Computational morphology

Kyle Gorman

Graduate Center, City University of New York

Abstract

This is a draft of a chapter for the third edition of Aronoff and Fudeman’s textbook What is

Morphology?

1 Introduction

Computers are used in virtually all stages of linguistic research, to record and collate field notes,
to gathering word frequency statistics, and to measure reaction times in a psycholinguistic ex-
periment. In this chapter, we focus on a narrower sense of computational morphology: the
design of software that analyzes or generates words not as atomic, indivisible units, but as the

intricately structured objects linguists have long recognized them to be.

2 Early work

The linguistic potential of digital computers was recognized not long after their debut in 1945.
In the first two decades of the Cold War, the United States Defense Department and its research
and development arm, the Advanced Research Projects Agency (ARPA, later known as DARPA)
funded massive projects to enable automated translation from Russian to English. Governmental
enthusiasm cooled after a 1966 report, commissioned by the government, concluded that little

progress towards acceptable-quality translations had been made.

Electronic dictionaries—initially, little more than a digitization of older print dictionaries—
appeared in the 1960s and became ubiquitous in the 1980s during the personal computing boom.
Since word processing was one of the applications for which early personal computers were
best suited, such dictionaries were exploited for spell-checking and typesetting. In scripts like
Chinese and Japanese, written using thousands of unique characters, these electronic dictionaries
enabled word processing for the first time. Mechanical typewriters had been made for these
scripts, but they were so complex and unwieldly that they never saw widespread adoption (Sproat
2010: 169f.). Modern-day Japanese word processing systems allow the user to type either in
romaji, a romanization system, or in hiragana, in which each glyph is roughly a syllable, and a
digital dictionary is used to suggest alternative spellings in kanji, roughly word-sized glyphs used
for most roots. Several different approaches exist for Chinese text entry; in one popular method,
users type in pinyin, a romanization system, and the dictionary maps pinyin onto roughly word-
sized hanzi glyphs. The user chooses the correct glyph from among a list of candidates the
computer presents.

Yet even small dictionaries overwhelmed the limited memory of early personal computers.
For instance, a list of English headwords from a large English dictionary easily exceeds the capac-
ity of the 3.5-inch, 1.44-megabyte floppy disks first sold in 1986. The problem only becomes more
acute if one must store all inflected forms. For English, for example, one needs only to list two
forms of most nouns (the singular and plural) and at most six forms of any given verb. In Russian,
nouns may have as many as twelve inflectional forms, and verbs have more than a hundred. And
Archi, a language spoken in Dagestan, is believed to have more than 1.5 million possible forms
of each verb (Kibrik 1998).

Unsurprisingly, one highly-effective method method for compressing lexicons is to gener-
ate complex words using lists of stems and word formation rules. An interesting computational
treatments of English morphology was undertaken during the development of MITalk, an early
text-to-speech synthesis (TTS) system. (A commercial version of MITalk is best known as the

“voice” of the late physicist Stephen Hawking.) TTS systems consist of a “frontend” responsible

for performing linguistic analysis on the input text, and a “backend” tasked with synthesizing the
audio. During frontend processing, words must be mapped from orthographic form to phonemic
transcriptions, a task sometimes known as grapheme-to-phoneme conversion. Rather than
listing hundreds of thousands of words, however, MITalk “generates” many complex words by
concatenating stems and affixes. For instance, consider the English word scarcity. MITalk ana-
lyzes this entry much as a linguist would: as scarce plus the suffix -ity, the latter triggering an
orthographic rule deleting a word-final e before certain vowel-initial suffixes. By concatenating
the corresponding pronunciation entries for these two pieces, one obtains the correct phonemic
transcription, /'skea.siti/. The system also considers, but rejects, various alternative analyses,
such as treating this word as a compound of scar and city, which would lead to an incorrect pro-
nunciation. With the help of these procedures, MITalk can generate the pronunciations of over
100,000 words from roughly 12,000 stems and affixes (Klatt 1987: 773).

Beyond the issue of compression, data sparsity was also a major issue for early computing
efforts. In any sample of text, we are likely to see only a small fraction of the possible complex
words (Lignos and Yang 2016). Morphological analysis for out of vocabulary (or OOV) words—
words not previously seen—remains a major challenge for computational morphology. Yet if you
search the internet for fishing you may be interested in documents that mention fish or fishers,
even if those documents do not mention fishing itself. Therefore, we may wish to conflate related
words when indexing (i.e., ingesting) web pages, and when searching for good matches for a query.
One simple approach, stemming, processes the text by applying a language-specific rules to each
word, remove affixes like -ing, -er, -s. Unlike the MITalk decompositions, which depend on lists
of stems and affixes, a stemmer does not require a lexicon, merely a sequence of rules. Various
sources claim that Google integrated stemming into its search engine sometime around 2003.

MITalk, and most systems of similar vintage, take an ad hoc, “whatever works” approach to
morphology. For instance, early spelling correction systems save memory by allowing fanciful
analyses, for instance, deriving forest by affixing the superlative suffix -est to fore. Similarly,

a stemmer need not produce real words, or even “stems” that are linguistically well-defined; it

simply needs to form semantically coherent equivalence classes of words. For instance, the Porter
(1980) stemmer, when applied to the previous sentence, produces non-words like produc, semant,
and equival; however, these stems are shared by closely-related words like producer, semantics,
and equivalent. Furthermore, many of these early techniques for morphological processing take
advantage of peculiarities of English’s rather-impoverished inflectional system, and it is unclear
how they might be generalized to languages with richer morphologies.

Much of this has changed for the better in the intervening decades. One key step away from ad
hoc inelegances and towards rigor and multilingualism was the comprehensive Finnish morpho-
logical analyzer developed by Koskenniemi (1983). Koskenniemi’s model became—and to some
degree, still is—a standard for documenting morphologically rich languages, and it ultimately
led to the discovery of new methods for computationally encoding morphological knowledge re-
viewed below. Furthermore, the introduction of machine learning techniques to computational
morphology has added further rigor and reduced the need for perform painstaking grammar en-

gineering work.

3 Problem specification

Early work in computational morphology provides solutions to specific applications—be it pro-
nunciation generation, spell checking, or information retrieval—but does not provide a general-
purpose solution to the problem of making a computer perform morphological analysis. There
are several ways we can define this task.

In the simplest setting, we simply wish to obtain a detailed morphological summary of a
given word. For the English word puppies, for example, might mention that the word is a plural
noun. Such a task is sometimes called morphological tagging. While this information may not
seem terribly useful on its own, it is extremely valuable for “downstream” tasks, such as parsing,
recovering the syntactic structure of a sentence. This morphological summary might also include

the word’s segmentation (or decomposition) which might be written puppy+s, where + is used

to indicate word-internal morpheme boundaries. There is an orthographic rule which requiring
that word-final -y, when preceded by a consonant, be spelled as -ie in the plural, and segmentation
reverses this rule, allowing us to obtain the citation form or headword puppy and the s suffix. This
suggests a more-sophisticated alternative to stemming: lemmatization, or replacing inflected
words with their lemmas, as we sometimes call citation forms. Both tagging and lemmatization
can be performed in isolation—providing all possible analyses in the presence of ambiguity—or
they may process entire sentences or documents and attempt to resolve grammatical ambiguities
using the broader linguistic context. For instance, the word cooler might receive different analyses
in the contexts the __ was full of beer and bait... and the English daisy prefers __ weather....

