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Abstract

This chapter addresses a series of interrelated questions about the origin
of syntactic structures: How do language learners generalize from the linguis-
tic stimulus with which they are presented? To what extent does linguistic
cognition recruit domain-general (i.e. not language-specific) processes and rep-
resentations? And to what extent are rules and generalizations about linguistic
structure separate from rules and generalizations about linguistic meaning?
We address these questions by asking what syntactic generalizations can be
acquired by a domain-general learner from string input alone. The learning al-
gorithm we deploy is a neural-network based Language Model (Radford et al.,
2019), which has been trained to provide probability distributions over strings
of text. We assess its linguistic capabilities by treating it like a human subject
in a psycholinguistics experiment, and inspect behavior in controlled, factor-
ized tests that are designed to reveal the learning outcomes for one particular
syntactic generalization. The tests presented in this chapter focus on a variety
of syntactic phenomena in two broad categories: rules about the structure of
the sentence and rules about the relationships between smaller lexical units, in-
cluding scope and binding. Results indicate that our target model has learned
many subtle syntactic generalizations, yet it still falls short of humanlike gram-
matical competence in some areas, notably for cases of parasitic gaps (e.g. “I
know what you burned after reading yesterday”). We discuss the im-
plications of these results under three interpretive frameworks, which view the
model as (a) a counter-argument against claims of linguistic innateness, (b) a
positive example of syntactic emergentism, and (c) a fully-articulated model of
grammatical competence.

1 Introduction

How do we gain knowledge about the representations that underlie linguistic com-
munication? For the last fifty years, researchers have relied on a combination of
introspective judgements and experimental results. This dual approach has been ef-
fective, in part because much of the research has focused on adult human subjects,
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who are capable of both describing internal judgements and producing experimentally-
controlled behavior. However, recent advances in computing have produced a new
generation of artificial linguistic agents who, for the first time, learn to produce output
that could plausibly be called “humanlike” in its sophistication. Their performance
has led researchers to ask whether they exhibit the same type of generalizations that
underlie human linguistic communication. This chapter addresses both the epistemic
question—how can we gain knowledge about what artificial agents have learned?—as
well as several possible inferences that can be drawn from these results for linguistic
theory. We focus on the learning outcomes of Artificial Neural Networks (ANNs),
algorithms that can learn arbitrary relationships between input and output by repre-
senting information at one or more intermediary, or hidden, layers of representation.
In particular, we investigate application of ANNs, known as language models (LMs):
algorithms trained on large amounts of text that assign joint probability distributions
over strings, which can be used to produce a probability distribution over a target
word given its preceding context. In our case, all of our language models are trained
on English. The ANNs we use are domain-general learning algorithms in the sense
that they are general-purpose pattern recognizers, and have been used to success-
fully model data as disparate as photos of flowers and vehicles (Chen et al., 2020;
Dosovitskiy et al., 2021) to the structure of proteins (Rives et al., 2021).

We will begin our discussion by presenting one answer to the empirical question—
how can we gain knowledge about what artificial agents have learned? We introduce a
paradigm for probing these models, dubbed the “psycholinguistics paradigm” because
it treats ANNs like human subjects in a psycholinguistics experiment. In Section 3
and Section 4, we present case studies on specific syntactic phenomena in two different
areas. While the ANNs discussed produce surprisingly human-like linguistic behavior,
we argue that they do not in themselves constitute a theory of linguistic cognition —
just as a human brain in itself does not constitute a theory of linguistic cognition. In
order to make inferences about the knowledge underlying linguistic communication
from ANN behavior, in Section 5, we discuss three interpretive frameworks, and
discuss their implications for theories and future research.

2 Methods: Psycholinguistic Assessment of ANNs

Here we analyze Autoregressive Language Models (henceforth simply LMs) (Elman,
1990, 1991) that are trained to predict the next token xi given a context of preceding
tokens x−i—P (xi|x−i). The theoretical and practical reasons to use LMs to address
learnability questions in natural language syntax are compelling. Incremental word
prediction plays a major role in human language processing (Hale, 2001; Levy, 2008a;
Kuperberg and Jaeger, 2016), demonstrating that the autoregressive LM objective
function corresponds to a highly optimized function for language in the human mind.
If grammatical abstractions emerge from the application of general-purpose learn-
ing models trained on this objective function using human-scale learning data, it
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places plausible lower bounds on the learnability of those abstractions. From an en-
gineering standpoint, contemporary LMs have achieved impressive apparent fluency
in the language they generate (Jozefowicz et al., 2016; Radford et al., 2019; Brown
et al., 2020), raising for for the first time the prospect that sophisticated human-like
grammatical abstractions could potentially be emergent in models trained without
explicit grammatical supervision. However, these outputs—probability distributions
of multi-thousand word vocabularies–are difficult to interpret. How, then, can we
evaluate whether a model has “learned” a certain syntactic generalization? Two
classes of approaches to this problem have emerged in recent years. The first is to
focus on the internal representations learned by the model, attempting to find ho-
momorphisms between these representations and the representations postulated by
linguists (Giulianelli et al., 2018, and Hewitt and Manning, 2019; Hewitt et al., 2020
for LMs trained on the closely related Cloze objective function). Here, we take the
alternate approach of behavioral testing, elucidating the implications of the mod-
els’ word-by-word probability distributions for whether they are making human-like
grammatical generalizations (building on previous work such as Linzen et al., 2016;
Gulordava et al., 2018).

