’s approach to language

an aircraft carrier, but it was large enough to hold many ants and was heavily
armed with miniature torpedoes and cannons.
Finally, the day arrived when the ant ship was ready. The ants climbed aboard
and set sail towards the nearest aircraft carrier. As they approached the carrier,
the humans were shocked to see such a small ship coming towards them. They
laughed and jeered, thinking that the ants’ ship was no threat to them.
But the ants were not to be underestimated. They had been studying the human’s
ship, and they knew its weak spots. As they neared the carrier, they launched
their miniature torpedoes, which hit the carrier directly in its vulnerable areas.
The carrier began to sink, and the humans panicked.
In the end, the ant ship emerged victorious, having successfully sunk the massive
aircraft carrier. The ants returned home to their colony as heroes, and their story
became a legend that was passed down through the generations.
And the human learned to never underestimate the power of collective intelli-
gence and unity.
It is important to note that the story above is a fictional tale and it is impossible
for an ant to sink an aircraft carrier, as in reality the size, strength and weapon
capability of an aircraft carrier would far exceed the capability of a group of ants.

Ignore whatever theoretical persuasions you have for a moment and just recog-
nize how remarkable that response is. A coherent and grammatical story unfolds
from a simple prompt, even though the requested scenario strains plausibility
and probability. The response tackles the core essence of the question to provide
a compelling story about how an ant might sink an aircraft carrier. The answer
is outside of the training set. In fact, after “Once upon a time, in a far-off land,
there lived a colony of ants,” a Google search returns no matching strings on the
entire internet.

Anyone who has dealt in simpler language models like 𝑛-grams or context-
free grammars will be impressed that this model is capable of incorporating not
just longer dependencies within sentences, but across sentences. It also creates
complex structures, with e.g. multiple embedded clauses, prepositional phrases,
conjunctions, etc; it uses pronouns, determiners, quantifiers, adjectives, etc. in re-
alistic ways; this and similar models have few apparent problemswith agreement
or pronoun reference (Gulordava et al. 2018, Goldberg 2019). Any one of these
abilities has been the topic of countless dissertations in linguistics. Beyond that,
such models succeed on tasks that formal linguistic theories haven’t yet dreamed
of—like interpreting the semantics of the words in question, maintaining not just
coherent sentences but entire coherent discourses. Such models exhibit over 90%
accuracy in Winograd-style questions (Kocijan et al. 2020, 2022), which require
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interpreting language in world contexts (e.g. “The trophy doesn’t fit in the brown
suitcase because it is too large. What is too large?”). What is clear is that these
models use language in a way that is remarkably human (Mahowald & Ivanova
et al. 2023).

This kind of example hearkens back to Turing 1950, who considered asking
an artificial intelligence to write a sonnet on the topic of “The Forth Bridge”1,
and suggested that success in solving such tasks would demonstrate many key
aspects of humanlike intelligence. Contemporary language models can do much
more—they can write raps, explain things, imagine conversations, create a mash-
up script of Seinfeld and Star Trek, etc. They are aware of even sub-word prop-
erties like rhymes:

Come up with a limerick about syntactic island constraints in linguistics.
On syntactic islands, we must be precise,
For constraints on movement can be quite nice.
But when the constraints are breached,
Our grammars are impeached,
And our linguistic analyses pay the price.

And they are aware of style:

Explain the fundamental theorem of arithmetic in the style of Donald Trump.
Well, let me tell you folks, the fundamental theorem of arithmetic is a really great
theorem, it’s tremendous, and it’s all about prime numbers. Believe me, I know a
lot about prime numbers. They’re very important, very powerful, very beautiful
numbers.
Now, the fundamental theorem of arithmetic tells us that every whole number
greater than 1 can be expressed as a unique product of prime numbers. That’s
right, every single number can be broken down into its prime factors, and there’s
only one way to do it. It’s like a code, a secret code that only primes can unlock.
This is a really amazing theorem, folks, and it’s incredibly useful. It’s used in
cryptography, number theory, and all sorts of other fields. It’s a cornerstone of
mathematics, and it’s something that we should all be very proud of.
So, in conclusion, the fundamental theorem of arithmetic is a fantastic theorem,
it’s tremendous, and it’s all about prime numbers. I love prime numbers, they’re
the best. And this theorem tells us that every number can be broken down into
primes in a unique way. It’s a great thing, believe me

1According toWikipedia, a cantilevered rail bridge from 1890 in Scotland that was voted in 2016
to be Scotland’s greatest human-made wonder, apparently beating out Ewan McGregor.
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Note that this specific example was not in the model’s training set—there is no
possibility that Trump understands prime numbers. However information about
the fundamental theorem of arithmetic was, as was the speech style of Donald
Trump. “Believe me, I know a lot about prime numbers” is probably not some-
thing Trump has actually said, but certainly something he would say.

Examples like these show why dismissals from cognitive scientists like Gary
Marcus2 that the models are just the same as “autocomplete” systems on your
phone are far too shallow. The model is able to put together things in its training
in new ways that maintain a considerable amount of linguistic and conceptual
coherence. That requires more than merely guessing things it has seen before—
it requiresmodeling the dynamics of language. If models only repeatedwhat they
had seen before, they would not be able to generate anything new, particularly
complex sentence structures that are grammatical and coherent. It is somewhat
difficult to convey how remarkable the models are currently. You just have to
interact with them. They are imperfect, to be sure, but my qualitative experience
interacting with them is like talking to a child, who happened to havememorized
much of the internet.

How this magic happens

These tools are not just impressive, they are philosophically important. The rea-
son they are important is that they succeed by following a very particular ap-
proach: they are trained only on text prediction.3 This means that the models
form probabilistic expectations about the next word in a text and they use the
true next word as an error signal to update their latent parameters. This idea is
one that dates back to at least Elman 1990, who showed how training a neural
network on text prediction could lead it to discover key pieces of the underlying
linguistic system.

Modern models are a resounding scientific victory for Elman’s idea. But while
modern models inherit his general setup, advances have added a few critical dif-
ferences. Probably the most important is that modern models include an atten-
tional mechanism that allows the next word in sequence to be predicted from
some previous far in the past. For example, in the ant story above, when it says
that “The other ants were shocked and amazed by Alex’s...”, it retrieves the name

2https://garymarcus.substack.com/p/nonsense-on-stilts
3The underlying neural network weights are typically optimized in order to predict text, but
note that many applications of these models also use human feedback to fine-tune parameters
and try to tamp down the horrible things text on the internet leads models to say.
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“Alex” from dozens of words prior. This likely is the key property that distin-
guishes large language models from the most popular earlier models. An n-gram
model, for example, would estimate and use a conditional probability that de-
pends on just the preceding few words (e.g. 𝑛 = 2, 3, 4, 5); context-free grammars
make independence assumptions that keep lexical items from influencing those
far away. Not only do large language models allow such long-distance influences,
but they allow them to take a relatively unconstrained form and so are able to in-
duce functions which, apparently, do a stellar job at in-context word prediction.

A second key feature of these models is that they integrate semantics and syn-
tax. The internal representations of words in these models are stored in a vector
space, and the locations of these words include not just some aspects of mean-
ing, but properties that determine how words can occur in sequence (e.g. syn-
tax). There is a fairly uniform interface for how context and word meaning pre-
dicts upcoming material—syntax and semantics are not separated out into dis-
tinguished components in the model, nor into separate predictive mechanisms.
Because of this, the network parameters these models find blend syntactic and se-
mantic properties together, and both interact with each other and the attentional
mechanism in nontrivial ways. This doesn’t mean that the model is incapable of
distinguishing syntax and semantics, or e.g. mirroring syntactic structures re-
gardless of semantics (see examples below), but it does mean that the two can
be mutually informative. A related aspect of the models is that they have a huge
memory capacity of billions to trillions of parameters. This allows them to mem-
orize idiosyncrasies of language, and in this way they inherit from a tradition by
linguists who have emphasized the importance of constructions (Goldberg 1995,
Jackendoff 2013, Goldberg 2006, 2003, Tomasello 2000, McCauley & Christiansen
2019, Tomasello 2005, Edelman & Waterfall 2007) (see Weissweiler et al. 2023 for
construction grammar analyses of large language models). Such models also in-
herit from the tradition of learning bottom-up, from data (e.g. Bod et al. 2003,
Solan et al. 2005), and computational work which explicitly connects syntax and
semantics (Steedman 2001, Siskind 1996, Ge & Mooney 2005, Kwiatkowski et al.
2012, Liang et al. 2009).

A good mental picture to have in mind for how massively over-parameterized
models like these work is that they have a rich potential space for inferring hid-
den variables and relationships. Hidden (or latent) variables have been one of the
key aspects of language that computational and informal theories alike try to
capture (Pereira 2000, Linzen & Baroni 2021). In the middle of a sentence, there
is a hidden variable for the latent structure of the sentence; in speaking an am-
biguous word, we have in mind a hidden variable for which meaning we intend;
throughout a discourse we have in mind a larger story arc that only unfolds
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across multiple sentences. The formalisms of linguistics attempt to characterize
these hidden variables too. But what large language models do is infer likely
hidden structure because that structure permits them to better predict upcom-
ing material. This makes them conceptually similar to embedding theorems in
mathematics (Packard et al. 1980, Takens 1981, Ye & Sugihara 2016), which show
that sometimes the full geometry of a dynamical system can be recovered from
a low-dimensional projection of its states evolving in time. Linguistic corpora
are a low-dimensional projection of both syntax and thought, so it is not implau-
sible that a smart learning system could recover at least some aspects of these
cognitive systems from watching text alone (Piantadosi & Hill 2022) .

The structures present in large language models can be seen in detailed anal-
yses, where as the model generates text after training, its internal states rep-
resent latent aspects of syntactic structure and semantic meaning (Manning et
al. 2020, Futrell et al. 2019, Linzen & Baroni 2021, Pavlick 2022). The structure
of the model’s internal representation states and attentional patterns after train-
ing comes to capture tree structures with strong similarities to human-annotated
parse trees (Manning et al. 2020), and the degree towhich amodel is tree-structured
even predicts its generalization performance (Murty et al. 2022). The models
seem to perform well on constructions involving tracking the right latent state,
like function words (Kim et al. 2019) and filler-gap dependencies (Wilcox et al.
2018). In fact, the internal processing structure of some models seems to sponta-
neously develop an intuitive pipeline of representing parts of speech, followed
by parsing, semantic analysis, etc. (Tenney, Das, et al. 2019, Liu et al. 2019).

All of this is possible because large language models develop representations
of key structures and dependencies, it’s just that these representations are pa-
rameterized in a way which is unfamiliar to linguistics. As argued by Baroni
2022, this means that language models should be treated as bona fide linguistic
theories. Specifically, a space of possible theories is parameterized by the models
and compared to data to find which theory is best in a formal sense. To make
one version of the idea concrete, imagine a physicist who wasn’t sure whether
the law of gravitation force fell off with distance 1/𝑟 or distance squared 1/𝑟2.
To decide, the physicist might formulate a super-equation that captured both
possibilities, for instance,

𝐹(𝑟 , 𝛼) = 𝛼 ⋅ 1𝑟 + (1 − 𝛼) ⋅ 1𝑟2 .

By seeing which parameter 𝛼 best fits empirical data (e.g. measurements of forces
𝐹 and distances 𝑟 ), they are comparing these two theories: 𝛼 ≈ 1 means the for-
mer theory is right (since then 𝐹 = 1 ⋅ 1𝑟 + 0) and 𝛼 ≈ 0 means the latter (since
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𝐹 = 0+1⋅ 1𝑟2 ). When the data are stochastic, a good way to measure howwell any
particular 𝛼 does is to see what probability it assigns to the data. We can make a
principled choice between parameters—and thus theories—by choosing the one
that makes the data most likely (maximum likelihood principle), although often
including some prior information about plausible parameter values or penalties
on complexity (e.g. Bayesian estimation). Such a physicist might then find that
the best parameter for capturing data has 𝛼 ≈ 0, supporting the second theory.4

In this case, inferring parameters is comparing theories: in computational mod-
eling, there is no bright line between “just” fitting parameters and advancing
theory.

Something very similar happens with many machine learning models, the
main difference is that in these models, we don’t explicitly or intentionally “build
in” the theories under comparison (1/𝑟 and 1/𝑟2). There exist natural bases from
which you can parameterize essentially any computational theory.5 Parameter
fitting in these models is effectively searching over a huge space of possible the-
ories to see which one works best, in a well-defined, quantitative sense.

The bases required are actually pretty simple. Polynomials are one, but neural
networks with sigmoid activations are another: fitting parameters in either of
these can, in principle, realize countless possible relationships in the underlying
domain. The challenge is that when these universal bases are used, it requires
extra scientific work to see and understand what the parameters mean. Just to
illustrate something roughly analogous, if we happened to write the above equa-
tion in a less transparent way,

𝐹(𝑟 , 𝛼) = 𝛼 ⋅ (𝑟 − 1) + 1
log ((𝑒𝑟 )𝑟)

Then it might take somework to figure out which 𝛼 values correspond to 1/𝑟 and
which to 1/𝑟2. Squint just a little and you can imagine that instead of algebra, we
had a mess of billions of weighted connections between sigmoids to untangle
and interpret. It becomes clear that it could be hard to determine what is going
on, even though the theory is certainly in there.