The inverse problem, morphological generation (or inflection), is a key part of many nat-
ural language generation systems, such as digital assistants like Cortana, Siri, and the Google
Assistant. For example, imagine an application that “reads” the current weather conditions out
loud using text-to-speech synthesis. For this application, we might use simple templates with
specific slots to be filled. For instance, for English one might imagine a template reading It is
currently $TEMP degrees where $TEMP indicates a “slot” to be filled with the current tempera-
ture. However this is not quite right: on particularly cold days, it would produce the ungram-
matical "It is one degrees instead of It is one degree. This problem recurs in many other
languages. For instance, in Russian, which has a much richer inflectional system than English;
one needs three different words for ‘degree’—gradus, gradusa, or gradusov—depending on what
the temperature is. Similar problems would reoccur—though with different units—were one to
expand this template to include additional measurements like as wind speed, barometric pres-
sure, and so forth. What is really needed is a mapping between the singular and plural forms of
English nouns, or between as the many as twelve unique case-and-number variants of Russian
nouns. The template designer may either choose to manually specify the contexts in which one
uses the singular or plural (for instance), or the generation system may be expected to provide
the appropriate inflectional form of degree (or gradus) using nearby words.

There are two ways one might go about building a morphological analyzer or generator. In

the knowledge-based approach, the linguist-developer simply constructs a digital lexicon and
encodes all morphological rules of interest. The lexicon and rules are often expressed using ab-
stract computational devices known as finite-state automata, which support efficient analysis
and generation procedures. Alternatively, one might take a data-driven approach, using ma-
chine learning to learn morphological generalizations from linguistic data. As you will see, these
two approaches have different strengths and weaknesses, and can even be combined in various
fashions to form hybrid models.

In most cases, we assume that inputs and outputs for analysis and generation are represented
in orthographic (i.e., written) rather than phonemic form, largely as a matter of convenience. For
some languages, for instance Spanish or German, this decision has little impact, because these
languages use “shallow”, highly-consistent orthographies which is quite close to phonemic rep-
resentation. Other languages, such as English or Korean, use a “deep” orthography in which the
relationship between spelling and pronunciation is more abstract. In practice, this reduces the
need to model any pronunciation variation not indicated in written form. For example, English
spelling does not generally indicate changes in vowel quality triggered by the addition of deriva-
tional suffixes like -ity. Thus sane [sein] and and sanity [see.ni.ti], for instance, are spelled more
similarly than they are pronounced (Chomsky and Halle 1968: 44f.), and the vowel change does
not need to be modeled if English orthography is used.

We rarely have the luxury to focus on transcribed words in isolation. Often, we are provided
with entire documents (e.g., newspaper articles or web pages) and must split them into sentences
and words before performing further analyses. These procedures, sentence boundary detec-
tion (or sentence splitting) and tokenization are not described here, but neither step is trivial
and may require some degree of linguistic sophistication (e.g., Gillick 2009). For instance, in an
English document, the fragment “...U.S. Treasury...” could either be a noun phrase or it could

straddle the boundary between two sentences.

“...suggesting declining consumer confidence in the U.S. Treasury officials declined

to comment for this story.”

singular plural

nominative gradus gradusy
genitive gradusa gradusov
dative gradusy gradusam
accusative gradus gradusy
instrumental gradusom gradusami
prepositional graduse gradusax

Table 1: Inflectional paradigm of the Russian noun gradus ‘degree’.

Even the notion of how to divide a sentence into words is more complex than it may seem at
first. In languages like Chinese, Japanese, and Thali, there are no explicit cues to word boundaries
in most texts. Even in English, it is not immediately obvious whether compounds like podcast or
possessives like Queen’s should be treated as one or two words for morphological analysis. How-
ever, we set these issues aside and assume text has been segmented into sentences and tokenized

into word-like units.

4 Knowledge-based methods

In knowledge-based approaches, we encode our knowledge of the target language (possibly com-
bined with printed or digital dictionaries) as simple computer programs which perform morpho-
logical analyses and generation.

Recall from chap. 2 that a paradigm is simply all the forms of a given lexeme. In English, for
instance, the paradigm of a noun contains the singular and plural forms, whereas in Russian, it
has twelve cells defined by two numbers (singular and plural) and six cases (nominative, genitive,
dative, accusative, instrumental, and prepositional). Each of the twelve cells in the Russian nom-
inal paradigm are defined by a combination of one of the six cases and one of the two numbers.
However, some forms may appear in multiple cells in the paradigm due to syncretism (§6.4). For
instance, gradus, like all inanimate Russian nouns, exhibits a syncretism between the nominative
and accusative in the singular and plural. The full paradigm is shown in [Table 1

We can form the genitive plural (henceforth, gen.pl.) form of gradus simply by appending the

gen.pl. suffix -ov to the lemma, and we can generate the rest of the paradigm by appending the
appropriate case/number suffixes, assuming the existence of a “zero” suffix for the nominative
and accusative singular, both of which are identical to the lemma in inanimate nouns.

Few dictionaries contain—or even could contain—all paradigm cells for all lemmas. Rather,
lexicographers provide the lemma itself followed by additional information needed to complete
the paradigm. In Zaliznyak’s celebrated Russian dictionary, each entry gives a lemma and its
inflectional class. For instance, the entry for gradus is marked “M 1a”. This seemingly-cryptic
code tells us this noun follows the “hard stem masculine, stress pattern A” inflectional class.!
Students of Russian—at least those familiar with Zaliznyak’s dictionary—can use these codes to
generate all twelve cells of a noun’s paradigm.

A slightly different approach is taken in the Oxford Latin Dictionary (OLD). There, each verb
is given with its four principal parts. For instance, the entry for the verb adaero reads “adaerd
~are ~aul ~atum”. This entry contains enough information to allow students of Latin to generate
the entire verb paradigm. The lemma adaero, along with the rest of the entry, gives us four
inflectional verb forms, and from these one can generate the several dozen other verb forms, the
remainder of the paradigm. As is common practice in Latin pedagogy, the lemma adaero, the
first principal part, is the first person singular present active indicative T calculate’. To form
the second principal part, for instance, one deletes the final -0—the first person singular present
active indicative suffix—and appends the second element of the entry, -are, producing the present
infinitive adaerare ‘to calculate’. The third and fourth principal parts, the first person singular
perfect active indicative adaeraui ‘I calculated’ and the supine adaeratum ‘for to be calculated’, are
obtained by appending -aui and -atum, respectively, to the first principal part minus -o0. Of course,
these four principal parts are only a tiny fraction of the dozens of other inflectional variants of
any given Latin verb, but any student of Latin can generate the remaining forms of the paradigm
using just these four principal parts. As it happens, these inflectional patterns are quite common
and are shared with hundreds of other Latin verbs, but there are dozens of other Latin conjugation

classes. These classes vary widely in the number of lemmas they cover. Note that the class adaero

belongs to is by far the largest conjugation class in Latin, and it likely would apply to most OOV
lemmas; a well-designed morphological analyzer will encode facts of this sort.

Thus, entries in Zaliznyak’s dictionary and the OLD are not simply a list of of inflectional
forms and their analyses. Rather, they contain just enough information to allow a careful student
of Russian or Latin to generate full paradigms. As computational morphologists, we too could
simply create a list of inflected words and their analyses, but this would be an extremely taxing
project in a richly inflected language like Russian.

Instead, Koskenniemi (1983) uses abstract computational devices known as finite-state trans-
ducers (or FSTs), to automatically, implicitly, and efficiently generate this list for a large portion
of Finnish, another richly inflected language. You may not be intimately familiar with FSTs, but
if you own a mobile phone, you likely carry around FSTs in your pocket, since they’re used to
power mobile text entry systems (input method engines) and virtual assistant systems like
Alexa, Cortana, Google Assistant, and Siri. We will gradually introduce FSTs and demonstrate
how they can be used to encode morphological knowledge for both analysis and generation, be-

ginning with a more-general concept, that of state machines.

4.1 State machines

A state machine is a machine—either hardware or software—that can be described in terms of
states, corresponding loosely to the device’s “memory”—and transitions between those states—
corresponding to the operations performed by the device.