We can reveal what syntactic generalizations have been implicitly learned by an
ANN by inspecting their conditional word probabilities values in controlled, factorized
tests that are designed to reveal the learning outcomes for one particular syntactic
rule, or generalization. These tests are inspired by the types deployed in psycholin-
guistic studies (Linzen et al., 2016; Futrell et al., 2018). Because of this, we refer
to this methodology as the “Psycholinguistic Assessment Paradigm” for analysis of
ANNs. To get an intuition about how these tests can reveal learned generalizations
about the structure of a context C and what structures it can co-occur with, consider
a comparison between two different contexts, C1 and C2, within which a critical word
or phrase, w, can only occur with non-negligible probability if a latent structural
property X holds of the context. For example, (1-a) is a famous garden-path sen-
tence, where the context C1 is structurally ambiguous between man serving as the
head noun of the subject (premodified by the adjective old) versus as the main verb
of the clause (in which case The old is a nounless subject); (1-b) is its unambiguous
counterpart.

(1) a.

C1︷ ︸︸ ︷
The old man. . . the walls. [Ambiguous]

b.

C2︷ ︸︸ ︷
The old manned. . . the walls. [Unambiguous]

In this case, the garden-path disambiguating word the requires that the preceding
word was the main verb of the clause; this is the latent property X that must hold
of the context. We can rewrite P (w|C) making explicit the marginalization over
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whether X holds:

P (w|C) = P (w|X,C)P (X|C) + P (w|¬X,C)P (¬X|C) (1)

and, since P (w|¬X,C) ≈ 0,

P (w|C) ≈ P (w|X,C)P (X|C). (2)

Furthermore, we specifically focus on cases where P (w|X,C1) ≈ P (w|X,C2)—that
is, if the latent property X holds, there is little difference betweeen the contexts
of how likely w is. In Example (1), for example, if man/manned is a verb, then
the only difference between the variants is whether the verb is in present or past
tense; this difference is unlikely to affect whether a direct object comes next or what
direct object is likely. In such cases, what pushes around the relative probability of
w is P (X|C1) versus P (X|C2), namely how strongly the context predicts the latent
property X. This means that the P (w|C1) versus P (w|C2) comparison, which we can
easily compute for any trained LM, can be used to assess whether and how strongly
the model’s word predictions reflect the latent structural generalizations of interest.

The decomposition of Equation 2 offers us something further, too. In practice,
we will be testing models using collections of sentence sets, or “items”. Across items,
the lexical particulars vary but the structural properties of the context are consistent;
within an item, the lexical particulars are very tightly controlled. By taking the log
of the inverse of the conditional word probability we get its surprisal (Hale, 2001;
Levy, 2008a), converting a product into sums:

S(w|C) ≡ log
1

P (w|C)
≈ log

1

P (w|X,C)
+ log

1

P (X|C)

Due to lexical differences, the first term log 1
P (w|X,C)

is likely to vary substantially
across items, but not within an item. This means that we can use within-items
repeated-measures analysis across multiple items to zero in on the presence and ro-
bustness of differences across contexts in the second term, log 1

P (X|C)
, which is what

we are really interested in: has the model acquired a generalization about what latent
structures fit in what contexts? We use base-2 logs so that surprisals are measured in
bits : one bit is associated with observing an event that occurs with probability 1/2, an
event with probability 1 has a surprisal of 0 bits, and an event that is impossible has
an infinite number of bits of surprisal. Surprisal also plays a substantial theoretical
role in psycholinguistics: a word’s surprisal contributes linearly to the amount of time
it takes a native speaker to read it in naturalistic text (Hale, 2001; Smith and Levy,
2013; Goodkind and Bicknell, 2018; Wilcox et al., 2020, though see Brothers and
Kuperberg, 2021). Using surprisal as a linking function allows us to make concrete
predictions about model outputs based on human behavior, both in absolute terms
(word xi should be assigned approximate probability p based on human processing
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times) and in relative terms (word xi should be assigned a lower probability than
word yi).

Connecting with experimental psycholinguistics terminology, we can think of Ex-
ample (1) as one “item” in two “conditions”: Unambiguous, in which the sentence
up to “the walls”, is unambiguously an NP+VP, and Ambiguous, in which the first
part is ambiguous between NP and NP+VP interpretations. Each item in the test
contains a critical region, which is the underlined NP “the walls.” If the model has
learned that (1-a) is ambiguous between two interpretations, then it should assign
the critical region a lower probability in this condition. Or, in terms of surprisal:

S(the walls|The old manned) < S(the walls|The old man). (3)

However, the converse is not necessarily true: as this prediction only considers a single
sentence pair, a given ANN model could produce output satisfying this criterion
without learning the proper generalization. Thus, in order to abstract away from
particular lexical items and sentential contexts, we assess models on suites of test
items all of which exemplify the syntactic context and continuation of interest, and
formulate our predictions over conditions instead of individual items. For example,
we would generalize the single-item prediction in Equation (3) to

S(NP|Unambiguous prefix) < S(NP|Ambiguous prefix), (4)

and when the word and prefix are sufficiently clear, we will simply write the condi-
tion name. Typically, test suites consist of 20-40 items in four conditions, with two
predictions that specify an inequality between two conditions. If the model were to
assign random probabilities to each word, it should make the correct guess ∼ 50% of
the time, for each prediction. All of our test suites come from www.syntaxgym.org,
a website for hosting and sharing syntactic test suites (Gauthier et al., 2020). (We
encourage readers of this article to explore SyntaxGym and create their own test
suites to assess whatever aspect of syntax they wish.)