In fact, we don’t deeply understand how the representations these models cre-
ate work (see Rogers et al. 2021). It is a nontrivial scientific program to discover
how their internal states relate to each other and to successful prediction. Re-
searchers have developed tools to “probe” internal states (e.g. Belinkov & Glass

4For decades, other fields have used statistical learning models that take empirical data and
infer laws (Koza 1994, Langley et al. 1983, Schmidt & Lipson 2009, Udrescu & Tegmark 2020).

5Up to the capacity of the network.
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2019, Tenney, Xia, et al. 2019, Kim et al. 2019, Linzen & Baroni 2021, Warstadt
& Bowman 2022, Pavlick 2022) and determined some of the causal properties
of these models. At the same time, this does not mean we are ignorant of all of
the principles by which they operate. We can tell from the engineering outcomes
that certain structures work better than others: the right attentional mechanism
is important (Vaswani et al. 2017), prediction is important, semantic representa-
tions are important, etc. The status of this field is somewhat akin to the history
of medicine, where people often worked out what kinds of treatments worked
well (e.g. lemons treat scurvy) without yet understanding the mechanism.

One thing that is interesting is how modern language models integrate var-
ied computational approaches to language, not by directly encoding them, but
by allowing them to emerge (Manning et al. 2020) from the architectural princi-
ples that are built-in (Elman et al. 1996). For example, the models appear to have
representations of hierarchy (Manning et al. 2020) and recursion, in the sense
that they know about e.g. embedded sentences and relative clauses. They also al-
most certainly have analogs of constraints, popular in approaches like harmonic
(Smolensky & Legendre 2006, Prince & Smolensky 1997) and model-theoretic
grammar (Pullum 2007, 2013). The models likely include both hard constraints
(like word order) and violable, probabilistic ones (Rumelhart & McClelland 1986).
They certainly memorize some constructions (Goldberg 1995, Jackendoff 2013,
Goldberg 2006, 2003, Tomasello 2000, Edelman & Waterfall 2007). All of those
become realized in the parameters in order to achieve the overarching goal of
predicting text well.

The status of large language models as scientific theories

Many in language science see such models as at least relevant in some way to
the future (Bommasani et al. 2021, Baroni 2022, Pater 2019). After all, they are
the only models in existence that do a good job of capturing the basic dynamics
of human language. However, in virtue of being neural networks, their—at least
initial—state is are wholly unlike the rules and principles that have dominated
generative approaches to language. As described above, their parameters come to
embody a theory of language, including representations of latent state through a
sentence and a discourse. The exact same logic of tuning parameters to formalize
and then compare theories is found in other sciences, like modeling hurricanes
or pandemics: any set of assumptions will generate a distribution of predictions
and the assumptions are adjusted to make the best predictions possible. In this
way, a learning mechanism configures the model itself in the space of theories
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in order to satisfy the desired objective function. For hurricanes or pandemics,
this is as rigorous as science gets; for sequences of words, everyone seems to lose
their mind.

In discussing GPT-3 with Gary Marcus,6 for example, the most positive thing
Chomsky could say was that it has an “ability to mimic some regularities in data”,
followed quickly by “In fact, its only achievement is to use up a lot of California’s
energy”7. In another interview, he summarized that the models “have achieved
zero” in terms of our understanding of language. Chomsky et al. 2023 charac-
terized the models as useful “in some narrow domains” but hampered by “in-
eradicable defects” that made them “differ profoundly from how humans rea-
son and use language.” As was quickly pointed out online, several of the ex-
amples they brought up—like reasoning with counterfactuals or understanding
sentences “John is too stubborn to talk to”—current models actually get correct.
Chomsky et al. 2023 tilt at an imagined version of these models, while ignoring
the fact that the real ones so aptly capture syntax, a success Chomsky and others
have persistently claimed was impossible.

Part of why some generative linguists dismiss these models is that they are
seen as too unconstrained, and thus not explanatory. Writing to Marcus about
the models, Chomsky explains,

You can’t go to a physics conference and say: I’ve got a great theory. It
accounts for everything and is so simple it can be captured in two words:
“Anything goes.”

All known and unknown laws of nature are accommodated, no failures. Of
course, everything impossible is accommodated also.

This critique is a familiar rephrasing of his (and others’) comments on language
learning—essentially that one should not study an unconstrained system because
it will not explain why languages have the particular form that they do.8

But it is too coarse a gloss to dismiss modern language models as “anything
goes.” The reason is that not all “anything goes” models are equivalent. A three-
layer neural network is well-known to be capable of approximating any com-
putable function (Siegelmann & Sontag 1995). That’s also an “anything goes”

6https://garymarcus.substack.com/p/noam-chomsky-and-gpt-3
7One of the many limitations, concerns, and dangers (Bender et al. 2021, Bommasani et al. 2021)
for these models is that they consume a lot of energy. It’s estimated that these models take
around 1000 MWh, compared to CA’s daily generation of about 750, 000 MWh—so one model
takes about 1/750’th of one day of CA’s power.

8You have towonder how a physics conferencewould react to someone saying, following Lasnik
2002, “I’ve got a great theory. It accounts for everything: physical laws ‘might be a computa-
tionally perfect solution to the problem’ of how objects move.”
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model. But the three-layer network will not work well on this kind of text pre-
diction. Indeed, even some earlier neural network models, LSTMs, did not do as
well (Futrell et al. 2019, Marvin & Linzen 2018, Hu et al. 2020); architectures gen-
erally vary in howwell they capture computational classes of string patterns (e.g.
Delétang et al. 2022).9

We are granted scientific leverage by the fact that models that are equally pow-
erful in principle perform differentially. In particular, we may view each model
or set of modeling assumptions as a possible hypothesis about how themindmay
work. Testing howwell a model matches humanlike behavior then provides a sci-
entific test of that model’s assumptions. This is how, for example, the field has
discovered that attentional mechanisms are important for performing well. Simi-
larly, “ablation” experiments allow researchers to alter one part of a network and
use differing performance to pinpoint what principles support a specific behavior
(see Warstadt & Bowman 2022).

Even when—like all scientific theories—we discover how they fail to match
people in terms of mechanism or representation, they still are informative. Heed-
ing George Box’s advice that “all models are wrong, some are useful,” we can
think about the scientific strengths, contributions, and weaknesses of these mod-
els without needing to accept or dismiss them entirely. In fact, these models have
already made a substantial scientific contribution by helping to delineate what is
possible through this kind of assumption-testing: Could it be possible to discover
hierarchy without it being built in? Could word prediction provide enough of
a learning signal to acquire most of grammar? Could a computational architec-
ture achieve competence on WH-questions without movement, or use pronouns
without innate binding principles? The answer to all of these questions is shown
by recent language models to be “yes.”

Beyond that, the models embody several core desiderata of good scientific the-
ories. First, they are precise and formal enough accounts to be implemented

9Some also consider them not to be “scientific” theories because they are engineered. In an
interview with Lex Friedman, Chomsky remarked, “Is [deep learning] engineering, or is it sci-
ence? Engineering, in the sense of just trying to build something that’s useful, or science, in
the sense that it’s trying to understand something about elements of the world ... We can ask
that question, is it useful? Yeah, it’s pretty useful. I use Google Translator. So, on engineering
grounds it’s kinda worth having, like a bulldozer. Does it tell you anything about human lan-
guage? Zero, nothing.” In practice, there is often no clear line between engineering and science
because scientists often need to invent new tools to even formulate theories: was Newton’s cal-
culus engineering instead or science? The machinery of transformational grammar?While the
recent successes are due to engineering advances, researchers have been arguing for this form
of model as cognitive theories for decades.
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in actual computational systems, unlike most parts of generative linguistics. Im-
plementation permits us to see that these theories are internally consistent and
logically coherent. In virtue of being implemented, such models are able tomake
predictions. Just to list a few examples, the patterns of connectivity and activa-
tion within large language models appear to capture dependency structures in
words via attention (Manning et al. 2020). Their predictability measures can be
compared to psychological measures (Hoover et al. 2022, Shain et al. 2022). Trans-
former models “predict nearly 100% of explainable variance in neural responses
to sentences” (Schrimpf et al. 2021).

Unlike generative linguistics, these models show promise in being integrated
with what we know about other fields, specifically cognition and neuroscience.
Many authors interested in human concepts have investigated the vector rep-
resentations that the models form (Lake & Murphy 2021, Bhatia & Richie 2022).
Surprisingly or not, the languagemodel vectors appear to encode at least some as-
pects of semantics (Maas et al. 2011, Socher et al. 2013, Bowman et al. 2015, Grand
et al. 2022, Bhatia & Richie 2022, Piantadosi & Hill 2022, Dasgupta et al. 2022,
Petersen & Potts 2022, Pavlick 2022), building on earlier models that encoded
semantics in neural networks (e.g. Rogers, McClelland, et al. 2004, Elman 2004,
Mikolov et al. 2013). In fact, their semantic spaces can be aligned with the world
with just a few labeled data points, at least in simple domains (Patel & Pavlick
2022). The representations that they learn can also be transferred to some degree
across languages (Pires et al. 2019, Chi et al. 2020, Gonen et al. 2020, Papadim-
itriou & Jurafsky 2020, Papadimitriou et al. 2021, Hill et al. 2017), suggesting that
they are inferring something deep about meaning. Following leading theories
of concepts (Block 1986, 1998), the representations that language models learn
may be meaningful in the sense of maintaining nontrivial conceptual roles (Pi-
antadosi & Hill 2022), contrary to claims that meaning requires connections to
the real world (Bender & Koller 2020). Building on the “parallel and distributed”
tradition of cognitive modeling (McClelland et al. 1986), modern deep learning
models are also likely able to be integrated with neuroscientific theories (Mar-
blestone et al. 2016, Richards et al. 2019, Kanwisher et al. 2023, McClelland et al.
2020). In particular, they make predictions about neural data (e.g. Schrimpf et al.
2021, Caucheteux et al. 2022, Goldstein et al. 2022). Generative theories of syntax,
by contrast, suffer from a “chronic lack of independent empirical support” and
in particular have not been compellingly connected to neuroscience (Edelman
2019).10

10“Considering how central the existence of a brain basis for syntax is to Chomskian
(bio)linguistics, the scarcity of behavioral and brain evidence for syntactic structures is strik-
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Moreover, these models are empirically tested, especially as a theory of gram-
mar. Modern language models are state of the art in most natural language pro-
cessing domains (Bommasani et al. 2021). Approaches from generative syntax are
not competitive in any domain and arguably have avoided empirical tests of their
core assumptions (Edelman&Christiansen 2003). Several authors have sought to
quantitatively evaluate large languagemodels on the syntactic constructions that
motivate much of linguistic theory. Early results found some successes across a
variety of different architectures. For example, Warstadt, Singh, et al. 2019 evalu-
ated LSTM neural networkmodels on a corpus of more than ten thousand accept-
ability judgments published in the linguistics literature. They found that these
models perform about in the mid 70% range, compared to human reliabilities in
the upper 80% to 90% range. Warstadt, Cao, et al. 2019 look at BERT embeddings
on negative polarity items and finds “significant knowledge” of these structures
but that success depends heavily on how the structures are tested. More recently,
GPT models show high performance on filler-gap structures, including various
forms of islands (Wilcox et al. 2018, Wilcox et al. 2022).

Gauthier et al. 2020’s SyntaxGym is a standardized environment for testing
models against a number of standardized test suites that captures linguistic con-
structions and phenomena like clefts, center-embedding, cataphors, negative po-
larity items, filler-gap dependencies, subordination, agreement, etc. This project
builds on similarly exciting benchmarking efforts in neuroscience (Schrimpf et
al. 2020). As of the writing of this article, the state of the art for language was a
variant of GPT-2 that achieved nearly 90% on these constructions. SyntaxGym is
an ingenious resource that finally allows quantitative comparison of theories. A
general trend is that the more recent language models perform better, though it
appears that proponents of (e.g.) minimalist grammars have not compared theo-
ries on SyntaxGym. It is not clear there has ever been, in the history of science,
an implemented computational system that achieves such accuracy, but which
is dismissed by a field which has failed to develop even remotely comparable
alternatives.

In the spirit of considering large language models as scientific theories, it’s
worth also highlighting their limitations. One is that while they succeed at lan-
guagemodeling, they are currently less successful in domains that require reason-
ing or thinking (Mahowald & Ivanova et al. 2023, Lake & Murphy 2021, Barrett
et al. 2018, Collins et al. 2022). From an acquisition perspective, likely the most

ing. ... In comparison to the basic phrase structure, evidence supporting the reality of more far-
fetched theoretical constructs, such as movement, traces/copies, etc., remains elusive.” (Edel-
man 2019)
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important limitation of current models is that are they trained on truly titanic
datasets compared to children, by a factor of at least a few thousand (seeWarstadt
& Bowman 2022 for a comprehensive review of models in language acquisition).
Moreover, these datasets are strings on the internet rather than child-directed
speech. Work examining the scaling relationship between performance and data
size shows that at least current versions of the models do achieve their spec-
tacular performance only with very large network sizes and large amounts of
data (Kaplan et al. 2020). However, Zhang et al. 2020 show that actually most
of this learning is not about syntax. Models that are trained on 10 − 100 mil-
lion words “reliably encode most syntactic and semantic features” of language,
and the remainder of training seems to target other skills (like knowledge of the
world). This in fact matches in spirit analyses showing that syntactic knowledge
requires a small number of bits of information, especially when compared to se-
mantics (Mollica & Piantadosi 2019). Hosseini et al. 2022 present evidence that
models trained on developmentally-plausible amounts of data already capture
human neural responses to language in the brain.