Let us imagine an enchanted old-fashioned gumball machine, one which never breaks down,
never becomes too full of coins, and never runs out of gumballs. At any point in time, the machine
is in one of two states. In one state, arbitrarily denoted 0, there is no coin present. It is possible
to insert a coin at state 0, but not at the other state, henceforth 1, since in that state, a coin is
already present in the slot. In both states, it is possible to turn the knob. However, in state 0, this

has no effect on the machine at all, whereas in state 1, turning the knob causes the machine to

yield a gumball and clears the coin slot. The gumball machine is schematicized in Figure 1, with

turn-knob:e

insert-coin:e

turn-knob:emit-gumball

Figure 1: State diagram for an enchanted gumball machine.

the transitions between states, the arcs, indicated by arrows. Each arc is labeled with an input
and an output, separated by a colon, and the Greek letter ¢ (“epsilon”) is used to the absence of an
input and/or output. For example, because it is possible—but pointless—to turn the knob at state

0, there is a “self-arc” at that state labeled ‘turn-knob:¢’.

4.2 Notation

It is now necessary to define a few mathematical notions.? The first is the set, a collection of
distinct objects of some type. The elements in a set are said to be its members. Sets are denoted
by curly braces, except for the empty set, the set with no elements, for which we use the special
symbol). A set is said to be a subset of another set if every element in the first set is also a
member of the second set. In principle, sets can contain any type of object, but one particularly
useful type of set contains strings, ordered sequences of characters. Sets of strings are known
as languages, with the caveat that this is merely a term of art and is not intended to supplant
any other sense of this word. For instance, the language {OK, NM, AZ, AK,HI} contains the two-
character postal abbreviations of the five American states admitted to the Union during the 20th
century. Finally, we use ¢ to denote the empty string, since it is not obvious how one might write

it otherwise.

4.3 Finite-state acceptors and regular languages

We are now ready to formally introduce a type of state machine known as the finite-state ac-
ceptor (FSA). It is defined by three sets. The first is a set of states denoted by Q. How we label

these states—with strings, numbers, or something else—does not matter so long as this set is fi-

10

a C
a
Ao (O

Figure 2: State diagrams for two finite-state acceptors; the initial state is indicated by a bold
circle, and final states are indicated by double circles. Left: an acceptor corresponding to the reg-
ular language {a}* = {¢, a, aa, aaa, aaaa, ...}. Right: an acceptor corresponding to the regular

language {a}{b, c} = {ab, ac}.

nite. By convention, one of the states, s, is designated the initial state, and a subset of the states
F, are designated as final states.” Another set is known as the alphabet, and is indicated by
the Greek letter ¥ (“sigma”). The alphabet is set of symbols we’ll be using in our modeling. In
computational morphology, the alphabet usually consists of orthographic characters, though for
other applications, it might consist of morphemes, morphosyntactic features, words, and so on.
The third set, the transition relation, is denoted by the Greek letter 6 (“delta”). Each element of
d is a triple consisting of a source state, a symbol in ¥ (or the empty string ¢), and a destination
state. If q, z, ris a member of §, there is an arc from g to rlabeled z. gives state diagrams
for two FSAs.

An FSA is said to accept (or match, or recognize) a string if there is a path from the initial
state to a final state, and the sequence of symbols of the arcs traversed by that path spell out
that string. For instance, the FSA in the right panel of accepts the string ab because a
path that begins in the initial state 0, then traverses to state 1, then to state 2—a final state—spells
out ab. Similarly, we can thus easily determine whether a string is accepted by an FSA simply
by traversing the machine, starting at the start state, and determining whether there is some
appropriately labeled path to a final state. The set of strings an FSA accepts is again known as its
language. FSAs accept a class of languages known as the regular languages (Kleene 1956); once
again, this is merely a term of art; the relevant sense of the word regular is unrelated to others.

We now introduce three operations over languages—union, concatenation, and closure—which

11

together define the regular languages.

The union of two languages is a new language in which all strings are elements of the first
language, the second language, or possibly both. For instance, let A = {a,b} and B = {b,c,d}.
Then, their union, written A U B, is the language {a, b, c, d}; note that we don’t repeat ¢ when
writing out the union, even though c is a member of both the A and B languages. This can easily
be generalized to the unions of more than two languages. For instance, if C = {d, e, f}, then
AUBUCis{a,b,c,d,e, f}.

The concatenation of a language is slightly more complex. The concatenation of two strings
is simply a new string formed by joining the two strings end-to-end. For instance, the concatena-
tion of OK and AY is OKAY. Naturally, concatenation of any string s with ¢ gives s. Then, the con-
catenation of two languages (rather than two strings) is a language in which each string is formed
by joining, end-to-end, a string from the first language with a string from the second language.
For instance, the concatenation of A and B, written as AB, is the language {ac, ad, bc, bd, cc, cd}.

The closure of a language consists of the union of zero or more “self-concatenations” of
a language with itself. Closure is notated by a superscript asterisk, the Kleene star. For in-
stance, A* = {ef UAUAAU AAAU.... If A= {a,b}, then this denotes the infinite language
{¢,a,b, aa, ab, bb, ba, aaa, aab, . . .}.

We now are prepared to give a formal definition of the regular languages. Assuming a finite

alphabet of symbols >:

« (), the empty set, is a regular language.

The language { ¢}, consisting of just the empty string, is a regular language.

If s is some symbol in 3, then {s} is a regular language.

If X is a regular language, then its closure X* is also a regular language.

If X and Y are regular languages, then:

— their union X U Yis also a regular language, and

12

— their concatenations, XY and YX, are also regular languages.

Any languages which cannot be so derived are not regular languages.* By definition, the regular
languages are closed under union, concatenation, and closure, meaning that the the closure of
any regular language, and the concatenation of any two regular languages, and the union of any
two regular languages, is itself a regular language.

The regular languages, and thus finite-state acceptors, are a natural tool for representing some
lexical information. For instance, a set of stems can be represented by a union of strings. However,

more powerful models are required to perform general-purpose morphological analysis.

4.4 Finite-state transducers and rational relations

The finite-state transducer is a generalization of finite-state acceptors. Like acceptors, trans-
ducers have a finite set of states Q, one of which (s) is designated as the initial state, and a subset
of which (F) are designated as final states. However, transducers have two alphabets, an input
alphabet denoted by ¥ and an output alphabet denoted by ®. The definition of the transition
relation is slightly modified: each element of J is a four-tuple consisting of a source state, a input
symbol in ¥ (or the empty string ¢), a output symbol in ® (or ¢), and a destination state. Then, if
g, x, ¥, ris a member of 4, there is an arc from g to r with input symbol x and output symbol y.
gives a state diagram for an FST.

The key difference between FSAs and FSTs is that FSAs encode sets of strings, whereas FSTs
map between sets of strings. In knowledge-based morphology, FSAs are commonly used to repre-
sent lists of stems, lemmas, affixes, and so forth, whereas FSTs are used to represent various types
of phonological and morphological rules. Note FSAs can also be thought of as a special case of
FSTs; they are simply FSTs which have the same input and output alphabets, and in which each
transition has the same input and output label. Finite-state software often takes advantage of this
fact by using FSTs to implement FSA.

An FST is said to transduce (or map) from an input string to an output string if there is a

path from the initial state to a final state, and the sequences of input and output symbols along

13

Figure 3: A state diagram for a finite-state transducer. The depicted transducer is a fragment of
a larger machine mapping between SI unit abbreviations (e.g., mL) and their full form in English
(e.g.,mililiter).
that path spell out the input and output strings, respectively. The set of transductions that can
be performed by FSTs are known as the rational relations. Rational relations can be defined
using two regular languages and an operation known as the cross-product. The cross-product
of two sets X and Y, written X X Y, is the set that contains all x, y pairs where xis a member of X
and yis a member of Y. All rational relations, then, are subset of the cross-product of two regular
languages. That is, they map from some subset of strings in X to some subset of strings in Y.
Two other properties of FSTs will be relevant shortly. First, FSTs are closed under an operation
known as composition. For instance, if @ is a transducer over X x Y and f is a transducer over
Y x Z, their composition a o fis an FST over X x Z. Secondly, FSTs are closed under inversion.
If we are given an FST « over X X Y, one can obtain the inverse relation Y x X simply by swapping

the input and output label of each of the transducers’ arcs.