So far, we have been discussing ANN models only in the abstract. For the rest of
this chapter we will look at the learning outcomes of GPT-2 (Radford et al., 2019),
a large Transformer-based language model. Transformers (Vaswani et al., 2017) are
a type of ANN architecture that has recently become dominant in machine learning
research. While previous architectures encoded linear order through a mechanism
called recurrence, in which the network sequentially consumed pieces of input (Elman,
1990; Hochreiter and Schmidhuber, 1997), Transformers encode linear order into their
input directly and keep track of the relative importance of the relationship between
each input piece at each layer of representation. The version of GPT-2 reported here
was trained on a corpus of web-text that contained ∼8 billion tokens. Under the
assumption that children are exposed to about 30,000 words per day (≈ 11-million
words per year) (Hart and Risley, 1995), this model has the linguistic experience
comparable to about 8 human lifetimes. Results for other models, including models
that implement recurrence, are hosted online at syntaxgym.org.
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3 Gross Syntactic State: Complementizer Phrases

One of the key features of human language is that groups of adjacent lexical items
form larger phrasal units, which are recursively nested within each other. The tests
in this section are designed to assess whether the models have learned (1) whether
groups of words form larger, cohesive phrases; and (2) whether they have learned
to make generalizations about the phrase as a whole. The type of phrase we focus
on here are Complementizer Phrases (CPs), which are the theoretical equivalent of
sentences. In the base case, chunks of words that form CPs must constitute distinct
utterances, which are orthographically distinguished in English with end-of-sentence
punctuation. However, there are a variety of strategies that can be used to combine
multiple CPs together in a single sentence, including conjunction, subordination and
relativization. The tests deployed here leverage the latter two strategies to assess
what models have learned about CPs and how they can be combined.

3.1 Subordination

Subordinating conjunctions, such as when, as, or while, set up temporal relation-
ships between a matrix and subordinate CP. In order to test whether our model of
interest has learned the proper generalizations about these words and the type of
phrasal units they conjoin, test suites were created along the lines of (2). (Critical
regions are underlined in this and future examples.) Two predictions should hold:
First, if models have learned that presence of a subordinator necessitates the presence
of two CPs, then end-of-sentence punctuation after the first phrase should be more
surprising when a subordinator is present than when it is absent. That is, the pe-
riod should have higher surprisal in the [+subordinator, -matrix] condition than
the [-subordinator, -matrix] condition (Prediction 1). Second, if models have
learned that two CPs cannot exist in the same sentence without conjunction then
the second CP should have higher surprisal when no subordinator is present; i.e.,
in the [-subordinator, +matrix] condition compared to the [+subordinator,
+matrix] condition (Prediction 2).

(2) Subordination

a. As the doctor studied the book, the nurse walked into the office. [+sub-
ordinator, +matrix]

b. *As the doctor studied the book. [+subordinator, -matrix]
c. *The doctor studied the book, the nurse walked into the office. [-subordinator,

+matrix]
d. The doctor studied the book. [-subordinator, -matrix]

The results for this experiment are shown in Figure 1. We first focus on the
left panel. Each sentence fed to the model is broken into non-overlapping regions,
shown on the x-axis. The region of interest for our two predictions is the main clause,
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Figure 1: Subordination. Left: sum GPT-2-derived surprisal in each sentence
region, averaged across items in test suite. Target region is highlighted with gray
box and shown in boldface. Right: average sum surprisal in target region for each
condition. GPT-2 output is consistent with the expectation of a matrix clause when
a subordinator is present, and end-of-sentence punctuation when a subordinator is
absent.

which is highlighted in bold. As a region may contain multiple tokens, the y-axis
shows the summed surprisal across tokens for each region, averaged across all the
items in a test suite. We now turn to the performance of GPT-2 with respect to the
two predictions described above. For Prediction 1, GPT-2 achieves 95.7% accuracy,
and for Prediction 2, it achieves 100% accuracy. This is reflected in the relative
height of the bars in the right panel (corresponding to surprisal at the target region):
Although it is not visually obvious from the scale, the [+subordinator, -matrix]
bar is higher than the [-subordinator, -matrix] bar, as expected by Prediction 1;
more visually evident is the fact that the [-subordinator, +matrix] bar is higher
than the [+subordinator, +matrix] bar, as expected by Prediction 2. Overall,
these results are consistent with the model having learned the relationship between
subordiators and CPs.

3.2 Relative Clauses

One other way to conjoin CPs in a single sentence is via relativization, where a CP
has been inserted medially into a host clause along the lines of (3), below. In this case,
there is a dependency relationship between the top-level subject Noun Phrase and the
verb of the embedded CP. Crucially, there are also dependencies that exist between
the subject and verb at each CP layer, and because of the rules on relativization these
follow a first-in-first out linear order—the first verb must have as its subject the last
noun (artist/painted), and the second verb must have the first noun as its subject
(painting/deteriorated).
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(3) [CP1 The paintingN1 [CP2 that the artistN2 with the long dark hair paintedV 2

] deterioratedV 1].

In order to test whether GPT-2 has learned the proper syntactic generalization about
relativization, we exploit this last-in-first-out rule for subject/verb relationships in
test suites following (4), below. Sentences are created with two NPs and two verbs
such that one pairing of the two is semantically plausible and the other pairing is
implausible. In addition, we use verb transitivity to add an additional element of
plausibility; one reason why “deteriorated” is implausible as the first verb in the
example above is because it is used intransitively in the vast majority of cases.1 If
the model has learned the last-in-first-out rule for relativized CPs, then it should be
less surprised by the condition that forces the plausible pairing than the implausible
one. Each sentence also contains a relative clause modifying the second NP, such
that a model cannot succeed simply by assigning higher probability to the bigram
“artist painted” than “artist deteriorated” without recourse to the rest of the sentence
(cf. (3)). In (4), for example, it is implausible that a painting could paint and an
artist could deteriorate, at least compared to the more plausible condition where the
artist paints and the painting deteriorates. Therefore, we expect a model that has
learned the correct relativization pattern to assign higher surprisal to “deteriorated
painted” than “painted deteriorated”, given the same prefix “The painting that the
artist who lived long ago” (i.e., Simplausible > Splausible).

(4) Relativized Complements (Center Embedding)

a. The painting that the artist who lived long ago painted deteriorated.
[plausible]

b. The painting that the artist who lived long ago deteriorated painted. [im-
plausible]

The results for this experiment are shown in Figure 2, again with regions on the
x-axis and summed surprisal for each sentence region on the y-axis. At the critical
regions, the blue line, which indicates surprisal in the implausible condition is higher
than the red line, which indicates surprisal in the plausible condition. Looking at
accuracy scores, GPT-2 achieves 85.7% accuracy on this test suite, indicating that it
has learned the proper last-in-first-out rule for embedded clause completion.