Importantly, as Warstadt & Bowman 2022 outline, these models are in their
early stages of development, so their successes are likely to be more informative
about the path of children’s language acquisition than the models’ inevitable
limitations. Current models provide a lower-bound on what is possible, but even
the known state-of-the-art doesn’t characterize how well future models may do.
Our methods for training on very small datasets will inevitably improve. One
improvement might be to build in certain other kinds of architectural biases
and principles; or it might be as simple as finding better optimization or reg-
ularization schemes. Or, we might need to consider learning models that have
some of the cognitive limitations of human learners, as in Newport 1990’s “less is
more” hypothesis. Such questions inspire the current “The BabyLM Challenge”
(Warstadt et al. 2023), which aims to develop models capable of learning with
a developmentally-plausible amount of data (see Geiping & Goldstein 2022 for
training models with small amounts of compute resources). It is an interesting
scientific question whether low-resource, low-data learning is possible—I’ll pre-
register a prediction of yes, with small architectural tweaks.

The refutation of key principles

The success of large language models is a failure for generative theories be-
cause it goes against virtually all of the principles these theories have espoused.
In fact, none of the principles and innate biases that Chomsky and those who
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work in his tradition have long claimed necessary needed to be built into these
models (e.g. binding principles, binary branching, island constraints, empty cate-
gory principle, etc.). Moreover, these models were created without incorporating
any of Chomsky’s key methodological claims, like ensuring the models properly
consider competence vs. performance, respect “minimality” or “perfection,” and
avoid relying on the statistical patterns of unanalyzed data.

The next sections focus on a few examples.

Syntax is integrated with semantics

Chomsky and others have long emphasized the study of syntax as a separate
entity, not only from the rest of cognition but from the rest of language (see, e.g.
Chomsky 1957, Croft 1995, Newmeyer 1991, Adger 2018). Syntax in this approach
is not supposed to be reducible to general statistics between words11—exactly the
thing that large language models now provide.

Modern large language models integrate syntax and semantics in the under-
lying representations: encoding words as vectors in a high-dimensional space,
without an effort to separate out e.g. part of speech categories from semantic
representations, or even predict at any level of analysis other than the literal
word. Part of making these models work well was in determining how to encode
semantic properties into vectors, and in fact initializing word vectors via encod-
ings of distribution semantics from e.g. Mikolov et al. 2013 (Radford et al. 2019).
Thus, an assumption of the autonomy of syntax is not required to make models
that predict syntactic material and may well hinder it.

We can have fun with the colorless green ideas sentence (see Gulordava et al.
2018) commonly offered as an example that syntax functions separately from
semantics (and that transitional probability statistics are not enough.) The claim
that this is out of reach of statistical models has been shown to be wrong (Pereira
2000, Norvig 2012, Gulordava et al. 2018), but it is an interesting example nonethe-
less, in part because ChatGPT can not only learn relevant statistics, but it can
create—in this case surely mostly regurgitate—an explanation of why this sen-
tence is interesting:

Why is the sentence “colorless green ideas sleep furiously” interesting?
The sentence “colorless green ideas sleep furiously” is similarly interesting be-
cause it is a grammatically correct sentence, but it is semantically meaningless.
The words used in the sentence are arranged in a way that follows standard
syntax and grammar rules, but they do not form a coherent or understandable

11“There is no current theory of linguistics that takes human syntactic capacities to be reducible
to general probabilistic relations between elements of unanalysed data” (Adger 2018)
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concept. This makes it an interesting linguistic oddity and a popular example of
a nonsensical sentence.

We can test generalization with a follow-up:

Generate ten other sentences like this
Purple fluffy clouds dream wildly
Blue glittery unicorns jump excitedly
Orange sparkly penguins waddle energetically
Red shimmering elephants trumpet melodiously
Yellow dazzling lions roar majestically
Green glittery monkeys swing energetically
Pink sparkly giraffes walk gracefully
Black shiny kangaroos hop playfully
White glittery bears cuddle affectionately
Brown shimmering rabbits hop merrily.

This model successfully gets the referent of “this” (a sentence). The model re-
solves the ambiguity in “like this” to refer to the structure of the sentence—the
exact thing that statistical models weren’t even supposed to know! It generates
some but not entirely low-frequency bigrams in the sentence. We can note a
weakness in that it does not as readily generate wholly meaningless sentences
(“black shiny kangaroos” is rare but not impossible), likely because meaningless
language is rare in the training data. These results illustrate that even models
which integrate syntax and semantics are able to make syntactic generalizations
when appropriate. Syntax need not be autonomous in the underlyingmechanism
or model’s analysis in order to show this behavior.

Probability and information are central

A second point is that for these models, probability and information theory are
central. Chomsky has long been dismissive of probability, saying “it must be rec-
ognized that the notion of ‘probability of a sentence’ is an entirely useless one,
under any known interpretation of this term” (Chomsky 1969), a position he has
maintained for decades (Norvig 2012).12 Often when those who work in Chom-
sky’s tradition talk about probability models, they refer to simple things like
Shannon 1948’s 𝑛-gram models that count up sequential word co-occurrences

12Or in Chomsky 1957, “I think that we are forced to conclude that grammar is autonomous and
independent of meaning, and that probabilistic models give no particular insight into some of
the basic problems of syntactic structure.”

16



1 Modern language models refute Chomsky’s approach to language

and were long used in natural language processing tasks (Chen & Goodman 1999,
Manning & Schutze 1999). But by now, such models are decades out of date.

Newer models use probability to infer entire generating processes and struc-
tures, a common cognitive task and modeling domain (e.g. Tenenbaum et al. 2011,
Ullman et al. 2012, Lake et al. 2015, Goodman et al. 2011, Lake et al. 2017, Rule et al.
2020, Kemp & Tenenbaum 2008, Yang & Piantadosi 2022). Probability is central
for models because a probabilistic prediction essentially provides an error signal
that can be used to adjust parameters that themselves encode structure and gen-
erating processes. An analogy is that one might imagine watching a driver and
inferring the relevant structures and dynamics from observation—rules of the
road (which side you drive on), conventions (behavior of multiple cars at stop
signs), hard and soft constraints (don’t turn too hard), etc. Even a simple domain
like this faces many of the problems of undetermination seen in language, but is
is one where it is easy to imagine a skilled scientist or anthropologist discover-
ing the key elements by analyzing a mass of data. Something similar goes on in
machine learning, where a space of possible rules is implicitly encoded into the
parameters of the model (see above).

It is worth noting that most models which deal in probabilities actually work
with the log of probabilities, for reasons of numerical stability. Models that work
on log probabilities are actually working in terms of description length (Shannon
1948, Cover 1999): finding parameters which make the data most likely (max-
imizing probability) is the same as finding parameters which give the data a
short description (minimizing description length or complexity). Thus, the best
parameters are equivalent to scientific theories that do a good job of compressing
empirical data in the precise sense of description length. Far from “entirely use-
less,” probability is the measure that permits one to actually quantify things like
complexity and minimality.

Representations are continuous and gradient

The fact that predictions are probabilistic is useful because it means that the un-
derlying representations are continuous and gradient. Unlike work formalizing
discrete rules and processes, typical of generative linguistics (e.g. Chomsky 1956,
1995, Collins & Stabler 2016, Chomsky 1957, Pinker & Prince 1988), modern lan-
guage models do not use (at least explicit) rules and principles—they are based
in a continuous calculus that allows multiple influences to have a gradient effect
on upcoming linguistic items. The foundation for this approach was laid by early
modelers like Rumelhart & McClelland 1986, who argued for the key features of
today’s architectures decades ago, including that “cognitive processes are seen
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as graded, probabilistic, interactive, context-sensitive and domain-general.” (Mc-
Clelland & Patterson 2002).

Continuity is important because it permits themodels to use gradientmethods—
essentially a trick of calculus—to compute what direction to change all the pa-
rameters in order to decrease error the fastest. Tools like TensorFlow and Py-
Torch that permit one to take derivatives of arbitrary models have been a critical
methodological advance. This is not to say that these models end up with no dis-
crete values—after all, they robustly generate subjects before verbs when trained
on English. Similarly, the 𝐹(𝑟 , 𝛼) example might end up with a discrete answer
like 𝛼 ≈ 0. They key is that discreteness is a special case of continuous model-
ing, meaning that theories which work with continuous representations get the
best of both worlds, fitting discrete patterns when appropriate and gradient ones
otherwise. The success of gradient models over deterministic rules suggests that
quite a lot of language is based on gradient computation. The success actually
mirrors the prevalence of “relaxation” methods in numerical computing, where
an optimization problem with hard constraints is often best solved via a nearby
soft, continuous optimization problem. Thus, contrary to the intuition of many
linguists, even if we wanted a hard, discrete grammar out at the end, the best
way for a learner to get there might be via a continuous representation.

Learning succeeds in an unconstrained space

Perhaps most notably, modern language models succeed despite the fact that
their underlying architecture for learning is relatively unconstrained. This is a
clear victory for statistical learning theories of language (see Contreras Kallens et
al. 2023). These models are capable of fitting a huge number of possible patterns,
and while the principles of their architecture do constrain them to make some
patterns easier than others, the resulting systems are incredibly flexible. Despite
this lack of constraint, the model is able to figure out much of how language
works. One should not lose sight of the role that “poverty of the stimulus” argu-
ments have long played for generative linguists (e.g. Lasnik & Lidz 2016, Crain &
Pietroski 2001, Legate & Yang 2002, Wexler & Culicover 1980, Laurence &Margo-
lis 2001, Lasnik & Lidz 2016, Pearl 2022, Crain & Pietroski 2002). Poverty of the
stimulus claims have been compellingly challenged both on empirical grounds
about the nature of input, and through learning theories that acquire the relevant
structures from input (e.g. Pullum & Scholz 2002, Clark & Lappin 2010, Perfors
et al. 2011, Reali & Christiansen 2005, Solan et al. 2005). Large language models
essentially lay this issue to rest because they come with none of the constraints
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that others have insisted are necessary, yet they capture almost all key phenom-
ena (e.g. Wilcox et al. 2022). It will be important to see, however, how well they
can do on human-sized datasets, but their ability to generalize to sentences out-
side of their training set is auspicious for empiricism.

Recall that many of the learnability arguments were supposed to be mathe-
matical and precise, going back to Gold 1967 (though see Johnson 2004, Chater
& Vitányi 2007) and exemplified by work like Wexler & Culicover 1980. It’s not
that we don’t know the right learning mechanism; it’s supposed to be that it can
be proven none exists. Evenmy own generative syntax textbook from undergrad-
uate syntax purports to show a “proof” that because infinite, productive systems
cannot be learned, parts of syntax must be innate (Carnie 2021). Legate & Yang
2002 call the innateness of language “not really a hypothesis” but “an empirical
conclusion” based on the strength of poverty of stimulus arguments. Proof of the
impossibility of learning in an unrestricted space was supposed to be the power
of this approach. It turned out to be wrong.

The notion that the core structures of language could be discovered without
substantial constraints may sound impossible to anyone familiar with the gener-
ative syntax rhetoric. But learning without constraints is not only possible, it has
been well-understood and even predicted. Formal analyses of learning and infer-
ence show that learners can infer the correct theory out of the space of possible
computations (Solomonoff 1964, Hutter 2004, Legg & Hutter 2007). In language
specifically, the correct generating system for grammars can similarly be discov-
ered out of the space of all computations (the most unrestricted space possible),
using only observations of positive evidence (Chater & Vitányi 2007).

In this view, large language models function somewhat like automated scien-
tists or automated linguists, who also work over relatively unrestricted spaces,
searching to find theories which do the best job of parsimoniously predicting
observed data. It’s worth thinking about the standard lines of questioning gen-
erative syntax has pursued—things like, why don’t kids ever say “The dog is
believed’s owners to be hungry” or “The dog is believed is hungry” (see Lasnik
& Lidz 2016). The answer provided by large language models is that these are
not permitted under the best theory the model finds to explain what it does see.
Innate constraints are not needed.

Representations are representationally complex, not minimal

Next, there is an important sense inwhich large languagemodels are notminimal
representationally, but maximal. What I mean is that there is not a single core
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nugget of representation or structure (likemerge) that leads these models to suc-
ceed. Nor are any biases against derivational complexity likely to play a key role,
since everything is a single big matrix calculation. This calculation moreover
is not structurally minimal or “perfect” in the sense that minimalist linguistics
means (e.g. Lasnik 2002). Instead, the attentional mechanisms of large language
models condition on material that is arbitrarily far away, and perhaps not even
structurally related since this is how they model discourses between sentences.
A grammatical theory that relies on people’s capacity for memorizing countless
chunks of language changes the landscape of how we should think about deriva-
tion; as above, models based in probability give a formal footing to notions of
complexity in grammar.