4.5 Finite-state analyzers and generators

While there are several ways we might use finite-state transducers for morphological analysis
and generation, we now briefly describe an updated variant of Koskenniemi’s model proposed by
Roark and Sproat (2007: ch. 2) and implemented by Gorman and Sproat (2021: ch. 6).

In this model, each paradigm is a set of lexemes all following the same inflectional pattern,

defined by a set of stems, specifications for the cells in the paradigm—each consisting of a fea-

14

ture vector, i.e., a list of morphosyntactic features, and a transducer that introduces the affixes
associated with that cell—and an optional list of orthographic rules. Once defined, a paradigm

can be used for both analysis and generation.

Stems As mentioned above, a set of stems, like the “M 1a” class {gradus, zurnal, ...}, can be
expressed as an FSA constructed from the union of those strings. If we later encounter an OOV
stem, all we have to do to ensure that it is covered by the model is to add it to the stem set of the

appropriate paradigm.

Cells We assume that each cell in the paradigm corresponds to a vector of morphosyntactic
features. The cells are defined by a set of feature vectors that make up its cells. Furthermore,
it is necessary to know which feature vector corresponds to the lemma for this paradigm. In
Zaliznyak’s dictionary, for example, the lemma of a Russian noun is assumed to be the nominative
singular form, whereas in the OLD, the lemma of a Latin verb is assumed to be the first person
singular present active indicative. Each paradigm cell must also be linked to the affixes it is
associated with. To accomplish this, each cell is associated with a transducer which introduces
affixes characterizing that cell. For instance, we can implement the insertion of a prefix p to a set

of stems S by building a transducer representing the rational relation () x {p})S.®

Rules Finally, we may want to specify a series of orthographic rules to be applied, in order,
to the strings generated by the cells’ affixation transducers. For instance, the English spelling
convention which converts a stem-final -y to -ie after a consonant and before plural -s, as in
puppies, is expressed by the ruley — ie / {b,c,d,...}__+s. Rules of this general type, known
as context-dependent rewrite rules, all correspond to some FST (Johnson 1972), and there are

efficient algorithms to compile them into FSTs (e.g., Kaplan and Kay| 1994).”

Analysis and generation It is relatively straightforward to construct analyzers, taggers, lem-

matizers, and generators given the FSAs and FSTs just described. To perform analysis, we first

15

compose an FSA representing the set of stems stems with the transducers introducing affixes for
each slot, and then apply the sequence of context-dependent rewrite rules. After performing some
minor book-keeping, we obtain a transducer which maps the inflected form gradusov to its analy-
sis string gradus+ov [num=pl] [case=gen]. Tagging is performed by composing the analyzer with
an FST which deletes the + boundary characters from the analyzer’s output. Lemmatization is per-
formed by mapping the analyzed form first to its stem, then composing the affixation transducer
associated with the lemma cell—and any context-dependent rewrite rules. Finally, generation is

performed simply by inverting the lemmatizer FST.

4.6 Limitations

It is easy to imagine that finite-state transducers and rational relations are little more than minor
mathematical curiosities, but linguists have argued that nearly all morphological and phonologi-
cal processes of the world’s languages correspond to well-defined subsets of the rational relations
(Heinz 2018). However, a few challenging phenomena remain, such as total reduplication, the
copy of a full stem. Total reduplication is used, for example, in Warlpiri, a language of Australia,
to form certain noun plurals (e.g., kurdu ‘child’, kurdukurdu ‘children’; Nash [1986: 130). How-
ever, rational relations cannot copy arbitrarily long sequences. Nor can rational relations move
segments or sequences over long distances, as seems to be required for the formation of the Kuja-
maat Joola definite article described in chapter 6. Furthermore, rational relations cannot reverse

arbitrary strings, as in the French language game Verlan described in chapter 3.2

5 Data-driven methods

Knowledge-based morphological analyzer-generators are unsung heroes of computational mor-
phology, and free finite-state analyzers can be obtained for dozens of languages. However, the
development of knowledge-based resources can be arduous, particularly in languages with large

paradigms or complex series of rewrite rules. Machine learning is the study of algorithms that

16

“learn” to perform tasks directly from data without explicit instruction. Instead of encoding lists
of stems, affixes, and rules, we can treat morphology as a machine learning problem, performing

morphological analysis and generation in a data-driven fashion.

5.1 Tagging

A tagger is presented with a sentence or utterance and assigns each token with a label from
some finite set. The tag set, the set of possible labels, varies from language to language, corpus
to corpus, and task to task. In part-of-speech (POS) tagging, tokens are labeled as nouns, verbs,
adjectives, and so on. Some POS tag sets, however, make finer distinctions. For instance, the Penn
Treebank tagset, used for English, has 36 distinct tags and including six different types of verbs.
plus a special tag for the modals might, should, etc. In morphologically rich languages, the tagset
can in fact be expanded to cover all possible combinations of number and case, tense and aspect,
etc., found in the language. for instance, the Szeged corpus of Hungarian, another richly inflected
language, has 744 tags in all. Tagging performed with large, morphologically-aware tag sets is
sometimes described as morphological tagging, though the distinction between morphological
and part-of-speech tagging is not well-defined. Finally, we can map these large, language-specific
tag sets to a smaller “universal tagset” for cross-linguistic work. For instance, whereas the Penn
Treebank tagset distinguishes between several different types of verb— the simple past (VBD) as in
sang, the gerund/present participle (VBG) as in singing, the past participle (VBN) as in sung, and so
on—all of these, along with modals (MD) like might are all labeled VERB in the Petrov et al| (2012)
universal tagset, since not all languages draw these morphological distinctions.

Lemmatization can also be framed as a tagging task. Here, the tags are edit scripts (Chrupala
et al] 2008), instructions for converting the inflected word to its lemma. For instance, the edit
script used to lemmatize the word puppies might correspond to the rational relation 2*({ies} x
{y}). A tagger is used to predict the edit script for each token in the sentence, and the edits
are then applied to produce a lemmatized sentence. Lemmatization is usually performed after

morphological tagging since the predicted morphological tags are very help for predicting which

17

wordform lemma POS morphology

Pies pies NOUN Animacy=Nhum|Case=Nom|Gender=Masc|Number=Sing

plynie ptyna¢ VERB Aspect=Imp|Mood=Ind|Number=Sing|Person=3|Tense=Pres]...
Z Z ADP AdpType=Prep|Variant=Short

malg maty ADJ Case=Ins|Degree=Pos|Gender=Fem|Number=Sing

s S PUNCT PunctType=Comm

z60Mta z0lty ADJ Case=Ins |Degree=Pos|Gender=Fem|Number=Sing

pitka pitka NOUN Case=Ins|Gender=Fem|Number=Sing

w w ADP AdpType=Prep|Variant=Short

pysku pysk NOUN Animacy=Inan|Case=Loc|Gender=Masc|Number=Sing

PUNCT PunctType=Peri

Table 2: A Polish sentence (‘The dog is swimming with a small yellow ball in its mouth’) from
the Polish Dependency Treebank, with morphological annotations; one entry has been truncated
(indicated by ellipses) for reasons of space. From this we can reason, for instance, that pysku is
here the locative singular form of the masculine noun pysk ‘mouth (of an animal)’.

edit script goes with which token. An example sentence with wordforms, lemmas, part-of-speech
tags, and morphological tags is shown in [Table 2.

Taggers are important building blocks for many other natural language processing tasks. Part-
of-speech and morphological tags are used for various “downstream” processing tasks, such as
named entity recognition, the extraction of proper noun phrases, or parsing, which recovers
the syntactic structure of a sentence. For instance, in German, which has a rich inflectional
system and a relatively free word order, it is difficult for computers to accurately parse sentences
without morphological tags (e.g., Fraser et al. 2013). Morphological tagging is in some sense
more challenging than knowledge-based morphological analysis because it requires the system
to reason not just about the morphological properties of words, but also to resolve grammatical
ambiguities. For instance, many English words participate in zero derivation (or conversion)
from nouns to verbs (e.g., run) or vice versa (e.g., drink); the tagger must decide which analysis
is more appropriate in context, using nearby tokens and tags. There is something of a chicken-
and-egg problem here. There is a strong dependence between the tag being predicted and nearby
tags. For example, if the previous word is a determiner like a or the, the next word is much more

likely to be a noun than a verb. Yet, we do not yet know what tag the previous word may have.