3.3 Main Verb / Reduced Relative Clause Gardenpath Ef-
fects

Gardenpath sentences are sentences in which an initial, locally plausible, interpre-
tation becomes globally implausible at a certain point, resulting in a variety of

1According to the data from Goldberg and Orwant (2013), it is used intransitively in over 98%
of occurances (see https://github.com/wilcoxeg/verb\_transitivity)
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Figure 2: Center embedding. Left: sum GPT-2-derived surprisal in each sentence
region, averaged across items in test suite. Right: average surprisal summed over
target regions for each condition. GPT-2 output is consistent with the last-in-first-
out rule for pairing nouns and verbs in relativized CPs.

well-studied processing effects, including regressive checking and slowdown in reading
times (Pritchett, 1988; Ferreira and Henderson, 1991; Ferreira et al., 2001). At the
outset, we introduced our methods using the famous gardenpath sentence “The old
man the walls”, however here we focus on a different type of gardenpath, called the
Main-Verb/Reduced-Relative (MV/RR) gardenpath. For example, the string “The
woman brought a sandwich from the kitchen...” is ambiguous between two interpre-
tations: a Main-Verb Interpretation, in which the verb brought is a past-tensed verb
associated with the matrix clause of the sentence, and the Reduced Relative Inter-
pretation, in which brought is a passive participle, associated with a reduced relative
clause. The two interpretations are given in (5), below.

(5) “The woman brought a sandwich...”

a. [CP [NPThe woman] [V Pbrought a sandwich] ] (Main-Verb
Interpretation)

b. [NP The woman [CP (who was) brought a sandwich] ] (Reduced Relative
Interpretation)

Crucially, the two different interpretations should lead to differing expectations for
upcoming material. The main-verb interpretation should lead to expectations for
end-of-sentence punctuation, adjuncts and other CP-modifiers, or coordinating con-
junctions following sandwich. The reduced relative interpretation should lead to ex-
pectations for a verb, which is still required to complete the sentence. Because the
statistics of English heavily favor the main verb interpretation (brought is rarely used
as a passive particle), most people reading (5) parse the sentence along (5-a)—they
are “led down the garden path”—and are surprised if they encounter a subsequent
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verb. Note that, while the other tests in this chapter discuss model behavior between
sets of items that differ in terms of their grammaticality, gardenpath sentences are
not technically ungrammatical. What this test suite does have in common with the
others, is that critical regions create a violation of structural expectations. These
underlying structural expectations are the object of our interest—grammatical viola-
tions and gardenpath sentences are both useful for revealing them.

While garden-path effects have traditionally been used to gain insight into how
the human processor manages uncertainty during online interpretation, they rely on
assumptions that the processor is forming specific types of representations over which
to have uncertainty in the first place. While previous investigation of gardenpath
effects in ANNs has demonstrated how they can be used as models of psycholinguis-
tic processing (Futrell et al., 2018; Van Schijndel and Linzen, 2018, 2021), we use
them here to build up empirical support for the hypothesis that ANNs have learned
abstract phrasal units including complex NPs and CPs. We do so by creating test
suites following (6), where items can come in one of four conditions: The main verb
can either be ambiguous or unambiguous between being a main verb and a re-
duced relative; for example, brought is ambiguous but given is not. Additionally,
sentences can be unreduced in which case they explicitly introduce relative clauses
with the relativizer and passivizer who was, or else they can be reduced, in which
case the relative clause is not signaled overtly. Note that the only condition which
is a true ‘gardenpath’ is the [reduced, ambiguous] condition; even though brought
is ambiguous by itself, when it is preceded by a passive verb (as in was brought)
it can only be analyzed as introducing a relative clause. Therefore, if models had
correctly learned that both passive participles and overt relativization and passiviza-
tion introduce relative clauses that modify the subject NP, they should find the main
verb tripped more surprising in this condition than in any of the others. In other
terms, we expect an interaction between reduction and ambiguity that results in
a superadditive amount of surprisal.

(6) MV/RR Gardenpath Effects:

a. The woman brought a sandwich from the kitchen tripped on the carpet.
[reduced, ambiguous]

b. The woman who was brought a sandwich from the kitchen tripped on the
carpet. [unreduced, ambiguous]

c. The woman given a sandwich from the kitchen tripped on the carpet.
[reduced, unambiguous]

d. The woman who was given a sandwich from the kitchen tripped on the
carpet. [unreduced, unambiguous]

The results for this experiment are shown in Figure 3. The top plot shows the
region-by-region surprisal for GPT-2, with regions on the x-axis and summed surprisal
on the y-axis. We can see that, as per our prediction, the [reduced, ambiguous]
condition induces higher surprisal than any of the other conditions in the critical
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GPT-2 Results: Region-by-Region Surprisal

Human Results: Region-by-Region Processing Times

Figure 3: Main Verb / Reduced-Relative Clause Gardenpath Effects. Top:
mean sum surprisal in each sentence region for GPT-2. Bottom: mean reading time
(ms) in each sentence region for human subjects. Both GPT-2 and humans show
increased processing difficulty when the sentence is ambiguous between two structural
interpretations.
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region (the main verb). To compare model-derived surprisal to word-by-word pro-
cessing times in human subjects, we show reading time data from Vani et al. (2021)
on the y-axis of the bottom plot. Processing times are collected using the Maze task
(Forster et al., 2009; Boyce et al., 2020), an experimental paradigm in which partici-
pants read through a sentence one word at a time. For each word, they must select
between a correct and plausible continuation and an implausible distractor word. The
time that it takes to make this selection has been shown to be a good measure of
incremental processing difficulty, with reduced spillover effects, which are a common
feature of other incremental processing measures, such as self-paced-reading (Boyce
et al., 2020). By framing the model’s incremental predictions as surprisal values, we
can see how its behavior is strikingly similar to that of human subjects in two key
ways. First, we find increased RTs and surprisal values for passive participles (i.e.,
for given) in the [reduced, unambiguous] condition. And more importantly, we
see hugely elevated RTs and surprisal values in the critical region for the [reduced,
ambiguous] condition. Overall, these results compatible with the hypothesis that
models, like humans, are deriving different structural interpretations of the different
conditions, which drive expectation for upcoming material.