Deep learning has actually changed how people think about complexity in sta-
tistical learning too. It has long been observed that having too many parameters
in a model would prevent the model from generalizing well: too many parame-
ters allow a model to fit patterns in the noise, and this can lead it to extrapolate
poorly. Deep learning turned this idea on its head by showing that some models
will fit (memorize) random data sets (Zhang et al. 2021), meaning they can fit all
the patterns in the data (including noise) and generalize well. The relationship
between memorization and generalization is still not well-understood, but one of
the core implications is that statistical learningmodels canworkwell, sometimes,
even when they are over-parameterized.

While discussing statistical learning (before deep learning) with Peter Norvig,
Chomsky noted that “we cannot seriously propose that a child learns the values
of 109 parameters in a childhood lasting only 108 seconds.” One has to wonder if a
similar argument applies to biological neurons: humans have 80 billion neurons,
each with thousands of synapses. If childhood is only 108 seconds, how do all
the connections get set? Well, also note that the 3 billion base pairs of the human
genome certainly can’t specify the precise connections either. Something must
be wrong with the argument.

Two missteps are easy to spot. First, even if a model has a billion parame-
ters, they will not generally be independent. This means that a single data point
could set or move thousands or millions or billions of parameters. For example,
observing a single sentence with SVO order might increase (perhaps millions of)
parameters that put S before V, and decrease (perhaps millions of) parameters
that put S after V. Steps of backpropagation don’t change one parameter—they
change potentially all of them based on the locally best direction (the gradient).

Second, these models, or learners, often don’t need to pinpoint exactly one
answer. A conjecture called the lottery ticket hypothesis holds that the behavior
of a deep learning model tends to be determined by a relatively small number of
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its neurons (Frankle & Carbin 2018). Thus, the massive number of parameters is
not because they all need to be set exactly to some value. Instead, having many
degrees of freedom probably helps these models learn well by giving the models
directions they can move in to avoid getting stuck. It may be like how it is easier
to solve a puzzle if you can pick the pieces up and put them down (move them in
a third dimension) rather than just sliding them around the table. More degrees
of freedom can help learning.

Hierarchical structure need not be innate

Thesemodels discover structure—including hierarchical structure–from their train-
ing (Hewitt & Manning 2019, Manning et al. 2020, Lin et al. 2019, Tenney, Xia,
et al. 2019, Warstadt & Bowman 2020, Kim et al. 2020, Linzen & Baroni 2021, Ma-
howald & Ivanova et al. 2023). These models certainly could learn rules based
on linear, rather than hierarchical, structure, but the data strongly leads them
towards hierarchical, structural generalization. This capacity to discover hier-
archical structure rather than building it in was long-emphasized by cognitive
psychologists, for instancework inducing syntactic categories by clustering (Red-
ington et al. 1998, Clark 2000), or Perfors et al. 2011 who showed that a Bayesian
model comparison applied to child-directed speech could identify a context-free
(hierarchical) grammar over alternatives. The most recent models build on ear-
lier efforts to encode hierarchical processes into neural networks (e.g. Tabor et al.
1997, Christiansen & Chater 1999, Tabor 2000, Smolensky & Legendre 2006).

The familiar example of aux-inversion is meant to show that children must
possess hierarchical syntax. As a simple experiment, we can also ask these mod-
els to form some questions. For example, the familiar aux-inversion:

Convert the following into a single question asking if the accordion is in the
rain: “The accordion that is being repaired is out in the rain.”
Is the accordion that is being repaired out in the rain?

More rigorous experiments demonstrating aux-inversion success even in earlier
language models can be found in Warstadt & Bowman 2020. It is philosophically
interesting that this model knows which “is” to “move”, but I think it’s stagger-
ing that unlike pretty much every other model in the whole of science, we can
interrogate these models simply by asking them to perform a certain behavior.
It’s also interesting to ask it to generate a few more examples, without giving
guidance on the nature of the question:

Form the following sentence into a question in ten different ways: “The accor-
dion that is being repaired is out in the rain.”
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Is the accordion that is being repaired out in the rain?
Where is the accordion that is being repaired located in the rain?
In what condition is the accordion being repaired out in the rain?
Is the accordion being repaired, which is outside, getting wet in the rain?
Is the accordion being repaired, which is out in the rain, being protected from
the water?
Is the accordion being repaired out in the rain, and if so, will it be damaged by
the water?
How long has the accordion that is being repaired been out in the rain?
Is the accordion, which is being repaired, being kept in the rain outside?
What is happening to the accordion, which is being repaired, while it is out in
the rain?
Is the accordion that is currently being repaired exposed to the rain outside?

It is remarkable too that the models maintain enough representation of its prior
discourse to generate distinct questions. The responses also highlight integration
of syntax and semantics, for instance knowing that such an accordion might be
“protected from the water” or “damaged by the water.”

The aux-inversion cases have been interesting only insofar as interrogatives
are derived from declaratives: the question of how kids know which “is” to move
is nonsensical outside of that assumption. These models, which are trained only
on text prediction, provide an implemented account in which we don’t need to
think of interrogatives as derived from declaratives (it seems very unlikely this is
what is happening inside the model). The models might thus lead us to consider
connections between other constructions, such as those used in the above list,
which are likely located nearby to the target question in the model’s latent space
of activations. For optimally predictive theories, constructions may be connected
to each other but not in the way standard theories of syntax predict.

Language and thought dissociate

Human language, for Chomsky, is deeply interconnected to human thought Ev-
eraert et al. 2015. Chomsky 2002 describes language as “a system for expressing
thought” in fact one which is used primarily for speaking to oneself. Interest-
ingly, he does not draw on the literature on inner monologues, which show sub-
stantial variation between individuals, with some describing virtually no internal
language use at all (e.g. Reed 1916, Heavey & Hurlburt 2008, Roebuck & Lupyan
2020). Chomsky’s view, though, is made perhaps more plausible by arguments
that thought itself shares many properties of language, namely a compositional,
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language-like structure (Fodor 1975, Fodor & Pylyshyn 1988, Goodman et al. 2014,
Piantadosi & Jacobs 2016, Quilty-Dunn et al. 2022). Chomsky frequently con-
trasts his inner thought view of language with the idea that language primarily
is structured to support communication (e.g. Hockett 1959, Bates &MacWhinney
1982, Gibson et al. 2019), although it’s worth noting he sometimes draws the op-
posite predictions fromwhat efficient communicationwould actually predict (e.g.
Piantadosi et al. 2012). Mahowald & Ivanova et al. 2023 argue in a comprehensive
review that large language models exhibit a compelling dissociation between lin-
guistic ability and thinking. The models know so much syntax, and aspects of
semantics, but it is not hard to trip them up with appropriate logical reasoning
tasks. Thus, large language models provide a proof of principle that syntax can
exist and likely be acquired separately from other more robust forms of thinking
and reasoning. Virtually all of the structure we see in language can come from
learning a good model of strings, not directly modeling the world.

Models therefore show a logically possible dissociation between language and
thinking. But a considerable amount of neuropsychological evidence supports
the idea that language and thought are actually separate in people as well. Fe-
dorenko & Varley 2016 review a large patient literature showing that patients
with aphasia are often able to succeed in tasks requiring reasoning, logic, the-
ory of mind, mathematics, music, navigation, and more. Aphasic patient studies
provide an in vivo dissociation between language and other rational thinking
processes. They also review neuroimaging work by Fedorenko et al. 2011 and
others showing that the brain regions involved in language tend to be specific
to language when it is compared to other non-linguistic tasks. That is not what
would be predicted under Chomsky’s account.

This is not to say that there is noway language and thought are related—we are
able to specify some kinds of reasoning problems, communicate solutions, and
sometimes solve problems with language itself. A compelling proposal is that
language may be a system for connecting other core domains of representation
and reasoning (Spelke 2003).

Why this and not that

Chomsky maintains (in the same Marcus interview above) that large language
models have achieved nothing because they fail to explain “Why this? Why not
that?” The question of whether these models can explain why human language
has the form that it does is an interesting one that likely depends on whether the
language system evolved before language or concurrently with it. If language
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co-opted neural systems for general sequential prediction (e.g. Christiansen &
Chater 2015), it’s possible we had some architecture like these models before we
had language, and therefore the form of language is explained by the pre-existing
computational architecture. On the other hand, if the two co-evolved, language
might not be explained by the processing mechanisms. Given this uncertainty,
we may admit that there are some “why” questions that a large language model
may not answer; this does not mean they have no scientific value. In the same
way, Newton’s laws don’t answer why those are the laws as opposed to any
other, and yet they still embody deep scientific insights. Anyone who has had a
child ask “why” repeatedly will recognize that at some point, everyone’s answers
ground out in assumption.

However, it is worth highlighting in this context that Chomsky’s own theories
don’t permit particularly deep “why” questions either. In large part, he simply
states that the answer is genetics or simplicity or “perfection”, without providing
any independent justification for these claims. For example, readers of Berwick
& Chomsky 2016—a book titled Why Only Us—might have hoped to find a thor-
ough and satisfying “why” explanation. Their answer boils down to people hav-
ingmerge (essentially chunking two elements into one, unordered). And when it
comes down to explainingwhymerge, they fall down the stairs: they simply state
that “merge” is the minimal computational operation, apparently because that’s
what they think and that’s that. Forget the relativity of definitions of simplicity,
articulated by Goodman 1965, where what is considered simple must ground out
in some convention. Berwick & Chomsky do even attempt to explain why they
believe “merge” is simpler than other simple computational bases, like cellular
automata or combinatory logic or systems of colliding Newtonian particles—all
of which are capable of universal computation (and thus encoding structures,
including hierarchical ones). Or maybe more directly, what makes merge “sim-
pler” or more “perfect” than, say, backpropagation? Or Elman et al. 1996’s archi-
tectural biases? Berwick & Chomsky don’t even consider these questions, even
though the ability to scientifically go after such “why” questions is supposed to
be the hallmark of the approach. One might equally just declare that a trans-
former architecture is the “minimal” computational system that can handle the
dependencies and structures of natural language and be done with it.

We should not actually take it for granted that generative syntax has found
any regularities across languages that need “why” explanations. Evans & Levin-
son 2009 has made a convincing empirical case that prior features hypothesized
to be universal—and thus plausibly part of the innate endowment of language—
actually are not actually found in all languages. Perhaps most damningly, not
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even all languages appear to be recursive (Everett 2005, Futrell et al. 2016), con-
tradicting the key universality claim from Hauser et al. 2002. Dąbrowska 2015
highlights profound differences in adult grammars between languages and the
lack of a coherent formulation from generative linguists. None of this is to say
that we won’t be able to find any universals; rather, the proposed ones aren’t
there, and the differences between languages may be more scientifically infor-
mative than their commonalities (Pullum & Scholz 2009). On the methodologi-
cal side, statistical analyses show that in order to justifiably claim something as
universal, one would need on the order of 500 statistically independent languages,
which is likely beyond what is currently in existence (Piantadosi & Gibson 2014).

However, the question of why languages are the way they are does have plau-
sible, testable hypotheses. These hypotheses are interdisciplinary (Reali & Chris-
tiansen 2009) and include variegated influences of communicative (Zipf 1965,
Hockett 1959, Bates &MacWhinney 1982, Piantadosi et al. 2012, Gibson et al. 2013,
2019, Coupé et al. 2019, Hahn et al. 2020, Futrell & Hahn 2022), cultural (Everett
2005, Lupyan & Dale 2010, Dale & Lupyan 2012, Everett et al. 2015), ecological
(Lupyan & Dale 2016), learning (Steinert-Threlkeld & Szymanik 2019, 2020), and
cognitive factors (Gibson 2000, Futrell et al. 2015). Such pressures have led to
efficient and useful properties, including minimization of dependency structures
(Futrell et al. 2015), the presence of communicatively useful ambiguity (Pianta-
dosi et al. 2012), and efficiency in lexical systems (Kemp & Regier 2012, Kemp
et al. 2018, Zaslavsky et al. 2019, Steinert-Threlkeld 2020, Mollica et al. 2021, Ma-
howald et al. 2022, Denić et al. 2022). Recent advances in understanding cultural
evolution also should shape our theories of linguistic nativism, highlighting that
weak biases are often sufficient over the course of cultural transmission to lead to
stable patterns across languages (Thompson et al. 2016, Kirby et al. 2014, Chater
et al. 2009). All of these are factors that Chomsky and others have never really
grappled with, much less successfully ruled out as alternative answers to the
“whys” of language.

The refutation of method

Chomsky often describes his own approach as “Galilean” meaning that he seeks
the underlying principles in phenomena rather than analysis of large amounts
of data. The term is both a misnomer (Behme 2014) and a not-so-subtle insult to
colleagues who choose to work from different assumptions. Of course, Galileo
cared about quantitative measurement of the world in order to formulate theo-
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ries, developing tools of his own and even trying to measure the speed of light.13

Chomsky’s viewwas clearly articulated in an interviewwith Yarden Katz in 2012
where, at the time, he was focused on explaining that Bayesian models were use-
less:

... [S]uppose that somebody says he wants to eliminate the physics depart-
ment and do it the right way. The “right” way is to take endless numbers
of videotapes of what’s happening outside the [window], and feed them
into the biggest and fastest computer, gigabytes of data, and do complex
statistical analysis—you know, Bayesian this and that—and you’ll get some
kind of prediction about what’s gonna happen outside the window next.
In fact, you get a much better prediction than the physics department will
ever give. Well, if success is defined as getting a fair approximation to a
mass of chaotic unanalyzed data, then it’s way better to do it this way than
to do it the way the physicists do, you know, no thought experiments about
frictionless planes and so on and so forth. But you won’t get the kind of un-
derstanding that the sciences have always been aimed at—what you’ll get
at is an approximation to what’s happening.