18

w1 w2 W3
Figure 4: Illustration of the hidden Markov model generative story; t. tag, w: word.

Thus, tagging is a structured prediction problem, one that requires us to simultaneously make
a series of interdependent decisions to obtain the best overall prediction.

One method that allows us to make structured predictions for tagging problems is the hidden
Markov model, or HMM for short. While HMMs are often outperformed by newer machine
learning techniques, they illustrate the challenge of structured prediction. HMMs are abstract
computational devices closely related to finite-state machines. An HMM tells a simple “story”
about how data—here, tagged sentences—are produced; it imagines that each tag is generated by

the previous tag, and each word is then generated by its tag.
1. Generate a morphological tag sequence T = t;, t,, 5, ..., L.

2. Then, for each morphological tag ¢ emit a word w which can be tagged with ¢, producing

W = wi, wy, Wa, ..., W,

This story is illustrated in [Figure 4. To turn it into a full-fledged computational model, we opera-
tionalize it using probability theory.

The first step, the generation of the tag sequence T, is naturally expressed as a probability
distribution P(T') which assigns probabilities to all possible sequences to tags. But how should we
go about estimating the probabilities of a tag sequence, given that there is no upper bound on how
long a sentence can be? The solution is to approximate P(T) by making a Markov assumption:
we assume that the next tag in the sequence depends on no more than the previous k tags, where
k is a small natural number. For instance, under a first-order Markov assumption (i.e., k = 1), we
assume that each tag depends on just the previous tag. We write this dependence as P(t; | t;_;)—

the probability of t; given that we have observed t;,_;—and refer to these terms as transition

19

probabilities, since they give the probability of a transition from tag t;_; to tag ¢, The product

of all such transition probabilities is the first-order Markov approximation of P(T):

P(T) = P(t;)P(t, | t,)P(t3 | t2) ... P(ty | tn_y).

The second step, the mapping from tags to words, can be expressed as a probability distri-
bution (W | T). Much like we did with the tag sequence distribution, one can factor this
distribution into the product of several simpler probability distributions. We define a distribu-
tion of emission probabilities, P(w | t), which gives the probability that the tag t “emits” w.
For instance, P(gradusa | N;GEN;SG) would give the probability that a gen.sg. noun is grddusa.

The product of all these emission probabilities gives us (W | T):

P(W | T) = P(w; | t)P(wy | t;)P(ws | 1) ... P(wy | £,).

At first glance the emission probability seems to go in the wrong direction: we want to know
the probabilities that a word gets a certain tag, not the other way around. However, there is a
good reason for this seemingly backwards approach. When we tag a sentence, we observe W
and want to compute the highest probability tag sequence. In other words, we want to find a tag
sequence T which maximizes—i.e.., gives us the highest-possible value of—P(T | W). We do not
have an estimate of P(T | W), but thanks to the mathematical principle known as Bayes’ rule
(or Bayes’ theorem), we know that if T maximizes P(T | W), it also maximizes the product of

the transition probabilities and the emission probabilities too.’

A

T = argmax P(T | W)
T

= argmax P(T)P(W | T)
T

20

How do we find the best T'? Naively, we could simply enumerate all possible taggings T and pick
whichever one gives us the highest value for P(T)P(W | T)). However, with even short sentences
and small tag inventories, the number of possible tag sequences is astronomically large, making
this method infeasible. Instead, we find the best tag sequence using a specialized technique, the
Viterbi algorithm, which is guaranteed to find the best tag sequence according to our story.!°

Virtually every machine learning technique developed in the last three decades—not just hid-
den Markov models but also decision trees and random forests, linear- and log-linear mod-
els, conditional random fields, and many types of artificial neural networks—has been ap-
plied to tagging. While there is an enormous amount of variation from corpus to corpus, language
to language, and tagger to tagger, it is quite often possible to tag nine out of ten, or even 97 out
of 100, tokens correctly.

What accounts for the remaining errors? Taggers have difficulty tagging rare or OOV tokens.
However, the tagger can sometimes make reasonable inferences about the morphological prop-
erties of a new word using a finite-state morphological analyzer, or in the case of English, simply
by looking at the last few characters of the word. But even with such tricks, taggers have much
higher error rates on out-of-vocabulary tokens than in-vocabulary tokens. Another major source
of tagging error is genuine linguistic ambiguity introduced by phenomena such as syncretism and
zero derivation.

Most taggers are trained in a supervised fashion, meaning that the system “learns” from a
collection of sentences that have already been tagged by a team of linguist-annotators who are
familiar with the language. It is also possible to train certain types of taggers, including hidden
Markov models, in an unsupervised fashion, that is, without any tagged data provided. However,
the performance of unsupervised taggers is generally poor, and only a small amount of tagged

data is needed for a supervised model to outperform the best unsupervised models.

21

wordform lemma features

UD schlossest schliefen Mood=Sub|Number=Sing|Person=2|Tense=Imp
UM schlossest schlielen V;SBJV;PST;2;SG

Table 3: The German word schldssest “you would have closed’ as encoded in Universal Dependen-
cies (UD) and UniMorph (UM) formats; the two analyses are largely equivalent.

5.2 Generation

Morphological generation was one of the earliest uses of machine learning in linguistics. For
example, Rumelhart and McClelland (1986) describe an early neural network used to predict the
past tense forms of English verbs."" In one common format, the generation system is presented
with a triple consisting of the input word, its morphological specification, and a desired output
morphological specification.'® For instance, the input triple might be of the German word schljss-
est ‘you would have closed’, its morphological specification—it is a second person singular past
tense subjunctive verb— and the desired morphological specification, such as the infinitive; this
is illustrated in [Table 3. The model would then be expected to generate the infinitive form, here
schliefSen ‘to close’.

Modern sequence-to-sequence neural networks are generally quite adept at morphological
generation tasks. These models were originally developed for machine translation (Bahdanau
et ali 2015) but can be used for morphological generation with minor modifications. We now
briefly describe MED, a relatively simple and highly effective morphological generation model
proposed by Kann and Schiitze (2016).

The first component of the MED is the encoder; it converts the input triple to a numerical
representation that the remainder of the network can use to predict the output sequence. During
training and prediction, each symbol in the input triple—including the input characters and the in-
put and output morphological tags—is first embedded, or mapped onto a vector of real numbers.
Let e be the dimensionality of these vectors, chosen by the experimenter. Then, after embedding,
an input triple of length n can be represented by a single e X n matrix. We then pass this matrix

through a recurrent neural network (or RNN), which produces an f X n matrix of hidden

22

state activations, where the f, the dimensionality of the hidden state activations, is once again
chosen by the experimenter. This second matrix is a sequence of f-length real number vectors—
one for each symbol in the input triple—in which each column is a numeric representation of
what the network knows about that symbol. This representation of the symbols is conditioned
in part by the context in which the symbol occurs: the same symbol may have different numeric
representations if they occur in different positions in the input sequence.

MED’s decoder component is responsible for taking the hidden state activations and predict-
ing the output sequence. It generates the output sequence iteratively (i.e., character-by-character).
For each output symbol predicted, we use a component known as an attention mechanism to
compute a probability distribution over the n columns of the hidden state activations. The at-
tention mechanism can be thought of a model which generates “soft”, probabilistic alignments
between the input and output sequence. By multiplying each hidden state column by its atten-
tion probability and summing across the rows, we obtain the context matrix, a f-length vector of
real numbers. The prediction of the next symbol is conditioned on the context matrix and on the
previously generated outputs. By convention, we add an end-of-string symbol <eos> to the end

of the output sequence and continue generating output symbols until this symbol is generated.