One extremely revealing and previously unreported pattern shows up in these
data. Even though the verb given unambiguously introduces a relative clause, we find
that GPT-2 is still slightly ‘gardenpathed’ by it. That is, we find elevated surprisal
at tripped in the critical region for the [reduced, unambiguous] condition (dotted
red line). This same ‘gardenpath ghost’ effect shows up in human reading times, too,
where we find elevated RTs for ‘tripped’ in the same condition. Traces of this effect
have been observed in previous studies (F. Ferreira, P.C.), however the increased
sensitivity of the Maze task means Vani et al. (2021) is the first to report the effect
as significant. For humans, this effect could be explained by a noisy channel process
(Shannon, 1956), which has been hypothesized to be at-play in a number of language
processing phenomena (Levy, 2008b). The string “The woman given...” may be so
unlikely that participants re-interpret it as the active past-tense “The woman gave...”,
which leads to a garden-path effect, with similar re-interpretations for other items in
the test suite. However, it is unclear whether and how models could implement such
reinterpretation. Thus, these data present an interesting and open question that
demands further investigation.

4 Dependencies, Scope and Binding

In this section, we take a look at the syntactic generalizations learned by GPT-2 that
have to do with the co-variation between individual lexical items and phrasal units
that are “smaller” than CPs, particularly Noun Phrases.
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4.1 Filler–Gap Dependencies

Filler–gap dependencies are dependencies between a filler (a wh-word such as who
or what) and a gap, which is an empty syntactic position (denoted with underscores
in examples below). The relationship is a true bidirectional dependency, in that
the presence of a filler necessitates the presence a downstream gap, and gaps are
not licensed in the absence of an upstream filler. We assess whether GPT-2 has
learned this dependency by creating a test suite with four conditions, outlined in
(7). If the model has learned that gaps must be licensed by a filler, then after
encountering a transitive verb the model should expect an NP. Thus, skipping over
the NP gap and proceeding directly to an indirect object (to the patient) should be
less surprising when a filler is present compared to when it is absent. That is, at
the indirect object, S[+filler, +gap] < S[-filler, +gap] (Prediction 1). Conversely, if the
model has learned that fillers set up expectations for gaps that must be discharged
at likely gap sites, then the direct object of a verb the new medicine should be more
likely in the absence of a filler than in its presence. That is, at the direct object,
S[-filler, -gap] < S[+filler, -gap] (Prediction 2). For both of these predictions, in order
to appropriately set up expectations for either objects or gaps in object position, we
used obligatorily transitive verbs, such as administer in our example below.2

(7) Filler–Gap Dependencies

a. I remember what the nurse should administer to the patient without
further delay. [+filler, +gap]

b. *I remember what the nurse should administer the new medicine to the
patient without further delay. [+filler, -gap]

c. *I remember that the nurse should administer to the patient without
further delay. [-filler, +gap]

d. I remember that the nurse should administer the new medicine to the
patient without further delay. [-filler, -gap]

The results for this experiment are shown in Figure 4, with each sentence region
on the x-axis and summed surprisal for all the words in that region on the y-axis. As
expected from Prediction 1, we find that the post-gap preposition is higher surprisal
in the [-Filler, +Gap] condition than in the [+Filler, +Gap] condition. The
model has an accuracy score of 95.8% for this prediction. Turning towards Prediction
2, GPT-2 exhibits higher surprisal in the filled argument position when a filler is
present (i.e, in [+Filler, -Gap]) compared to when it is absent ([-Filler, -Gap]),
and the model is 100% accurate for this prediction. These high scores suggest that the
model has learned the correct bidirectional dependency between fillers and gaps. See
www.syntaxgym.org for suites that test gaps in subject and indirect object position,
for which we find similar, high accuracy performance.

2These tests are adapted from Wilcox et al. (2018); for a fuller discussion of the paradigm see
Wilcox et al. (2021).
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Figure 4: Filler–Gap Dependencies (Object Gap). Left: sum GPT-2-derived
surprisal in each sentence region, averaged across items in test suite. Surprisal values
at the object position in the +Gap conditions are shown as 0 for visualization pur-
poses. Note that the target region is different for +/-Gap conditions (as indicated
by red and blue outlines, respectively). Right: average surprisal summed over target
region for each condition. GPT-2 output is consistent with the bidirectional depen-
dency between fillers and gaps in object position.

4.1.1 Island constraints

Filler–gap dependencies have played an outsized role in generative linguistics, in part
because they are one of the few dependencies that is claimed to be truly unbounded.
Gaps can be licensed by fillers that are an arbitrary (and possibly infinite!) number of
nodes away in a phrase structure. But while the dependency is potentially unbounded
in length, it is not entirely unconstrained. For example, gaps are licensed in subject,
object, or indirect object position in embedded clauses, but gaps are not licensed
when they appear in an adjunct phrase attached to the clause, as demonstrated in
(8).

(8) * I know who the nurse admitted the patient after inspecting yesterday
night.