It’s worth pinpointing exactly where this kind of thinking has gone wrong be-
cause it is central to the field’s confusion in thinking about large languagemodels.
Chomsky’s view certainly does not address the above idea that parameter fitting
in a statistical model often is theory building and comparison.

But another factor is missing, too. Over modern scientific history, many com-
putational scientists have noticed phenomena of emergence (Goldstein 1999), where
the behavior of a system seems somewhat different than might be expected from
its underlying rules. This idea has been examined specifically in language mod-
els (Wei et al. 2022, Manning et al. 2020), but the classic examples are older. The
stock market is unpredictable even when individual traders might follow simple
rules (“maximize profits”). Market booms and busts are the emergent result of
millions of aggregate decisions. The high-level phenomena would be hard to in-
tuit, even with full knowledge of traders’ strategies or local goals. The field of
complex systems has documented emergent phenomena virtually everywhere,
from social dynamics to neurons to quasicrystals to honeybee group decisions.
The field to have most directly grappled with emergence is physics, where it
is acknowledged that physical systems can be understood on multiple levels of
organization, and that the same laws that apply one one level (like molecular

13“Measure what can be measured, and make measurable what cannot be measured.”
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chemistry) may have consequences that are difficult to foresee on another (like
protein folding) (Anderson 1972, Crutchfield 1994b,a).

Often, the only way to study such complex systems is through simulation. We
often can’t intuit the outcome of an underlying set of rules, but computational
tools allow us to simulate and just see what happens. Critically, simulations test
the underlying assumptions and principles in the model: if we simulate traders
and don’t see high-level statistics of the stock market, we are sure to have missed
some key principles; if we model individual decision making for honeybees but
don’t see emergent hive decisions about where to forage or when to swarm, we
are sure to havemissed principles. We don’t get a direct test of principles because
the systems are too complex. We only get to principles by seeing if the simula-
tions recapitulate the same high-level properties of the system we’re interested
in. And in fact the surprisingness of large language models’ behavior illustrates
how we don’t have good intuitions about language learning systems.

We can contrast understanding emergence through simulation with Chom-
sky’s attempt to state principles and reason informally (see Pullum 1989) to their
consequences. The result is pages and pages of stipulations and principles (see,
e.g., Collins & Stabler 2016 or Chomsky 1995) that nobody could look at and con-
clude were justified through rigorous comparison to alternatives. After all they
weren’t: the failure of the method to compare vastly different sets of starting
assumptions, including neural networks, is part of why modern large language
models have taken everyone by surprise. The fact that after half a century of
grammatical theories, there can be a novel approach which so completely blows
generative grammar out of the water on every dimension is, itself, a refutation
of the “Galilean method.”

An effective research program into language would have considered, perhaps
even developed, these kinds of models, and sought to compare principles like
those of minimalism to the principles that govern neural networks. This turn
of events highlights how much the dogma of being “Galilean” has counterpro-
ductively narrowed and restricted the space of theories under consideration—a
salient irony given Chomsky’s (appropriate) panning of Skinner for doing just
that.14

14“What is so surprising is the particular limitations [Skinner] has imposed on the way in which
the observables of behavior are to be studied.” (Chomsky 1959)
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Enduring contributions of Chomsky’s program

I have attempted to convey my own sense of excitement about large language
models, as well as my own pessimism about several aspects of Chomsky’s ap-
proach to linguistics. However, it is easy to see that beyond the critiques above,
many of Chomsky’s emphatic focuses will survive his specific theories. For exam-
ple, one of Chomsky’s lasting contributions to cognitive science will be his em-
phasis on the reality of cognitive structure, like Tolman, Newell & Simon, Miller,
and others of the cognitive revolution (Nadel & Piattelli-Palmarini 2003, Boden
2008). The search for the properties of human cognition that permit successful
language acquisition is clearly central to understanding not just the functioning
of the mind, but understanding humanity. It is a deep and important idea to try
to characterize what computations are required for language, and to view them
as genuinely mental computations. Chomsky’s focus on children as creators of
language, and of understanding the way in which their biases shape learning is
fundamental to any scientific theory of cognition. Linguistic work in Chomsky’s
tradition has done a considerable amount to document and support less widely
spoken languages, a struggle for current machine learning (Blasi et al. 2021). The
overall search for “why” questions is undoubtedly core to the field, even as we
reject or refine armchair hypotheses.

Some of the ideas of Chomsky’s approach are likely to be found even in lan-
guage models. For example, the idea that many languages are hierarchical is
likely to be correct, embodied in some way in the connections and links of neu-
ral networks that perform well at word prediction. There may be a real sense
in which other principles linguistics have considered are present in some form
in such models. If the models correctly perform on binding questions, they may
have some computations similar to binding principles. But none of these prin-
ciples needed to be innate. And in neural networks, they are realized in a form
nobody to date has written—they are distributed through a large pattern of con-
tinuous, gradient connections. Moreover, the representation of something like
binding is extraordinarily unlikely to have the form generative syntax predicts
since the required, underlying representational assumptions of that approach
(e.g. binary branching, particular derivational structures, etc) are not met.

Another key contribution of Chomsky’s research program has been to encour-
age discovery of interesting classes of sentences, often through others like Ross
1967. Regardless of the field’s divergent views on the reality of WH-movement,
for example, the question of what determines grammaticality and ungrammati-
cality forWH-sentences is an important one. Similarly, phenomena like “islands”
do not go away because of large language models—they are targets to be ex-
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plained (and they do a pretty good job according to analyses by Wilcox et al.
2022). Such phenomena are often difficult to separate from theory, as in the exam-
ple above about whether declaratives and interrogatives are actually connected
in the real grammar. Regardless of theory, researchers working in Chomsky’s tra-
dition have illuminated many places where human linguistic behavior is more
complicated or intricate than one might otherwise expect.

As articulated by Pater 2019, the field should seek ways to integrate linguistics
with modern machine learning, including neural networks. I have highlighted
some researchers whose approach to language clearly resonates with the insights
of modern language models. The current upheaval indicates that we should fos-
ter a pluralistic linguistics that approaches the problem of language with as few
preconceptions as possible—perhaps even a fundamental reconceptualization of
what language is for and what it is like (Edelman 2019). Maybe many of the “syn-
tactic” phenomena that Chomskyan theories have concerned themselves with
are really about something else, like pragmatics or memorized constructions
(Goldberg 2006, Liu et al. 2022). Maybe the universals of language—if there are
any—come from aspects of use like communicative and cognitive pressures, or
other cultural factors. Maybe linguistics could learn from the methods of cog-
nitive science (Edelman 2007). Maybe theories of grammar should respect hu-
mans’ unparalleled memory capacity for sequential material. Maybe we should
have linguistics students learn information theory, probability, neural networks,
machine learning, anthropology, numerical methods, model comparison, Kol-
mogorov complexity, cognitive psychology, language processing, multi-agent
systems, etc. The most permanent legacy of Chomsky’s approach could be as
an admonishment about what happens when the study of language is separated
from the rest of science.

Conclusion

One must be frank about the state of the art for models that capture syntax. It’s
not that large language models offer slightly higher performance than other ap-
proaches in linguistics; its not that they better cover some corners of syntax.
It’s that there is nothing comparable in all of linguistic theory to the power of
large language models in both syntax and semantics—much less discourse co-
herence, style, pragmatics, translation, meta-linguistic awareness, non-linguistic
tasks, etc. They are game changers on all fronts. Optimists who believe them as
at least a plausible direction for acquisition see them as a way to build in and test
architectural principles and biases, long emphasized by connectionist modelers
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like McClelland et al. 1986, Elman et al. 1996, Smolensky & Legendre 2006, and
others. Those who doubt they could function as models of acquisition should
nonetheless see the success of gradient representations, architectural assump-
tions, and implicit or emergent principles as a theory of grammar. These models
have opened the space of plausible linguistic theories, allowing us to test princi-
ples beyond the ones that have traditionally concerned linguists. They allow us
to finally develop compelling theories of the interplay of structure and statistics.
And they appear to solve many problems that generative syntacticians have wor-
ried about, but without using any of their theoretical tools and constructs. Large
language models rewrite the philosophy of approaches to language.

It’s worth ending with a reminder of how impressive these models are:

Explain how large language models undermine Chomsky’s main claims about
linguistics.
Noam Chomsky is a prominent linguist and philosopher who has made signif-
icant contributions to the field of linguistics and language theory. He has put
forward the idea that language is an innate, biologically determined ability that
is unique to humans, and that all humans possess a universal grammar, or a set
of innate linguistic rules that allow us to understand and produce language.
However, the development of large language models like GPT-3 has challenged
some of Chomsky’s main claims about linguistics and the nature of language.
First, the fact that language models can be trained on large amounts of text data
and can generate human-like language without any explicit instruction on gram-
mar or syntax suggests that language may not be as biologically determined as
Chomsky has claimed. Instead, it suggests that language may be learned and
developed through exposure to language and interactions with others.
Second, the success of large language models in performing various language
tasks such as translation, summarization, and question answering, has chal-
lenged Chomsky’s idea that language is based on a set of innate rules. Instead,
it suggests that language is a learned and adaptive system that can be modeled
and improved through machine learning algorithms.
Finally, the ability of language models to generate coherent and coherent [sic]
language on a wide range of topics, despite never having seen these topics be-
fore, suggests that language may not be as rule-based as Chomsky has claimed.
Instead, it may be more probabilistic and context-dependent, relying on patterns
and associations learned from the text data it was trained on.
In conclusion, while Chomsky’s contributions to the field of linguistics have been
significant, the development of large languagemodels has challenged some of his
main claims and has opened up new avenues for exploring the nature of language
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and its relationship with machine learning and artificial intelligence.

Models that can do this are a gift. They make language the most exciting arena
in all of cognitive science and AI. Such models are also a tool that will help lin-
guistics to refine theories and compare leading ideas to strong alternatives.

It’s worth remembering that Chomsky’s approach to linguistics isn’t so much
about his particular beliefs—many linguists who work in his tradition disagree
with him on specific points. And there is nothing wrong with being wrong:
Chomsky’s own theories elegantly articulated many deep, compelling ideas that
have motivated linguistic and cognitive research. But modern language models
highlight the weaknesses of his methodological prescriptions. One cannot seek
principles without justifying them with rigorous experiments and comparisons;
one can’t reason about complex systems without implementations; one can’t
discover mechanisms without formally testing completely different approaches
(like neural networks); one can’t proclaim simplicity, optimality, or “perfection”
without seriously connecting these terms to formal notions. These arguments
worked onmany linguists and consequently prevented Chomsky’s tradition from
developing anything close to the wild successes of modern language models.

Frederick Jelinek’s quip “Every time I fire a linguist, the performance of the
speech recognizer goes up” (Jelinek 1988) was a joke among linguists and com-
puter scientists for decades. I’ve even seen it celebrated by academic linguists
who think it elevates their abstract enterprise over and above the dirty details of
implementation and engineering. But, while generative syntacticians insulated
themselves from engineering, empirical tests, and formal comparisons, engineer-
ing took over. And now, engineering has solved the very problems the field has
fixated on—or is about to very soon. The unmatched success of an approach
based on probability, internalization of constructions in corpora, gradient meth-
ods, and neural networks is, in the end, a humiliation for everyone who has spent
decades deriding these tools.

But now we can do better.

31



Steven T. Piantadosi

Acknowledgements

I am grateful to Benjamin Hayden, Ev Fedorenko, Geoffrey Pullum, Kyle Ma-
howald, Shimon Edelman, and Dan Everett, for detailed comments and sugges-
tions on this paper. This paper benefited greatly from Felix Hill’s Twitter pres-
ence (@FelixHill84), especially on topics like emergence and earlier connection-
ist work.

32



1 Modern language models refute Chomsky’s approach to language

References

Adger, David. 2018. The autonomy of syntax. In Syntactic Structures After 60 Years,
153–175.

Ahmed, Nur, Muntasir Wahed & Neil C Thompson. 2023. The growing influence
of industry in AI research. Science 379(6635). 884–886.

Anderson, Philip W. 1972. More is different: broken symmetry and the nature of
the hierarchical structure of science. Science 177(4047). 393–396.

Baroni, Marco. 2022. On the proper role of linguistically oriented deep net anal-
ysis in linguistic theorising. In Algebraic Structures in Natural Language, 1–16.
CRC Press.

Barrett, David, Felix Hill, Adam Santoro, Ari Morcos & Timothy Lillicrap. 2018.
Measuring abstract reasoning in neural networks. In International Conference
on Machine Learning, 511–520.

Bates, Elizabeth & Brian MacWhinney. 1982. Functionalist approaches to gram-
mar. Language acquisition: The state of the art. 173–218.

Behme, Christina. 2012. A Potpourri of Chomskyan Science.
Behme, Christina. 2014. A ‘Galilean’ Science of Language. Journal of Linguistics

50(3). 671–704.
Belinkov, Yonatan & James Glass. 2019. Analysis methods in neural language pro-

cessing: a survey. Transactions of the Association for Computational Linguistics
7. 49–72.