The decoding process is illustrated in Figure 5.

6 Hybrid models

Knowledge-based and data-driven approaches to computational morphology represent two ex-
tremes, and various attempts have been made to hybridize these approaches so as to exploit their
particular strengths.

Neural network morphological generators, while powerful, tend to make occasional grievous
errors (e.g., Corkery et al| 2019, Gorman et al| 2019). Therefore, one might combine a finite-
state generator and a neural generator. Under one strategy, the finite-state generator produces

a set of hypothesis forms, and a neural network is trained to pick the most likely form given

23

Sl ——>> 52

¢
7
a az as ay
] L ——] L — | —
hy hy h hy
X1 X2 X3 X4

Figure 5: Illustration of decoding in the MED neural network morphological generation system;
x;: input; y;: output; h;: hidden state; a;: attention probability; ¢;: context; s;: decoder state. The
system is shown in the process of generating the second output symbol, y».

the local linguistic context. Similar techniques could also be used to combine the strengths of
finite-state and neural morphological taggers. In either case, the hybrid system is far less likely
to make severe errors than the neural network by itself thanks to the filtering effect of the finite-
state analyzer/generator component, whereas the neural network component is well-suited for
disambiguation using local linguistic context.

Neural networks are considered to be “data-hungry” models in the sense that they often re-
quire large amounts of training data to achieve acceptable performance on linguistic tasks like
morphological analysis. Data augmentation refers to techniques used to gather additional data.
One simple data augmentation technique for neural network analyzers-generators is to sample
training data—complex words and their analyses—that are generated by, and thus consistent with,

a finite-state morphological analyzer (e.g., Schwartz et al. 2019).

24

7 Resources for computational morphology

Nearly all the resources needed to study computational morphology are free to anyone with a
library card and a reliable internet connection. We briefly list some of the data and software that

might be used by the modern computational morphologist.

7.1 Data

Finite-state morphological analyzers, of varying coverage and quality, are available for many
languages. Apertium, an open-source machine translation platform, provides free finite-state
analyzer-generators for several dozen languages at time of writing (Tyers et al) 2012). Similarly,
Giellatekno also provides finite-state analyzer-generators, with a particular focus on Uralic lan-
guages (Moshagen et al| 2013).

There are several free databases of multilingual morphological annotations. These consist
of either inflectional paradigms, or entire sentences, with annotations indicating each word’s
lemma and morphological features. There are two distinct—but largely compatible—standards
for morphological feature specifications. UniMorph (McCarthy et al| 2020) is a free multilingual
database of inflectional paradigms for over a hundred languages. Most of these paradigms have
been extracted from Wiktionary, a free online dictionary. Each entry in UniMorph consists of a
triple: a wordform, that word’s lemma, and a morphological feature specification. UDLexicons
(Sagot 2018) provides morphological triples for 38 languages using a slightly different set, but
largely compatible, set of morphological features.

Universal Dependencies (Nivre et al; 2020) is a free database of 150 treebanks, collections of
sentences with syntactic annotations. In most of these treebanks, each word has been annotated
with its lemma, part of speech, and a morphological feature bundle. This database been used to
study morphological analysis and generation in context.

None of the above resources include item-and-process-style morphological segmentations,

but such data has been made for a handful of languages—Arabic, English, Finnish, German, and

25

Turkish—from the Morpho Challenge shared tasks (Kurimo et al) 2010).

Resources for derivational morphology are more limited. The proprietary CELEX database
(Baayen et al. 1996) contains derivational analyses for Dutch, English, and German words. Mor-
phoLex (Sanchez-Gutiérrez et al: 2018) provides morphological decompositions (including deriva-
tional affixes) for roughly 70,000 English words. DErivBase (Zeller et al| 2013) is a free database
of German derivational relationships. Kyjanek (2018) reviews computational resources for the

study of computational derivational morphology.

7.2 Software

The Natural Language Processing Toolkit (NLTK; Bird et al| 2009), an open-source Python library,
provides a number of stemmers and lemmatizers. While most of these tools are specific to a sin-
gle language, NLTK’s implementation of the Snowball stemmer includes grammars for fifteen
languages at time of writing. NLTK also provides implementations of several part-of-speech
models, and provides a Python interface for several other models. There are many open-source
tools for finite-state grammar development, including Foma (Hulder| 2009) which uses a special-
ized, domain-specific programming language, and Pynini (Gorman 2016), a Python library. Open-
source tools for unsupervised morphological analysis include Morfessor (Virpioja et al| 2013) and
Linguistica (Lee and Goldsmith 2016). In contrast, there are few “off-the-shelf” options for neu-
ral network-based morphology. Such systems are often built using open-source neural network
frameworks like PyTorch or TensorFlow, but such systems may require custom hardware such

as graphics processing units (GPUs) for efficient processing.

Acknowledgements

Thanks to Amal Aissaoui for help with Arabic, Magdalena Markowska for help with Polish, and
M. Elizabeth Garza for help with Spanish. Andrew Kirby, Arya McCarthy, Brian Roark, Allison

Sliter, and Richard Sproat provided helpful comments.

26

Further Reading

Eistenstein, Jacob. 2019. An Introduction to Natural Language Processing. MIT Press.

Goldberg, Yoav. 2017. Neural Network Methods for Natural Language Processing. Morgan & Clay-

pool.
Gorman, Kyle, and Richard Sproat. 2021. Finite-State Text Processing. Morgan & Claypool.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. 2008. Introduction to Automata Theory,

Languages, and Computation. Pearson.

Roark, Brian, and Richard Sproat. 2007. Computational Approaches to Morphology and Syntax.

Oxford University Press.

27

Notes

! In traditional grammar, these are sometimes referred to as declensional classes for the inflectional patterns
of nouns and adjectives, and conjugation classes for the inflectional patterns of verbs.

2 Definitions given here are discussed in greater detail in Gorman and Sproat 2021, ch. 1, and in a different form
in Hopcroft et al| 2008, ch. 3.

% In the formulation here, there is only one initial state but may be multiple final states, and that the initial state
may also be final. However, we can conceive of equivalent alternative formulations with multiple initial states, with
singleton final states, or both.

* You may have noticed the similarity between regular languages and regular expressions, a computing tech-
nique for string matching. The relationship between regular languages and regular expressions are discussed by
Hopcroft et al| (2008: ch. 3) and Eistenstein (2019: ch. 9), among others.

> The description of this model given here largely follows item-and-process theories of morphology (§2.5). How-
ever, Roark and Sproat (2007: ch. 3) argue that item-and-process and item-and-arrangement theories are computa-
tionally equivalent in the sense that both can be implemented by rational relations and finite-state transducers, so
this seems to be a purely notational distinction.

® One can also introduce other types of affixes such as infixes (p. 3, 121f.) using context-dependent rewrite rules.
For a worked example, see Gorman and Sproat 2021, p. 86f.

7 For more information about context-dependent rewrite rules and their compilation into FSTs, see Gorman and
Sproat 2021, ch. 5.

8 However, it is possible to model total reduplication patterns with two-way finite-state transducers (Dolatian
and HeinZ 2018), an extension to (“one-way”) finite-state transducers which allows the machine to move backwards
(and not just forwards) along the input tape.

? The arg max operator denotes the “argument of the maximum”, or the argument—here the tag sequence T—that
gives the highest possible value of the following expression.

19 For more information about HMMs and the Viterbi algorithm in particular, see Rabiner 1989.

11 Rumelhart and McClelland’s model required them to make many outmoded simplifying assumptions—in part
due to severe limitations of the underpowered digital computers and the primitive state of neural networks of the
era—and the authors arguably made overly rosy claims about the performance of their system (Pinker and Prince
1988). See Kirov and Cotterell 2018, and Corkery et al| 2019 for some recent discussion.