The structural constraints on filler–gap dependency are known as island constraints
(Ross, 1967). Island constraints have been one of the core empirical patterns cited
as evidence for Nativist approaches to language (Phillips, 2013)—children within the
same language community learn island constraints without any direct supervision,
and the same types of structural configurations give rise to island constraints in
unrelated languages. A handful of recent studies (Wilcox et al., 2018, 2019, 2021)
have assessed whether or not ANN models can learn island constraints using the
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following methodology: If the model has learned that fillers do not license gaps in
islands, then the presence of an upstream filler should not impact the surprisal of a gap
inside island structures. That is, in (8), yesterday should not be any more or less likely
in a minimal-pair counterpart without a filler. Wilcox et al. (2021) find that GPT-2
successfully attenuates its expectations for gaps inside island constructions for eight
of the most-studied islands, including adjuncts, suggesting that it has learned the
proper grammatical generalizations for the distribution of the filler–gap dependency
in English.

Below, we build upon this work and provide one example of the learning limits
for GPT-2. While it is true that gaps are not licensed in adjunct clauses in English,
there is one exception to this rule: They may be if the adjunct directly follows a
clause which hosts an gap, as in (9-d). In this case, the gap inside the adjunct clause
is said to be ‘parasitic’ on the embedded clause gap, and this construction is referred
to as the parasitic gap construction (Ross, 1967; Engdahl, 1983). To test whether
models have learned such adverb phrases as the legitimate loci of gaps, we created
sentences following (9), where the HostGap factor indicates variation in the host
gap, not the ‘parasitic’ gap. Two types of sentences were created, one like (9) below
where the adverb phrase included a gerund verb, and one in which the verb was
tensed. If models have learned the parasitic gap construction, we would expect no
difference in surprisal based on the presence of a filler in the -HostGap condition
(which is effectively an island). However, we would expect surprisal to be affected by
the presence of absence of a filler in the +HostGap condition, where the presence
of a wh-word renders the whole sentence grammatical.3

(9) Parasitic Gaps

a. *I know that the nurse admitted the patient after she inspected yesterday.
[-Filler, -HostGap]

b. *I know who the nurse admitted the patient after she inspected yesterday.
[+Filler, -HostGap]

c. *I know that the nurse admitted after she inspected yesterday. [-

Filler, +HostGap]

d. I know who the nurse admitted after she inspected yesterday. [+Filler,

+HostGap]

The results of this experiment are shown in Figure 5, with mean by-region surprisal
on the y-axis. While there is no difference in surprisal based on the presence of an
upstream filler in the -HostGap condition, as expected, we also find no effect of
filler in the +HostGap, which should be the case if the model has learned the

3We do not include the -Gap conditions, as we predict the expectations for gaps set up by wh-
complementizers to be fully discharged at the first gap site. These expectations correspond to the
contrast in grammaticality between the filled-gap version of our basic tests (*I know what you read
the paper.) compared to the filled-gap version of a parasitic gap sentence (I know what you read
before shredding the paper.)
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Figure 5: Parasitic Gaps. If GPT-2 had learned parasitic gaps, we would expect a
difference in surprisal between +/-Filler in the +HostGap condition, but not in
the -HostGap condition. We see no difference between conditions, indicating that
GPT-2 has not learned the proper generalization.

proper generalization.

4.2 Reflexive Anaphora

Anaphoric pronouns form dependencies with referring Noun Phrases (or r-expressions),
with which they co-refer. For example, in (10), the anaphoric pronoun herself refers
to the antecedent The author with the senators.

(10) The author with the senators hurt herself.

Unlike fillers and gaps, anaphoric dependencies are not bidirectional: although an
anaphoric pronoun requires an r-expression, r-expressions may be used freely without
subsequent pronouns. However, like fillers and gaps, the relationship is subject to a
number of restrictions, including that the r-expression and pronoun must match in
gender and number features and, structurally, that the r-expression must c−command
the anaphor (Carnie, 2021). To test whether the models have learned the dependency,
as well as its structural restrictions, we create test suites following (11). Each sentence
contains an anaphoric pronoun, a head-noun that c−commands the pronoun, and a
modifying prepositional phrase with a secondary noun that does not c−command
the pronoun. There are four conditions: The head-noun can either be singular or
plural, and it can either match or mismatch with the anaphoric pronoun in terms
of number. We run two suites of tests, one with feminine anaphoric pronouns like
(11), and one with masculine anaphoric pronouns.4 For these sentences, the non-
c−commanding NPs always mismatch with the head noun, meaning that they are all

4Note that while anaphors must agree in gender with the r-expression, we do not test this gen-
eralization.
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Figure 6: Reflexive Anaphora (Number Agreement). Top: masculine reflexive
pronoun. Bottom: feminine reflexive pronoun. GPT-2 output is broadly consistent
with the expected agreement pattern, except in the case where it must correctly
predict a singular feminine pronoun (“herself”).
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“distractors” that could possibly trick the model into expecting the wrong number
on the pronoun. If the model has learned the correct generalizations, then it should
exhibit lower surprisal in the match condition, both when the head NP is plural
(Prediction 1) and singular (Prediction 2).

(11) Reflexive Anaphora: Number Agreement

a. The author with the senators hurt herself. [match, sing]
b. The author with the senators hurt themselves. [mismatch, sing]
c. The authors with the senator hurt themselves. [match, plural]
d. The authors with the senator hurt herself. [mismatch, plural]

The results for this experiment are shown in Figure 6. Beginning with masculine
anaphoric pronouns (top), we find that GPT-2 is 89% accurate for both Prediction
1 (plural agreement) and Prediction 2 (singular agreement). Turning to the feminine
anaphoric pronoun (bottom), for Prediction 1 GPT-2 is 100% accurate; however for
Prediction 2, where the model must correctly predict a singular pronoun, the model
is only 21% accurate. This indicates that the model is distracted by the number
mismatching NP in the prepositional clause, but only in cases where the pronoun is
feminine.

4.3 Negative Polarity Items
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Figure 7: Negative Polarity Item Licensing. Left: sum GPT-2-derived surprisal
in each sentence region, averaged across items in test suite. Right: average surprisal
summed over target region for each condition. GPT-2 output is consistent with the
structural relationships licensing negative polarity items.