Bender, Emily M, Timnit Gebru, Angelina McMillan-Major & Shmargaret
Shmitchell. 2021. On the Dangers of Stochastic Parrots: Can Language Models
Be Too Big? In Proceedings of the 2021 ACM conference on Fairness, Accountabil-
ity, and Transparency, 610–623.

Bender, Emily M & Alexander Koller. 2020. Climbing towards NLU: on meaning,
form, and understanding in the age of data. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, 5185–5198.

Berwick, Robert C&NoamChomsky. 2016.WhyOnly Us: Language and evolution.
MIT press.

Bhatia, Sudeep & Russell Richie. 2022. Transformer networks of human concep-
tual knowledge. Psychological Review.

Blasi, Damián, Antonios Anastasopoulos & Graham Neubig. 2021. Systematic In-
equalities in Language Technology Performance across theWorld’s Languages.
arXiv preprint arXiv:2110.06733.

Block, Ned. 1986. Advertisement for a Semantics for Psychology.Midwest Studies
in Philosophy 10. 615–678.

Block, Ned. 1998. Conceptual role semantics.

33



Steven T. Piantadosi

Bod, Rens, Remko Scha & Khalil Sima’an. 2003. Data-oriented Parsing. The Uni-
versity of Chicago Press.

Boden, Margaret A. 2008.Mind as machine: A history of cognitive science. Oxford
University Press.

Bommasani, Rishi et al. 2021. On the opportunities and risks of foundation mod-
els. arXiv preprint arXiv:2108.07258.

Bowman, Samuel, Christopher Potts & Christopher D Manning. 2015. Recursive
neural networks can learn logical semantics. In Proceedings of the 3rd workshop
on continuous vector space models and their compositionality, 12–21.

Brown, Tom, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Pra-
fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in Neural
Information Processing Systems 33. 1877–1901.

Carnie, Andrew. 2021. Syntax: A Generative Introduction. John Wiley & Sons.
Caucheteux, Charlotte, Alexandre Gramfort & Jean-Rémi King. 2022. Deep lan-

guage algorithms predict semantic comprehension from brain activity. Scien-
tific Reports 12(1). 16327.

Chater, Nick, Florencia Reali & Morten H Christiansen. 2009. Restrictions on bio-
logical adaptation in language evolution. Proceedings of the National Academy
of Sciences 106(4). 1015–1020.

Chater, Nick & Paul Vitányi. 2007. ‘Ideal learning’ of natural language: Positive
results about learning from positive evidence. Journal of Mathematical Psychol-
ogy 51(3). 135–163.

Chen, Stanley F & Joshua Goodman. 1999. An empirical study of smoothing tech-
niques for language modeling. Computer Speech & Language 13(4). 359–394.

Chi, Ethan A, John Hewitt & Christopher D Manning. 2020. Finding universal
grammatical relations in multilingual BERT. arXiv preprint arXiv:2005.04511.

Chomsky, Noam. 1956. Three models for the description of language. IRE Trans-
actions on Information Theory 2(3). 113–124.

Chomsky, Noam. 1957. Syntactic Structures.
Chomsky, Noam. 1959. Chomsky, N. 1959. A review of BF Skinner’s Verbal behavior.

Language, 35 (1), 26–58.
Chomsky, Noam. 1969. Quine’s empirical assumptions. Synthese 19(1). 53–68.
Chomsky, Noam. 1995. The Minimalist Program. MIT Press.
Chomsky, Noam. 2002. On Nature and Language. Cambridge University Press.
Chomsky, Noam, Ian Roberts & Jeffrey Watumull. 2023. Noam Chomsky: The

False Promise of ChatGPT. The New York Times. https://www.nytimes.com/
2023/03/08/opinion/noam-chomsky-chatgpt-ai.html.

34

https://www.nytimes.com/2023/03/08/opinion/noam-chomsky-chatgpt-ai.html
https://www.nytimes.com/2023/03/08/opinion/noam-chomsky-chatgpt-ai.html


1 Modern language models refute Chomsky’s approach to language

Christiansen, Morten H & Nick Chater. 1999. Toward a connectionist model of
recursion in human linguistic performance. Cognitive Science 23(2). 157–205.

Christiansen, Morten H & Nick Chater. 2015. The language faculty that wasn’t:
A usage-based account of natural language recursion. Frontiers in Psychology
6. 1182.

Clark, Alexander. 2000. Inducing syntactic categories by context distribution
clustering. In Fourth Conference on Computational Natural Language Learning
and the Second Learning Language in Logic Workshop.

Clark, Alexander & Shalom Lappin. 2010. Linguistic Nativism and the Poverty of
the Stimulus. John Wiley & Sons.

Collins, Chris & Edward Stabler. 2016. A formalization of minimalist syntax. Syn-
tax 19(1). 43–78.

Collins, Katherine M, Catherine Wong, Jiahai Feng, Megan Wei & Joshua B
Tenenbaum. 2022. Structured, flexible, and robust: Benchmarking and im-
proving large language models towards more human-like behavior in out-of-
distribution reasoning tasks. arXiv preprint arXiv:2205.05718.

Contreras Kallens, Pablo, Ross Deans Kristensen-McLachlan & Morten H Chris-
tiansen. 2023. Large language models demonstrate the potential of statistical
learning in language. Cognitive Science 47(3). e13256.

Coupé, Christophe, YoonMiOh, DanDediu& François Pellegrino. 2019. Different
languages, similar encoding efficiency: Comparable information rates across
the human communicative niche. Science Advances 5(9). eaaw2594.

Cover, Thomas M. 1999. Elements of Information Theory. John Wiley & Sons.
Crain, Stephen & Paul Pietroski. 2001. Nature, nurture and universal grammar.
Linguistics and Philosophy 24. 139–186.

Crain, Stephen & Paul Pietroski. 2002. Why language acquisition is a snap. The
Linguistic Review 19(1). 163–183.

Croft, William. 1995. Autonomy and Functionalist Linguistics. Language. 490–
532.

Crutchfield, James P. 1994a. Is anything ever new? Considering emergence. In
Santa Fe Institute Studies in the Sciences of Complexity, vol. 19, 1–15.

Crutchfield, James P. 1994b. The calculi of emergence: computation, dynamics
and induction. Physica D: Nonlinear Phenomena 75(1-3). 11–54.

Dąbrowska, Ewa. 2015. What exactly is Universal Grammar, and has anyone seen
it? Frontiers in Psychology 6. 852.

Dale, Rick & Gary Lupyan. 2012. Understanding the origins of morphologi-
cal diversity: The linguistic niche hypothesis. Advances in Complex Systems
15(03n04). 1150017.

35



Steven T. Piantadosi

Dasgupta, Ishita, Andrew K Lampinen, Stephanie CY Chan, Antonia Creswell,
Dharshan Kumaran, James L McClelland & Felix Hill. 2022. Language models
show human-like content effects on reasoning. arXiv preprint arXiv:2207.07051.

Delétang, Grégoire, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin
Wenliang, Elliot Catt, Marcus Hutter, Shane Legg & Pedro A Ortega. 2022.
Neural networks and the Chomsky hierarchy. arXiv preprint arXiv:2207.02098.

Denić, Milica, Shane Steinert-Threlkeld & Jakub Szymanik. 2022. Indefinite Pro-
nouns Optimize the Simplicity/Informativeness Trade-Off. Cognitive Science
46(5). e13142.

Edelman, Shimon. 2007. Bridging language with the rest of cognition. Methods
in Cognitive Linguistics. 424–445.

Edelman, Shimon. 2019. Verbal behavior without syntactic structures: beyond
Skinner and Chomsky. arXiv preprint arXiv:4783474.

Edelman, Shimon &Morten H Christiansen. 2003. How seriously should we take
minimalist syntax? A comment on Lasnik. Trends in Cognitive Science 7(2). 60–
61.

Edelman, Shimon &Heidi Waterfall. 2007. Behavioral and computational aspects
of language and its acquisition. Physics of Life Reviews 4(4). 253–277.

Elman, Jeffrey L. 1990. Finding structure in time. Cognitive Science 14(2). 179–211.
Elman, Jeffrey L. 2004. An alternative view of the mental lexicon. Trends in Cog-

nitive Sciences 8(7). 301–306.
Elman, Jeffrey L, Elizabeth A Bates & Mark H Johnson. 1996. Rethinking innate-

ness: A connectionist perspective on development. MIT press.
Evans, Nicholas & Stephen C Levinson. 2009. The myth of language universals:

Language diversity and its importance for cognitive science. Behavioral and
Brain Sciences 32(5). 429–448.

Everaert, Martin BH, Marinus AC Huybregts, Noam Chomsky, Robert C Berwick
& Johan J Bolhuis. 2015. Structures, not strings: Linguistics as part of the cog-
nitive sciences. Trends in Cognitive Sciences 19(12). 729–743.

Everett, Caleb, Damián E Blasi & Seán G Roberts. 2015. Climate, vocal folds, and
tonal languages: Connecting the physiological and geographic dots. Proceed-
ings of the National Academy of Sciences 112(5). 1322–1327.

Everett, DanielL. 2005. Cultural constraints on grammar and cognition in Pirahã:
Another look at the design features of human language. Current Anthropology
46(4). 621–646.

Fedorenko, Evelina, Michael K Behr & Nancy Kanwisher. 2011. Functional speci-
ficity for high-level linguistic processing in the human brain. Proceedings of
the National Academy of Sciences 108(39). 16428–16433.

36



1 Modern language models refute Chomsky’s approach to language

Fedorenko, Evelina & Rosemary Varley. 2016. Language and thought are not the
same thing: Evidence from neuroimaging and neurological patients. Annals of
the New York Academy of Sciences 1369(1). 132–153.

Fodor, Jerry A. 1975. The Language of Thought. Harvard University.
Fodor, Jerry A & Zenon W Pylyshyn. 1988. Connectionism and cognitive archi-

tecture: A critical analysis. Cognition 28(1-2). 3–71.
Frankle, Jonathan & Michael Carbin. 2018. The lottery ticket hypothesis: finding

sparse, trainable neural networks. arXiv preprint arXiv:1803.03635.
Futrell, Richard & Michael Hahn. 2022. Information Theory as a Bridge Between

Language Function and Language Form.Motivations for Research on Linguistic
Complexity: Methodology, Theory and Ideology.

Futrell, Richard, Kyle Mahowald & Edward Gibson. 2015. Large-scale evidence of
dependency length minimization in 37 languages. Proceedings of the National
Academy of Sciences 112(33). 10336–10341.

Futrell, Richard, Laura Stearns, Daniel L Everett, Steven T Piantadosi & Edward
Gibson. 2016. A corpus investigation of syntactic embedding in Pirahã. PLOS
ONE 11(3). e0145289.

Futrell, Richard, Ethan Wilcox, Takashi Morita, Peng Qian, Miguel Ballesteros &
Roger Levy. 2019. Neural language models as psycholinguistic subjects: Rep-
resentations of syntactic state. arXiv preprint arXiv:1903.03260.

Gauthier, Jon, Jennifer Hu, Ethan Wilcox, Peng Qian & Roger Levy. 2020. Syn-
taxGym: An online platform for targeted evaluation of language models. In
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics: System Demonstrations, 70–76.

Ge, Ruifang & Raymond Mooney. 2005. A statistical semantic parser that inte-
grates syntax and semantics. In Proceedings of the Ninth Conference on Compu-
tational Natural Language Learning, 9–16.

Geiping, Jonas & Tom Goldstein. 2022. Cramming: Training a Language Model
on a Single GPU in One Day. arXiv preprint arXiv:2212.14034.

Gibson, E. 2000. The dependency locality theory: A distance-based theory of lin-
guistic complexity. In Image, language, brain: Papers from the first mind artic-
ulation project symposium, 95–126.

Gibson, Edward, Leon Bergen & Steven T Piantadosi. 2013. Rational integration
of noisy evidence and prior semantic expectations in sentence interpretation.
Proceedings of the National Academy of Sciences 110(20). 8051–8056.

Gibson, Edward, Richard Futrell, Steven P Piantadosi, Isabelle Dautriche, Kyle
Mahowald, Leon Bergen & Roger Levy. 2019. How efficiency shapes human
language. Trends in Cognitive Sciences 23(5). 389–407.

37



Steven T. Piantadosi

Gold, E.M. 1967. Language identification in the limit. Information and Control
10(5). 447–474.

Goldberg, Adele E. 2003. Constructions: A new theoretical approach to language.
Trends in Cognitive Sciences 7(5). 219–224.

Goldberg, Adele E. 2006. Constructions at Work. Oxford University Press.
Goldberg, Adele E. 1995. Constructions: A construction grammar approach to argu-
ment structure. University of Chicago Press.

Goldberg, Yoav. 2019. Assessing BERT’s syntactic abilities. arXiv preprint
arXiv:1901.05287.

Goldstein, Ariel, Zaid Zada, Eliav Buchnik, Mariano Schain, Amy Price, Bobbi
Aubrey, Samuel A Nastase, Amir Feder, Dotan Emanuel, Alon Cohen, et al.
2022. Shared computational principles for language processing in humans and
deep language models. Nature Neuroscience 25(3). 369–380.

Goldstein, Jeffrey. 1999. Emergence as a construct: History and issues. Emergence
1(1). 49–72.

Gonen, Hila, Shauli Ravfogel, Yanai Elazar & Yoav Goldberg. 2020. It’s not Greek
to mBERT: inducing word-level translations from multilingual BERT. arXiv
preprint arXiv:2010.08275.