12 For simplicity of exposition, we focus on the general case of reinflection, which involves mapping between
arbitrary cells of morphological paradigms. When input forms are lemmas, this task is instead known as morpho-

logical generation; when output forms are lemmas, this task is instead known as lemmatization. A related task

28

is paradigm completion, filling in the missing cells of a partial morphological paradigm.
13 For simplicity of exposition, we omit details of training since the parameters of this model are learned using
well-known techniques. Neural network training is discussed in detail by Goldberg (2017: ch. 2) and Eistenstein

(2019: ch. 2), among others.

29

Exercises

Regular languages (after Hopcroft et al. 2008: 114) Give a regular expression that describes
all the possible ways one might write a phone number, including area and/or country codes. Then,

draw it as a finite-state automaton.

Finite automata The superscript plus sign denotes a variant of the Kleene star closure that
excludes the empty string language. That is, if A is a language, A* = AU AAU AAA U
The superscript question mark indicates the union of a language with the empty string language.
That is, if A is a language, A” = {¢} U A. Using these new definitions, draw a finite-state acceptor

that accepts the regular language {ab}{cde}*{fg}*{hi}".

Esperanto (after Beesley and Karttunen 2003: 219f.) The constructed language Esperanto
uses suffixation to form nouns. Nouns minimally consist of a stem such as hund- ‘dog’ and a
noun-forming suffix -o. Three suffixes may occur between the stem and the -o: the feminine
-in, the diminutive -et, and the augmentative -eg. These latter three suffixes may co-occur, in any
order, without any appreciable difference in meaning. Finally, a word-final -j marks a noun plural.

Some examples are shown below.

hundo ‘dog’

hundino ‘female dog’
hundinoj ‘female dogs’
hundinego ‘big female dog’
Eﬁﬁjﬁgg ‘big female dog’
hundegetino ‘big small female dog’
hundinetego & &

Write a regular language that accepts all possible words derived from the stem hund-. Then,
compile this language into an automaton using a finite-state toolkit like Foma or Pynini, and

show that it accepts all of the Esperanto words listed above.

30

Arabic (after McCarthy and Prince 1990) Broadly speaking, Arabic has two types of plurals.
The “sound plurals” are formed by adding a suffix to the singular, whereas the “broken plurals”,

are somewhat more complex. Some broken plurals are shown below.

sg. pl.

a. yurfah yuraf ‘room’
rukbah rukab ‘knee’
lutbah lutab ‘toy’
Pusrah Pusar ‘family’
nusxah nusax ‘copy’

b. hikmah hikam ‘wisdom’
git'ttah qit'at’ ‘female cat’
fitnah fitan ‘temptation’
mihnah mihan ‘ordeal’
sikkah sikak ‘rail’

c. qalb qulu:b ‘heart’
bah buhu:0 ‘research’
tags tuqu:s ‘weather’
qas'’r qus‘ur ‘castle’

Tilm Tulu:m ‘science’

d. fazkihah fawakih ‘fruit’
baridzah bawaridz ‘battleship’
ra:fihah rawa?ih ‘smell’
fa:t’ifah fawa:it’if ‘emotion’
na:fidah nawa:fid ‘window’

For each of the four groups, state, in prose, the relationship between the singular and plural
forms. Then, write rational relations for each of the four groups that maps from the singular to
the plural. You may want to think of each relation as passing through consonants (and certain
vowels), mapping some vowels onto other vowels, and deleting or inserting certain sequences of
segments. Then, if possible, compile these relations into transducers using a finite-state toolkit

like Foma or Pynini, and show that the transdcuers produce the correct mappings.

Spanish (after Gorman et al, 2019) For the 2017 CoNLL-SIGMORPHON shared task, partic-
ipants trained neural networks to perform an inflection generation task in 52 languages. The

systems take lemmas and UniMorph feature vectors as inputs, and attempt to predict the corre-

31

sponding inflected form. Some of the task’s Spanish data—consisting of indicative, present-tense

verbs (V; IND; PRS)—is shown below.

lemma features inflection

acosar V,;IND;PRS;3;SG — acosa ‘pursue’
aforar V;IND;PRS;2;S6¢ — afueras ‘lease’
apostar V;IND;PRS;3;PL — apuestan ‘bet’
conmover V;IND;PRS;3;SG — conmueve ‘affect’
consolar V;IND;PRS;2;SG — consuelas ‘console’
dentar V;IND;PRS;1;SG — diento ‘teethe’
disolver V;IND;PRS;2;SG — disuelves ‘dissolve’
encerrar V;IND;PRS;2;SG — encierras ‘lock up’
fusilar V;IND;PRS;2;SG — fusilas ‘shoot’
implicar ~ V;IND;PRS;1;SG — implico ‘imply’
infringir ~ V;IND;PRS;3;SG — infringe ‘infringe’
moler V;IND;PRS;3;PL — muelen ‘grind’
presagiar V;IND;PRS;1;SG — presagio ‘presage’
prescribir V;IND;PRS;3;PL — prescriben ‘prescribe’
recontar V,;IND;PRS;2;SG — recuentas ‘recount’
recusar V;IND;PRS;3;SG — recusa ‘recuse’
rondar V;IND;PRS;2;SG — rondas ‘patrol’
sublevar V;IND;PRS;1;SG — sublevo ‘revolt’
subvertir V;IND;PRS;3;PL — subvierten ‘subvert’
surcar V;IND;PRS;3;SG — surca ‘plow’
trasegar ~ V;IND;PRS;3;SG — trasiega ‘move around’
trovar V,;IND;PRS;2;56¢ — trovas ‘write poetry’

Gorman et al/ (2019) analyze the errors made by the top-performing models in this task, and find

errors like *encomenda for encomienda ‘s/he entrust’ and “recolan for recuelan ‘they re-strain’.

What examples in the training data given above might be responsible for these errors? Are lem-

mas and features sufficient to predict the inflectional forms of unseen nouns, or is additional

information needed?

32

References

Baayen, R. Harald, Richard Piepenbrock, and Léon Gulikers. 1996. CELEX2. LDC96L14.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural machine translation by
jointly learning to align and translate. In 3rd International Conference on Learning Representa-
tions.

Beesley, Kenneth R., and Lari Karttunen. 2003. Finite State Morphology. CSLL

Bird, Steven, Ewan Klein, and Edward Loper. 2009. Natural Language Processing with Python.
O’Reilly.

Chomsky, Noam, and Morris Halle. 1968. Sound Pattern of English. Harper & Row.

Chrupala, Grzegorz, Georgiana Dinu, and Josef van Genabith. 2008. Learning morphology with
Morfette. In Proceedings of the Sixth International Conference on Language Resources and Eval-
uation, 2362-2367.

Corkery, Maria, Yevgen Matusevych, and Sharon Goldwater. 2019. Are we there yet? Encoder-
decoder neural networks as cognitive models of English past tense inflection. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, 3868—3877.

Dolatian, Hossep, and Jeffrey Heinz. 2018. Modeling reduplication with 2-way finite-state trans-
ducers. In Proceedings of the Fifteenth Workshop on Computational Research in Phonetics, Phonol-
ogy, and Morphology, 66-77.

Eistenstein, Jacob. 2019. An Introduction to Natural Language Processing. MIT Press.

Fraser, Alexander, Helmut Schmid, Richard Farkas, Renjing Wang, and Hinrich Schiitze. 2013.
Knowledge sources for constituent parsing of German, a morphologically rich and less-
configurational language. Computational Linguistics 39:57—-85.

Gillick, Dan. 2009. Sentence boundary detection and the problem with the U.S. In Proceedings of
Human Language Technologies: The 2009 Annual Conference of the North American Chapter of

the Association for Computational Linguistics, Companion Volume: Short Papers, 241-244.

33

Goldberg, Yoav. 2017. Neural Network Methods for Natural Language Processing. Morgan & Clay-
pool.

Gorman, Kyle. 2016. Pynini: a Python library for weighted finite-state grammar compilation. In
Proceedings of the ACL Workshop on Statistical NLP and Weighted Automata, 75-80.