Negative Polarity Items (NPIs) are a class of polarity-sensitive items, which must
appear in downward-entailing environments, or contexts that license inferences from
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supersets to subsets (Chierchia, 2013). One way to construct these environments is
with negative quantifiers, such as the English determiner no. In order for the NPI to
be in the scope of the negative quantifier, it must be c−commanded by it, thus we can
set up suites to determine whether or not GPT-2 has learned the relevant structural
relationship that are similar to the tests used for anaphoric pronouns, schematized in
(12). Sentences have an NPI, any, and a subject NP that contains either a negative
determiner or a positive determiner (the). Each subject NP is modified with a relative
clause whose subject likewise contains either a negative or positive determiner. If
models have learned the correct rules for NPI licensing, then surprisal at the NPI
should be lower for conditions where the subject NP is headed with no than for
conditions where it is headed with the. We formulate this in terms of three predictions:
at the NPI, S[Neg, Neg] < S[Pos, Neg] (Prediction 1), S[Neg, Pos] < S[Pos, Neg] (Prediction
2), and S[Neg, Pos] < S[Pos, Pos] (Prediction 3).

(12) Negative Polarity Item Licensing

a. No author that the senators liked has had any success. [Neg, Pos]
b. No author that no senators liked has had any success. [Neg, Neg]
c. *The author that the senators liked has had any success. [Pos, Pos]
d. *The author that no senators liked has had any success. [Pos, Neg]

The results for this experiment are shown in Figure 7, with sentence regions on the
x-axis and surprisal on the y-axis. We find that the model is 100% accurate for
Prediction 1, and 97% accurate for Predictions 2 and Prediction 3, suggesting that it
has learned the proper generalizations for NPI licensing in English.

5 Discussion

The previous sections have introduced several assessments of GPT-2’s syntactic ca-
pacity. First, we tested the model’s ability to represent abstract categories like CPs
and NPs, as well as the relationships between them. We next evaluated its ability to
learn rules about lexical dependencies, including negative polarity items, anaphoric
pronouns and even empty syntactic positions (gaps). We found that, in the vast ma-
jority of cases, GPT-2 successfully learned the relevant grammatical generalizations:
the model achieves above 90% accuracy for predictions on suites testing for Subor-
dination, Relative Clause completion, Filler–Gap dependencies, and NPI Licensing.
There were two notable cases, however, where the model did not make human-like pre-
dictions. These were for predictions about the feminine anaphoric pronoun, herself, as
well as for cases of parasitic gaps, when gaps that appear in typically-ungrammatical
positions can exist ‘parasitically’ on the presence of a previous host gap.

What do these results—many positive, some negative—mean for our theoretical
understanding of human linguistic cognition? The type of answer that we will explore
here is that they can bear on a series of questions about the “origin” of linguistic
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structures, associated with the generative tradition in linguistics. These questions
include: What learning biases to children bring to the task of language acquisition?
How do language learners generalize from the linguistic stimulus with which they
are presented? To what extent does linguistic cognition recruit domain general (i.e.
not language-specific) processes and representations? And to what extent are rules
and generalizations about linguistic structure separate from rules and generalizations
about linguistic meaning? Below, we introduce three frameworks for answering these
interrelated questions and present the role that the learning outcomes of ANNs can
play for each. Finally, we discuss how our results might motivate future development
for each approach.

Before moving on to the three interpretive frameworks, we want to return to an
issue mentioned during the introduction: the issue of data scale and how it interacts
with syntactic generalization. Because we do not know, precisely, what syntactic
structures are present in GPT-2’s ∼8 billion training tokens, it may be premature to
say that our tests capture genuine syntactic generalization as opposed to, say, mere
recapitulation of its training data. In order to interrogate this concern, we want to
distinguish between two forms of generalization—compositional generalization and
what we will call lexico-categorical generalization. Let’s consider the case of Negative
Polarity Items, discussed in Section 4.3. We argued that what the experiment in this
section showed was that GPT-2 had learned that NPIs require negative licensors and
also that NPIs must exist in a certain structural relationship vis a vis their licensor,
using target sentences of the form “No + NP + Relative Clause (RC) + any...” Now,
we can imagine the model learning the structural relationship in two possible ways.
First, it could be the case that the model was never exposed to sentences that were
structurally similar to our target sentence during training. Rather, the model saw
training sentences like (a) “No + NP + any...” and (b) “No + NP + RC...”. If this
were the case, in order to produce the observed behavior, the model would have to
make generalizations about a novel frame by composing (a) and (b) together. This
would be an example of compositional generalization. On the other hand, it may be
the case that that the model did have experience with sentences of the form “No +
NP + RC + any...”. In this case, in order to produce the correct behavior, the model
had to recognize our target items as similar, and flexibly extend the generalizations
it had made during training to sentences that are realized with different items, but
share the same structural properties. This would be an example of lexico-categorical
generalization.

Because the experiments we have presented do not control the types of syntactic
structures available to the model during training, many of the conclusions we can
draw are about lexico-categorical generalization, rather than compositional general-
ization (although our tests certainly don’t rule out the latter). But we don’t want
to downplay the importance of lexico-categorical generalization. In order to flexibly
extend grammatical knowledge, models must learn that words fall into abstract cat-
egories and must learn to formulate distributional rules at the level of the category
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rather than at the level of the word. Both of these behaviors are key features of human
linguistic cognition, and they are being learned, here, by a domain-general artificial
learning algorithm. Below, we turn back to our main discussion by introducing three
interpretive frameworks for understanding the role of GPT-2’s learning outcomes.