Goodman, Nelson. 1965. The new riddle of induction. In Fact, Fiction, and Fore-
cast.

Goodman, Noah D, Joshua B Tenenbaum & Tobias Gerstenberg. 2014. Concepts
in a probabilistic language of thought. Tech. rep. Center for Brains, Minds and
Machines (CBMM).

Goodman, Noah D, Tomer D Ullman & Joshua B Tenenbaum. 2011. Learning a
theory of causality. Psychological Review 118(1). 110.

Grand, Gabriel, Idan Asher Blank, Francisco Pereira & Evelina Fedorenko. 2022.
Semantic projection recovers rich human knowledge of multiple object fea-
tures from word embeddings. Nature Human Behaviour 6(7). 975–987.

Gulordava, Kristina, Piotr Bojanowski, Edouard Grave, Tal Linzen & Marco Ba-
roni. 2018. Colorless green recurrent networks dream hierarchically. arXiv
preprint arXiv:1803.11138.

Hahn, Michael, Dan Jurafsky & Richard Futrell. 2020. Universals of word order
reflect optimization of grammars for efficient communication. Proceedings of
the National Academy of Sciences 117(5). 2347–2353.

Harris, Randy Allen. 1993. The Linguistics Wars. Oxford University Press.
Hauser, Marc D, Noam Chomsky & W Tecumseh Fitch. 2002. The faculty of lan-

guage: what is it, who has it, and how did it evolve? Science 298(5598). 1569–
1579.

38



1 Modern language models refute Chomsky’s approach to language

Heavey, Christopher L & Russell T Hurlburt. 2008. The phenomena of inner ex-
perience. Consciousness and Cognition 17(3). 798–810.

Hewitt, John & Christopher D Manning. 2019. A structural probe for finding syn-
tax in word representations. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, 4129–4138.

Hill, Felix, Kyunghyun Cho, Sébastien Jean & Yoshua Bengio. 2017. The represen-
tational geometry of word meanings acquired by neural machine translation
models. Machine Translation 31. 3–18.

Hockett, Charles F. 1959. Animal “languages” and human language. Human Biol-
ogy 31(1). 32–39.

Hoover, Jacob Louis, Morgan Sonderegger, Steven T Piantadosi & Timothy J
O’Donnell. 2022. The plausibility of sampling as an algorithmic theory of sen-
tence processing. PsyArXiv.

Hosseini, Eghbal A, Martin A Schrimpf, Yian Zhang, Samuel Bowman, Noga Za-
slavsky & Evelina Fedorenko. 2022. Artificial neural network language models
align neurally and behaviorally with humans even after a developmentally re-
alistic amount of training. bioRxiv. 2022–10.

Hu, Jennifer, Jon Gauthier, Peng Qian, Ethan Wilcox & Roger P Levy. 2020. A
systematic assessment of syntactic generalization in neural language models.
arXiv preprint arXiv:2005.03692.

Hutter, Marcus. 2004. Universal Artificial Intelligence: Sequential decisions based
on algorithmic probability. Springer.

Jackendoff, Ray. 2013. Constructions in the Parallel Architecture. In The Oxford
Handbook of Construction Grammar.

Jelinek, Frederick. 1988. Applying information theoretic methods: Evaluation of
grammar quality. In Workshop on Evaluation of Natural Language Processing
Systems, Wayne, PA.

Johnson, K. 2004. Gold’s theorem and cognitive science. Philosophy of Science
71(4). 571–592.

Kanwisher, Nancy, Meenakshi Khosla & Katharina Dobs. 2023. Using artificial
neural networks to ask ‘why’ questions of minds and brains. Trends in Neuro-
sciences.

Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu & Dario Amodei. 2020.
Scaling laws for neural language models. arXiv preprint arXiv:2001.08361.

Kemp, Charles & Terry Regier. 2012. Kinship categories across languages reflect
general communicative principles. Science 336(6084). 1049–1054.

39



Steven T. Piantadosi

Kemp, Charles & Joshua B Tenenbaum. 2008. The discovery of structural form.
Proceedings of the National Academy of Sciences 105(31). 10687–10692.

Kemp, Charles, Yang Xu & Terry Regier. 2018. Semantic typology and efficient
communication. Annual Review of Linguistics 4. 109–128.

Kim, Najoung, Roma Patel, Adam Poliak, Alex Wang, Patrick Xia, R Thomas Mc-
Coy, Ian Tenney, Alexis Ross, Tal Linzen, Benjamin Van Durme, et al. 2019.
Probing what different NLP tasks teach machines about function word com-
prehension. arXiv preprint arXiv:1904.11544.

Kim, Taeuk, Jihun Choi, Daniel Edmiston & Sang-goo Lee. 2020. Are pre-trained
language models aware of phrases? Simple but strong baselines for grammar
induction. arXiv preprint arXiv:2002.00737.

Kirby, Simon, Tom Griffiths & Kenny Smith. 2014. Iterated learning and the evo-
lution of language. Current Opinion in Neurobiology 28. 108–114.

Kocijan, Vid, Ernest Davis, Thomas Lukasiewicz, Gary Marcus & Leora Mor-
genstern. 2022. The defeat of the Winograd schema challenge. arXiv preprint
arXiv:2201.02387.

Kocijan, Vid, Thomas Lukasiewicz, Ernest Davis, Gary Marcus & Leora Morgen-
stern. 2020. A review of Winograd schema challenge datasets and approaches.
arXiv preprint arXiv:2004.13831.

Koza, John R. 1994. Genetic programming as a means for programming comput-
ers by natural selection. Statistics and Computing 4. 87–112.

Kwiatkowski, Tom, Sharon Goldwater, Luke Zettlemoyer & Mark Steedman.
2012. A probabilistic model of syntactic and semantic acquisition from child-
directed utterances and their meanings. In Proceedings of the 13th Conference
of the European Chapter of the Association for Computational Linguistics, 234–
244.

Lake, Brenden M & Gregory L Murphy. 2021. Word meaning in minds and ma-
chines. Psychological Review.

Lake, Brenden M, Ruslan Salakhutdinov & Joshua B Tenenbaum. 2015. Human-
level concept learning through probabilistic program induction. Science
350(6266). 1332–1338.

Lake, Brenden M, Tomer D Ullman, Joshua B Tenenbaum & Samuel J Gershman.
2017. Building machines that learn and think like people. Behavioral and Brain
Sciences 40. e253.

Langley, Pat, Gary L Bradshaw &Herbert A Simon. 1983. Rediscovering chemistry
with the BACON system. Springer.

Lasnik, Howard. 2002. The minimalist program in syntax. Trends in Cognitive
Sciences 6(10). 432–437.

40



1 Modern language models refute Chomsky’s approach to language

Lasnik, Howard & Jeffrey Lidz. 2016. The argument from the poverty of the stim-
ulus.

Laurence, Stephen & Eric Margolis. 2001. The poverty of the stimulus argument.
The British Journal for the Philosophy of Science 52(2). 217–276.

LeCun, Yann, Yoshua Bengio & Geoffrey Hinton. 2015. Deep learning. Nature
521(7553). 436–444.

Legate, Julie Anne & Charles D Yang. 2002. Empirical re-assessment of stimulus
poverty arguments. The Linguistic Review 19(1-2). 151–162.

Legg, Shane & Marcus Hutter. 2007. Universal intelligence: A definition of ma-
chine intelligence. Minds and Machines 17. 391–444.

Liang, P., M.I. Jordan & D. Klein. 2009. Learning semantic correspondences with
less supervision. In Proceedings of the Joint Conference of the 47th Annual Meet-
ing of the ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP, vol. 1, 91–99.

Lin, Yongjie, Yi Chern Tan & Robert Frank. 2019. Open Sesame: getting inside
BERT’s linguistic knowledge. arXiv preprint arXiv:1906.01698.

Linzen, Tal &Marco Baroni. 2021. Syntactic structure from deep learning.Annual
Review of Linguistics 7. 195–212.

Liu, Nelson F, Matt Gardner, Yonatan Belinkov, Matthew E Peters & Noah A
Smith. 2019. Linguistic knowledge and transferability of contextual represen-
tations. arXiv preprint arXiv:1903.08855.

Liu, Yingtong, Elodie Winckel, Anne Abeillé, Barbara Hemforth & Edward Gib-
son. 2022. Structural, functional, and processing perspectives on linguistic is-
land effects. Annual Review of Linguistics 8. 495–525.

Lupyan, Gary & Rick Dale. 2010. Language structure is partly determined by
social structure. PLOS ONE 5(1). e8559.

Lupyan, Gary & Rick Dale. 2016. Why are there different languages? The role of
adaptation in linguistic diversity. Trends in Cognitive Sciences 20(9). 649–660.

Maas, Andrew, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng &
Christopher Potts. 2011. Learning word vectors for sentiment analysis. In Pro-
ceedings of the 49th annual meeting of the association for computational linguis-
tics: human language technologies, 142–150.

Mahowald, Kyle, Isabelle Dautriche, Mika Braginsky & Ted Gibson. 2022. Effi-
cient communication and the organization of the lexicon. In The Oxford Hand-
book of the Mental Lexicon.

Mahowald & Ivanova, Idan A Blank, Nancy Kanwisher, Joshua B Tenenbaum &
Evelina Fedorenko. 2023. Dissociating language and thought in large language
models: A cognitive perspective. arXiv preprint arXiv:2301.06627.

41



Steven T. Piantadosi

Manning, Christopher & Hinrich Schutze. 1999. Foundations of Statistical Natural
Language Processing. MIT press.

Manning, Christopher D, Kevin Clark, John Hewitt, Urvashi Khandelwal & Omer
Levy. 2020. Emergent linguistic structure in artificial neural networks trained
by self-supervision. Proceedings of the National Academy of Sciences 117(48).
30046–30054.

Marblestone, Adam H, Greg Wayne & Konrad P Kording. 2016. Toward an inte-
gration of deep learning and neuroscience. Frontiers in Computational Neuro-
science. 94.

Marvin, Rebecca & Tal Linzen. 2018. Targeted syntactic evaluation of language
models. arXiv preprint arXiv:1808.09031.

McCauley, Stewart M & Morten H Christiansen. 2019. Language learning as lan-
guage use: A cross-linguistic model of child language development. Psycholog-
ical Review 126(1). 1.

McClelland, James L, Felix Hill, Maja Rudolph, Jason Baldridge & Hinrich
Schütze. 2020. Placing language in an integrated understanding system: Next
steps toward human-level performance in neural languagemodels. Proceedings
of the National Academy of Sciences 117(42). 25966–25974.

McClelland, James L & Karalyn Patterson. 2002. Rules or connections in past-
tense inflections: What does the evidence rule out? Trends in cognitive sciences
6(11). 465–472.

McClelland, James L, David E Rumelhart & PDP Research Group. 1986. Parallel
distributed processing. MIT Press.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S Corrado & Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality.
Advances in Neural Information Processing Systems 26.

Mollica, Francis, Geoff Bacon, Noga Zaslavsky, Yang Xu, Terry Regier & Charles
Kemp. 2021. The forms and meanings of grammatical markers support effi-
cient communication. Proceedings of the National Academy of Sciences 118(49).
e2025993118.

Mollica, Francis & Steven T Piantadosi. 2019. Humans store about 1.5 megabytes
of information during language acquisition. Royal Society open science 6(3).
181393.

Murty, Shikhar, Pratyusha Sharma, Jacob Andreas & Christopher D Manning.
2022. Characterizing Intrinsic Compositionality In Transformers With Tree
Projections. arXiv preprint arXiv:2211.01288.

Nadel, Lynn & Massimo Piattelli-Palmarini. 2003. What is Cognitive Science. In
Encyclopedia of cognitive science.

42



1 Modern language models refute Chomsky’s approach to language

Newmeyer, Frederick J. 1991. Functional explanation in linguistics and the origins
of language. Language & Communication 11(1-2). 3–28.

Newport, Elissa L. 1990. Maturational Constraints on Language Learning. Cogni-
tive Science 14(1). 11–28.

Norvig, Peter. 2012. Colorless green ideas learn furiously: Chomsky and the two
cultures of statistical learning. Significance 9(4). 30–33.

Packard, Norman H, James P Crutchfield, J Doyne Farmer & Robert S Shaw. 1980.
Geometry from a time series. Physical Review Letters 45(9). 712.

Papadimitriou, Isabel, Ethan A Chi, Richard Futrell & KyleMahowald. 2021. Deep
subjecthood: Higher-order grammatical features in multilingual BERT. arXiv
preprint arXiv:2101.11043.

Papadimitriou, Isabel & Dan Jurafsky. 2020. Learning music helps you read: Us-
ing transfer to study linguistic structure in language models. arXiv preprint
arXiv:2004.14601.

Patel, Roma & Ellie Pavlick. 2022. Mapping language models to grounded con-
ceptual spaces. In International Conference on Learning Representations.

Pater, Joe. 2019. Generative linguistics and neural networks at 60: Foundation,
friction, and fusion. Language 95(1). e41–e74.

Pavlick, Ellie. 2022. Semantic structure in deep learning. Annual Review of Lin-
guistics 8. 447–471.

Pearl, Lisa. 2022. Poverty of the stimulus without tears. Language Learning and
Development 18(4). 415–454.