Gorman, Kyle, Arya D. McCarthy, Ryan Cotterell, Ekaterina Vylomova, Miikka Silfverberg, and
Magdalena Markowska. 2019. Weird inflects but OK: making sense of morphological genera-
tion errors. In Proceedings of the 23rd Conference on Computational Natural Language Learning,
140-151.

Gorman, Kyle, and Richard Sproat. 2021. Finite-State Text Processing. Morgan & Claypool.

Heinz, Jeftrey. 2018. The computational nature of phonological generalizations. In Phonological
Typology, ed. Larry M. Hyman and Frans Plank, 126-195. Mouton de Gruyter.

Hopcroft, John E., Rajeev Motwani, and Jeffrey D. Ullman. 2008. Introduction to Automata Theory,
Languages, and Computation. Pearson.

Hulden, Mans. 2009. Foma: a finite-state compiler and library. In Proceedings of the Demonstra-
tions Session at EACL 2009, 29-32.

Johnson, C. Douglas. 1972. Formal Aspects of Phonological Description. Mouton.

Kann, Katharina, and Hinrich Schiitze. 2016. Single-model encoder-decoder with explicit mor-
phological representation for reinflection. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), 555-560.

Kaplan, Ronald M., and Martin Kay. 1994. Regular models of phonological rule systems. Compu-
tational Linguistics 20:331-378.

Kibrik, Aleksandr E. 1998. Archi. In The Handbook of Morphology, ed. Andrew Spencer and
Arnold M. Zwicky, 455-476. Blackwell.

Kirov, Christo, and Ryan Cotterell. 2018. Recurrent neural networks in linguistic theory: revis-
iting Pinker and Prince (1988) and the past tense debate. Transactions of the Association for

Computational Linguistics 6:651-665.

34

Klatt, Dennis. 1987. Review of text-to-speech conversion for English. Journal of the Acoustical

Society of America 82:737-793.

Kleene, Stephen C. 1956. Representation of events in nerve nets and finite automata. In Automata
Studies, ed. Claude E. Shannon and J. McCarthy, 3-42. Princeton University Press.

Koskenniemi, Kimmo. 1983. Two-Level Morphology: A General Computational Model for Word-
Form Recognition and Production. Doctoral dissertation, University of Helsinki.

Kurimo, Mikko, Sami Virpioja, Ville Turunen, and Krista Lagus. 2010. Morpho Challenge 2005-
2010: evaluations and results. In Proceedings of the 11th Meeting of the ACL Special Interest
Group on Computational Morphology and Phonology, 87-95.

Kyjanek, Lukas. 2018. Morphological resources of derivational word-formation relations. Tech-

nical Report 2018-61, Institute of Formal and Applied Linguistics, Charles University.
Lee, G. M., ed. 2012. Oxford Latin Dictionary. Claredon Press, 2nd edition.

Lee, Jackson, and John Goldsmith. 2016. Linguistica 5: unsupervised learning of linguistic struc-
ture. In Proceedings of the 2016 Conference of the North American Chapter of the Association for
Computational Linguistics: Demonstrations, 22-26.

Lignos, Constantine, and Charles Yang. 2016. Morphology and language acquisition. In The
Cambridge Handbook of Morphology, ed. Andrew R. Hippisley and Gregory Stump, 765-791.
Cambridge.

McCarthy, Arya D., Christo Kirov, Matteo Grella, Amrit Midhi, Patrick Xia, Kyle Gorman, Eka-
terina Vylomova, Sebastian Mielke, Garrett Nicolai, Miikka Silfverberg, Stefanie Reed, Yuval
Pinter, Cassandra L. Jacobs, Ryan Cotterell, Mans Hulden, and David Yarowsky. 2020. Uni-
Morph 3.0: universal morphology. In Proceedings of the 12th Language Resources and Evaluation
Conference, 3922-3931.

McCarthy, John J., and Alan S. Prince. 1990. Foot and word in prosodic morphology: the Arabic

broken plural. Natural Language & Linguistic Theory 8:209-283.

35

Moshagen, Sjur N., Tommi Pirinen, and Trond Trosterud. 2013. Building an open-source de-
velopment infrastructure for language technology projects. In Proceedings of the 19th Nordic
Conference of Computational Linguistics (NODALIDA 2013), 343-352.

Nash, D. 1986. Topics in Warlpiri Grammar. Garland.

Nivre, Joakim, Marie-Catherine de Marnefte, Filip Ginter, Jan Haji¢, Christopher D. Manning,
Sampo Pyysalo, Sebastian Schuster, Francis Tyers, and Daniel Zeman. 2020. Universal De-
pendencies v2: an evergrowing multilingual treebank collection. In Proceedings of the 12th
Language Resources and Evaluation Conference, 4034-4043.

Petrov, Slav, Dipanjan Das, and Ryan McDonald. 2012. A universal part-of-speech tagset. In
Proceedings of the Eighth International Conference on Language Resources and Evaluation, 2089-
2096.

Pinker, Steven, and Alan Prince. 1988. On language and connectionism: analysis of a parallel

distributed processing model of language acquisition. In Connections and Symbols, ed. Steven
Pinker and Jacques Mehler. MIT Press.

Porter, Martin F. 1980. An algorithm for suffix stripping. Program 14:130-137.

Rabiner, Lawrence R. 1989. A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE 77:257-286.

Roark, Brian, and Richard Sproat. 2007. Computational Approaches to Morphology and Syntax.
Oxford University Press.

Rumelhart, David, and Jay McClelland. 1986. On learning the past tenses of English verbs. In
Parallel Distributed Processing: Explorations into the Microstructure of Cognition. Vol. 2: Psy-
chological and Biological Models, ed. Jay McClelland, David Rumelhart, and the PDP Research
Group, 216-271. Bradford Books/MIT Press.

Sagot, Benoit. 2018. A multilingual collection of CoNLL-U-compatible morphological lexicons.
In Proceedings of the Eleventh International Conference on Language Resources and Evaluation,

1861-1867.

36

Schwartz, Lane, Emily Chen, Benjamin Hunt, and Sylvia L.R. Schreiner. 2019. Bootstrapping a
neural morphological analyzer for St. Lawrence Island Yupik from a finite-state transducer. In
Proceedings of the 3rd Workshop on the Use of Computational Methods in the Study of Endangered

Languages Volume 1 (Papers), 87-96.
Sproat, Richard. 2010. Language, Technology, and Society. Oxford University Press.

Sanchez-Gutiérrez, Claudia H., Hugo Mailhot, S. Héléene Deacon, and Maximiliano A. Wilson.
2018. MorphoLex: A derivational morphological database for 70,000 English words. Behavior

Research Methods 50:1568—-1580.

Tyers, Francis M., Felipe Sanchez-Martinez, and Mikel L. Forcada. 2012. Flexible finite-state lexical
selection for rule-based machine translation. In Proceedings of the 16th Annual Conference of
the European Association for Machine Translation, 213-220.

Virpioja, Sami, Peter Smit, Stig-Arne Grénroos, and Mikko Kurimo. 2013. Morfessor 2.0: Python
implementation and extensions for Morfessor baseline. Technical Report 25/2013, Aalto Uni-
versity.

Zaliznyak, Andrey A., ed. 1977. Grammaticeskij slovar’ russkogo jazyka. Russkij Jazyk.

Zeller, Britta, Jan Snaj der, and Sebastian Pad6. 2013. DErivBase: inducing and evaluating a deriva-

tional morphology resource for German. In Proceedings of the 51st Annual Meeting of the Asso-

ciation for Computational Linguistics (Volume 1: Long Papers), 1201-1211.

37

	Introduction
	Early work
	Problem specification
	Knowledge-based methods
	State machines
	Notation
	Finite-state acceptors and regular languages
	Finite-state transducers and rational relations
	Finite-state analyzers and generators
	Limitations

	Data-driven methods
	Tagging
	Generation

	Hybrid models
	Resources for computational morphology
	Data
	Software