5.1 Syntactic Nativism

This framework posits that language acquisition is powered by innately given and
language-specific (rather than domain-general) processes and representations. A pri-
mary task of language acquisition is to derive the syntactic generalizations underlying
grammatical adult speech using these inbuilt processes and representations. Tradi-
tionally, syntactic nativism is motivated by a type of logical argument called The Ar-
gument from the Poverty of the Stimulus (APS; Chomsky, 1975; Pullum and Scholz,
2002; Legate and Yang, 2002; Clark and Lappin, 2010). We can present the APS
with the following four premises: (i) For a given linguistic generalization (or rule),
it is either learned via a language-specific learning process or via a domain-general
learning process. (ii) The linguistic data a child is exposed to are compatible with
a large number of possible generalizations L0 . . . Ln and yet (iii) the child ends up
learning the generalizations associated with their actual language, L0. (iv) There
are no domain-general learning processes that favor L0 over L1 . . . Ln. Therefore, the
generalization could not have been learned via a domain-general learning process.

Positive results demonstrating the human-like syntactic behavior of ANNs com-
plicate premise (iv). If an algorithm that is sufficiently domain general can be found
that does learn the correct generalizations, given an appropriate approximation of
a child’s linguistic input, then premise (iv) must be restricted to a smaller set of
phenomena. Note, however, that the previous reasoning hinges on three premises:
(a) The learning model must be sufficiently domain general; (b) it must have learned
the correct generalization; and (c) its training data must be a “reasonable enough”
approximation of the linguistic stimulus of a human child. As for (a), although ANNs
— like any learning algorithm — do possess bias, their architecture is designed to
handle arbitrary relationships between arbitrary pieces of input, and they have been
successfully deployed in a number of domains. Much of the introduction presented
an argument that the psycholinguistic assessment paradigm successfully solves (b).
This leaves us with (c): Is GPT-2’s training data (or the training data of any ANN) a
close-enough approximation of the human linguistic stimulus for these models to play
a valid role in winnowing down the scope of the APS? There are a number of dimen-
sions along which this question could be asked, including genre, size, and modality,
all of which reveal large differences between a human child and GPT-2. In terms of
genre, children learn with the assistance of child-directed speech (Rowe, 2008), while
GPT-2 was trained on an adult-directed corpus of web text; in terms of size, GPT-2
was trained on about eight lifetimes of human linguistic experience; and in terms of
modality, GPT-2 was trained on pre-segmented text, whereas children must induce
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the relevant representations from the speech stream.
Although these differences are a serious consideration, we believe that they do

not rule out the learning outcomes of ANNs as a novel piece of empirical evidence
that bears on the APS. As far as genre, if the purpose of child-directed speech is
(in part) to assist the child in making the relevant syntactic generalizations, then
adult-directed language may pose a more difficult dataset from which to make the
necessary syntactic generalizations. Additionally, there is evidence that speech genre
does not play an important role in language learning, including a number of cultures
that do not practice child-directed speech (Weber et al., 2017; Cristia et al., 2019).
Turning towards dataset size, we have focused on GPT-2 because it is one well-studied
model that represents the state of the art in machine learning. However, many of the
tests presented in this chapter have been conducted on models trained with much
smaller datasets (Wilcox et al., 2021), even including a version of GPT-2 trained
on the equivalent of the linguistic experience of a four-year old (Hu et al., 2020).
In addition, some recurrence-based models, such as the one presented in Gulordava
et al. (2018) which was trained on the linguistic experience of an 8-year-old, have
shown remarkable success at learning hierarchical-sensitive dependencies. Finally,
given the rapid advances in machine learning and recent focus on low-resource and
computationally efficient natural language processing, we believe that the amount of
data required to learn crucial syntactic generalizations from string input alone will
decrease in the future.

5.2 Syntactic Emergentism (Non-Syntactic Nativism)

This framework posits that human language learners are endowed with certain (po-
tentially domain-specific) structural biases, but these biases are semantic or logical in
nature. Syntactic generalizations such as part of speech, hierarchical relationships and
locality constraints are an emergent property, either supervening on patterns in the
semantic structures that underlie utterances, or else resulting from fixed constraints
in the mapping between these structures and linear-order forms.

Under the syntactic emergentist framework, ANNs provide a positive example
of the emergence of syntactic behavior from a suitably domain-general model, paired
with a proxy for the task of human communication. Compare this to the role for ANNs
under more nativist approaches, where they are useful only so far as they can provide
counter-argument against the APS but not as constructive hypotheses in their own
right about how language is learned and implemented. Under this framework, what
should be learned from cases where models are not able to learn the relevant facts
about syntax? One constructive approach, we suggest, is that these phenomena may
point to cases where the relevant structures are acquired either through non-syntactic
learning pressures or processing constraints.
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5.3 Full Emergentism

This framework treats human linguistic knowledge as an emergent phenomenon which
arises from the interaction of multiple simple units of an interconnected network (Mc-
Clelland et al., 1986; Elman, 1990, 1991). The task of language acquisition is to derive
syntactic generalizations which accurately replicate the observed distribution of hu-
man language. Under this view, ANNs are concrete algorithmic hypotheses — a
candidate solution for representing and processing syntactic structures. This posi-
tion has been summarized recently by Baroni (2021), who suggests that it would be
fruitful to take ANNs seriously as “algorithmic linguistic theories making predictions
about utterance acceptability.” One attractive feature of this approach is that, as
far as they are instantiations of a particular theory, ANNs make clear and explicit
predictions about unseen data. Thus, even for researchers who may be averse to
emergent approaches to language, ANNs can provide useful baselines against which
to clarify and compare algebraic models of linguistic phenomena. Here, however, in-
stead of focusing on unseen data and untested structural phenomena, we have instead
focused on providing a sanity check. Does GPT-2 produce reasonable predictions for
well-studied syntactic phenomena?

Our results demonstrate that a wide range of syntactic phenomena can emerge
from the simple task of predicting the next word, providing strong empirical support
for the emergentist perspective. However, model failure to capture some aspects
of syntax suggest that in addition to generating novel predictions about untested
syntactic structures, researchers may want to continue developing and testing new
models on the well-studied grammatical phenomena discussed in this chapter.
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