Pereira, Fernando. 2000. Formal grammar and information theory: together
again? Philosophical Transactions of the Royal Society of London. Series A: Math-
ematical, Physical and Engineering Sciences 358(1769). 1239–1253.

Perfors, Amy, Joshua B Tenenbaum & Terry Regier. 2011. The learnability of ab-
stract syntactic principles. Cognition 118(3). 306–338.

Petersen, Erika & Christopher Potts. 2022. Lexical semantics with large language
models: a case study of english break.

Piantadosi, Steven T & Edward Gibson. 2014. Quantitative standards for absolute
linguistic universals. Cognitive Science 38(4). 736–756.

Piantadosi, Steven T & Felix Hill. 2022. Meaning without reference in large lan-
guage models. arXiv preprint arXiv:2208.02957.

Piantadosi, Steven T & Robert A Jacobs. 2016. Four problems solved by the prob-
abilistic language of thought. Current Directions in Psychological Science 25(1).
54–59.

Piantadosi, Steven T, Harry Tily & Edward Gibson. 2012. The communicative
function of ambiguity in language. Cognition 122(3). 280–291.

43



Steven T. Piantadosi

Pinker, Steven & Alan Prince. 1988. On language and connectionism: Analysis
of a parallel distributed processing model of language acquisition. Cognition
28(1-2). 73–193.

Pires, Telmo, Eva Schlinger & Dan Garrette. 2019. How multilingual is multilin-
gual BERT? arXiv preprint arXiv:1906.01502.

Postal, Paul. 2012. Two case studies of Chomsky’s play acting at linguistics. Ling-
buzz.

Prince, Alan & Paul Smolensky. 1997. Optimality: From neural networks to uni-
versal grammar. Science 275(5306). 1604–1610.

Pullum, Geoffrey K. 1989. Formal linguistics meets the boojum. Natural language
& Linguistic theory. 137–143.

Pullum, Geoffrey K. 2007. The evolution of model-theoretic frameworks in lin-
guistics. Model-Theoretic Syntax at 10. 1–10.

Pullum, Geoffrey K. 2013. The central question in comparative syntactic metathe-
ory. Mind & Language 28(4). 492–521.

Pullum, Geoffrey K & Barbara C Scholz. 2002. Empirical assessment of stimulus
poverty arguments. The Linguistic Review 19(1-2). 9–50.

Pullum, Geoffrey K & Barbara C Scholz. 2009. For universals (but not finite-state
learning) visit the zoo. Behavioral and Brain Sciences 32(5). 466–467.

Quilty-Dunn, Jake, Nicolas Porot & Eric Mandelbaum. 2022. The best game in
town: The re-emergence of the language of thought hypothesis across the cog-
nitive sciences. Behavioral and Brain Sciences. 1–55.

Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya
Sutskever, et al. 2019. Language models are unsupervised multitask learners.
OpenAI blog 1(8). 9.

Reali, Florencia & Morten H Christiansen. 2005. Uncovering the richness of the
stimulus: Structure dependence and indirect statistical evidence. Cognitive Sci-
ence 29(6). 1007–1028.

Reali, Florencia & Morten H Christiansen. 2009. On the necessity of an interdis-
ciplinary approach to language universals. Language Universals. 266–77.

Redington, Martin, Nick Chater & Steven Finch. 1998. Distributional information:
A powerful cue for acquiring syntactic categories. Cognitive Science 22(4). 425–
469.

Reed, Homer B. 1916. The existence and function of inner speech in thought pro-
cesses. Journal of Experimental Psychology 1(5). 365.

Richards, Blake A, Timothy P Lillicrap, Philippe Beaudoin, Yoshua Bengio, Rafal
Bogacz, Amelia Christensen, Claudia Clopath, Rui Ponte Costa, Archy de
Berker, Surya Ganguli, et al. 2019. A deep learning framework for neuroscience.
Nature Neuroscience 22(11). 1761–1770.

44



1 Modern language models refute Chomsky’s approach to language

Roebuck, Hettie & Gary Lupyan. 2020. The internal representations question-
naire: Measuring modes of thinking. Behavior Research Methods 52. 2053–2070.

Rogers, Anna, Olga Kovaleva & Anna Rumshisky. 2021. A primer in BERTology:
What we know about how BERT works. Transactions of the Association for
Computational Linguistics 8. 842–866.

Rogers, Timothy T, James LMcClelland, et al. 2004. Semantic cognition: A parallel
distributed processing approach. MIT press.

Ross, John Robert. 1967. Constraints on variables in syntax. (Doctoral dissertation).
Rule, Joshua S, Joshua B Tenenbaum & Steven T Piantadosi. 2020. The Child as

Hacker. Trends in Cognitive Sciences 24(11). 900–915.
Rumelhart, David E & James L McClelland. 1986. On learning the past tenses of

English verbs. In Parallel Distributed Processing, volume 2.
Schmidt, Michael & Hod Lipson. 2009. Distilling free-form natural laws from

experimental data. Science 324(5923). 81–85.
Schrimpf, Martin, Idan Asher Blank, Greta Tuckute, Carina Kauf, Eghbal A Hos-

seini, Nancy Kanwisher, Joshua B Tenenbaum & Evelina Fedorenko. 2021.
The neural architecture of language: Integrative modeling converges on pre-
dictive processing. Proceedings of the National Academy of Sciences 118(45).
e2105646118.

Schrimpf, Martin, Jonas Kubilius, Michael J Lee, N Apurva Ratan Murty, Robert
Ajemian & James J DiCarlo. 2020. Integrative benchmarking to advance neu-
rally mechanistic models of human intelligence. Neuron 108(3). 413–423.

Shain, Cory, Clara Meister, Tiago Pimentel, Ryan Cotterell & Roger Philip Levy.
2022. Large-scale evidence for logarithmic effects of word predictability on
reading time. PsyArXiv.

Shannon, Claude E. 1948. A mathematical theory of communication. The Bell
System Technical Journal 27(3). 379–423.

Siegelmann, Hava T & Eduardo D Sontag. 1995. On the computational power of
neural nets. Journal of Computer and System Sciences 50(1). 132–150.

Siskind, J.M. 1996. A Computational Study of Cross-Situational Techniques for
Learning Word-to-Meaning Mappings. Cognition 61. 31–91.

Smolensky, Paul & Géraldine Legendre. 2006. The Harmonic Mind: From neural
computation to optimality-theoretic grammar. MIT press.

Socher, Richard, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Man-
ning, Andrew Y Ng & Christopher Potts. 2013. Recursive deep models for se-
mantic compositionality over a sentiment treebank. In Proceedings of the 2013
Conference on Empirical Methods in Natural Language Processing, 1631–1642.

45



Steven T. Piantadosi

Solan, Zach, David Horn, Eytan Ruppin & Shimon Edelman. 2005. Unsupervised
learning of natural languages. Proceedings of the National Academy of Sciences
102(33). 11629–11634.

Solomonoff, Ray J. 1964. A formal theory of inductive inference. Part I. Informa-
tion and Control 7(1). 1–22.

Spelke, Elizabeth S. 2003. What makes us smart? Core knowledge and natural
language. Language in mind: Advances in the study of language and thought.
277–311.

Steedman, Mark. 2001. The Syntactic Process. Cambridge MA: MIT Press.
Steinert-Threlkeld, Shane. 2020. Quantifiers in natural language optimize the

simplicity/informativeness trade-off. In Proceedings of the 22nd AmsterdamCol-
loquium, 513–522.

Steinert-Threlkeld, Shane & Jakub Szymanik. 2019. Learnability and semantic
universals. Semantics and Pragmatics 12. 1–39.

Steinert-Threlkeld, Shane & Jakub Szymanik. 2020. Ease of learning explains se-
mantic universals. Cognition 195. 104076.

Tabor, Whitney. 2000. Fractal encoding of context-free grammars in connection-
ist networks. Expert Systems 17(1). 41–56.

Tabor, Whitney, Cornell Juliano & Michael K Tanenhaus. 1997. Parsing in a dy-
namical system: An attractor-based account of the interaction of lexical and
structural constraints in sentence processing. Language and Cognitive Pro-
cesses 12(2-3). 211–271.

Takens, Floris. 1981. Detecting strange attractors in turbulence. In Dynamical sys-
tems and Turbulence, 366–381. Springer.

Tenenbaum, Joshua B, Charles Kemp, Thomas L Griffiths & Noah D Good-
man. 2011. How to grow a mind: Statistics, structure, and abstraction. Science
331(6022). 1279–1285.

Tenney, Ian, Dipanjan Das & Ellie Pavlick. 2019. BERT rediscovers the classical
NLP pipeline. arXiv preprint arXiv:1905.05950.

Tenney, Ian, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas Mc-
Coy, Najoung Kim, Benjamin Van Durme, Samuel R Bowman, Dipanjan Das,
et al. 2019. What do you learn from context? probing for sentence structure in
contextualized word representations. arXiv preprint arXiv:1905.06316.

Thompson, Bill, Simon Kirby & Kenny Smith. 2016. Culture shapes the evolution
of cognition. Proceedings of the National Academy of Sciences 113(16). 4530–
4535.

Tomasello, Michael. 2000. The item-based nature of children’s early syntactic
development. Trends in Cognitive Sciences 4(4). 156–163.

46



1 Modern language models refute Chomsky’s approach to language

Tomasello, Michael. 2005. Constructing a language: A usage-based theory of lan-
guage acquisition. Harvard university press.

Turing, AM. 1950. Computing Machinery and Intelligence.
Udrescu, Silviu-Marian & Max Tegmark. 2020. AI Feynman: A physics-inspired

method for symbolic regression. Science Advances 6(16). eaay2631.
Ullman, Tomer D, Noah D Goodman & Joshua B Tenenbaum. 2012. Theory learn-

ing as stochastic search in the language of thought. Cognitive Development
27(4). 455–480.

Vaswani, Ashish, NoamShazeer, Niki Parmar, JakobUszkoreit, Llion Jones, Aidan
N Gomez, Łukasz Kaiser & Illia Polosukhin. 2017. Attention is all you need.
Advances in Neural Information Processing Systems 30.

Warstadt, Alex & Samuel R Bowman. 2020. Can neural networks acquire a struc-
tural bias from raw linguistic data? arXiv preprint arXiv:2007.06761.

Warstadt, Alex & Samuel R Bowman. 2022. What artificial neural networks can
tell us about human language acquisition. In Algebraic Structures in Natural
Language, 17–60. CRC Press.

Warstadt, Alex, Yu Cao, Ioana Grosu, Wei Peng, Hagen Blix, Yining Nie, Anna
Alsop, Shikha Bordia, Haokun Liu, Alicia Parrish, et al. 2019. Investigat-
ing BERT’s knowledge of language: Five analysis methods with NPIs. arXiv
preprint arXiv:1909.02597.

Warstadt, Alex, Leshem Choshen, Aaron Mueller, Adina Williams, Ethan Wilcox
& Chengxu Zhuang. 2023. Call for Papers–The BabyLM Challenge: Sample-
efficient pretraining on a developmentally plausible corpus. arXiv preprint
arXiv:2301.11796.

Warstadt, Alex, Amanpreet Singh & Samuel R Bowman. 2019. Neural network
acceptability judgments. Transactions of the Association for Computational Lin-
guistics 7. 625–641.

Wei, Jason, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian
Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler,
et al. 2022. Emergent abilities of large language models. arXiv preprint
arXiv:2206.07682.

Weissweiler, Leonie, Taiqi He, Naoki Otani, David R Mortensen, Lori Levin &
Hinrich Schütze. 2023. Construction grammar provides unique insight into
neural language models. arXiv preprint arXiv:2302.02178.

Wexler, Kenneth & Peter W Culicover. 1980. Formal Principles of Language Acqui-
sition, vol. 76. MIT Press.

Wilcox, Ethan, Roger Levy, Takashi Morita & Richard Futrell. 2018. What do
RNN language models learn about filler-gap dependencies? arXiv preprint
arXiv:1809.00042.

47



Steven T. Piantadosi

Wilcox, Ethan Gotlieb, Richard Futrell & Roger Levy. 2022. Using computational
models to test syntactic learnability. Linguistic Inquiry. 1–88.

Yang, Yuan & Steven T Piantadosi. 2022. One model for the learning of language.
Proceedings of the National Academy of Sciences 119(5). e2021865119.

Ye, Hao & George Sugihara. 2016. Information leverage in interconnected ecosys-
tems: Overcoming the curse of dimensionality. Science 353(6302). 922–925.

Zaslavsky, Noga, Terry Regier, Naftali Tishby & Charles Kemp. 2019. Seman-
tic categories of artifacts and animals reflect efficient coding. arXiv preprint
arXiv:1905.04562.

Zhang, Chiyuan, Samy Bengio, Moritz Hardt, Benjamin Recht & Oriol Vinyals.
2021. Understanding deep learning (still) requires rethinking generalization.
Communications of the ACM 64(3). 107–115.

Zhang, Yian, Alex Warstadt, Haau-Sing Li & Samuel R Bowman. 2020. When do
you need billions of words of pretraining data? arXiv preprint arXiv:2011.04946.

Zipf, George Kingsley. 1965. The psycho-biology of language: An introduction to
dynamic philology. MIT Press.

48


	1 Modern language models refute Chomsky's approach to language Steven T. Piantadosi 

