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Abstract The English Preposing in PP construction (PiPP; e.g., Happy though/as
we were) is extremely rare but displays an intricate set of stable syntactic proper-
ties. How do people become proficient with this construction despite such limited
evidence? It is tempting to posit innate learning mechanisms, but present-day
large language models seem to learn to represent PiPPs as well, even though
such models employ only very general learning mechanisms and experience very
few instances of the construction during training. This suggests an alternative
hypothesis on which knowledge of more frequent constructions helps shape
knowledge of PiPPs. I seek to make this idea precise using model-theoretic syntax
(MTS). In MTS, a grammar is essentially a set of constraints on forms. In this
context, PiPPs can be seen as arising from a mix of construction-specific and
general-purpose constraints, all of which seem inferable from experience.

Keywords: unbounded dependency constructions, large language models, corpus lin-
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1 Introduction

The examples in (1) illustrate what Huddleston and Pullum (2002; CGEL) call
the English Preposing in PP construction (PiPP):

(1) a. Happy though we were with the idea, we decided not to pursue it.

b. Brilliant linguists though they were, they just couldn’t figure it out.

c. Brilliant as they seemed, they just couldn’t figure it out.

This is a draft (version 2, September 9, 2023) of a planned submission to a Festschrift volume,
English language and linguistic theory: A tribute to Geoff Pullum. My thanks to Peter Culicover,
Richard Futrell, Julie Kallini, Kyle Mahowald, Isabel Papadimitriou, Brett Reynolds, and partici-
pants at the tribute event for Geoff Pullum at the University of Edinburgh on August 31, 2023.
And a special thanks to Geoff for all his guidance and support over the years. Geoff’s research
reflects the best aspects of linguistics, and of scientific inquiry in general: it is open-minded,
rigorous, empirically rich, methodologically diverse, and carefully and elegantly reported. In all
my research and writing, Geoff is an imagined audience for me, and this has helped push me
(and, indirectly, my own students) to try to live up to the incredibly high standard he has set.
The code and data for this paper are available at https://github.com/cgpotts/pipps.
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On the CGEL analysis (in chapter 7, ‘Prepositions and prepositional phrases’,
by Geoffrey K. Pullum and Rodney Huddleston), PiPPs are PPs headed by the
preposition though or as, and the preposed predicational phrase enters into an
unbounded dependency relationship with a gap inside a complement clause. The
following is CGEL’s core constituency analysis (p. 633):

(2) PP

Prenucleus:
AdjPi

incredible

Nucleus:
PP

Head:
Prep

though

Comp:
Clause

Subject:
NP

it

Predicate:
VP

Predicator:
V

seems

PredComp:
GAPi

–

The CGEL description of PiPPs focuses on three central characteristics of the
construction: (1) it is limited to though and as, with as optionally taking on a
concessive sense only in PiPPs; (2) it can target a wide range of phrases; and
(3) it is a long-distance dependency construction, as seen in (3).

(3) a. Happy though/as we know that they would think that others would
be with the idea, . . .

b. Brilliant linguist though/as his friends would testify that his col-
leagues say that he is, . . .

In my first year in graduate school, Geoff Pullum taught a mathematical
linguistics course (Spring 2000 quarter) that drew on his ongoing work with
Rodney Huddleston on CGEL. At one of the meetings, Geoff challenged the class
to find attested cases of PiPP constructions spanning finite-clause boundaries, and
he offered a $1 reward for each example presented to him by the next meeting.
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At the time, the best I could muster was (4). These are single-clause PiPPs, but
Geoff awarded $0.05 in cash in recognition of my habit of collecting interesting
examples.

(4) a. “Hungry though I am for life as the next fellow sometimes I think
that lying under the ground there would not be such a bad thing.”
(Joseph Epstein. With My Trousers Rolled, p. 281.)

b. “Laudable though Potter’s ends were, and wonderfully perverse his
means, . . . .” (Joseph Epstein. A Line out for a Walk, p. 47.)

I kept an eye out for long-distance PiPPs, but this mostly turned up infinitival
cases like (5).

(5) a. “Roland felt a huge irritability mounting inside himself, mild though
he knew himself to be, . . . ” (A.S. Byatt, Possession, p. 105.)

b. “. . . workmen with whom one exchanges salutations when one passes
them in the streets of the capital, engaged as they tend to be in reex-
cavating the same stretch of street that they were digging up only a
few weeks before.” (John Lanchester, The Debt to Pleasure, p. 151)

It was not until 2002 that I found (6a). My triumphant message to Geoff
is given in Appendix A. This was sadly too late to help with CGEL, and Geoff
awarded no cash prize. However, I am proud to report that the example is cited
in Pullum 2017. It appears alongside (6b), which was found by Mark Davies in
2009. Mark apparently heard about Geoff’s quixotic PiPP hunt and tracked down
at least one case in CoCA (Davies 2008).1 In 2011, Geoff finally found his own
case, (6c), which is noteworthy for being from unscripted speech.

(6) a. “Although he sometimes retreated to a stance of pure practicality,
Feynman gave answers to these questions, philosophical and unsci-
entific though he knew they were.” (James Gleick, Genius: The Life
and Science of Richard Feynman, p. 13.)

b. “Good though he knew it was, . . . ” (CoCA)

c. “Unpopular though I can well see that it might be, . . . ” (Radio 4,
April 12, 2011. Story on the European Court of Human Rights.)

I believe Geoff’s motivations for issuing the PiPP challenge were twofold.
First, PiPPs embody a central insight: linguistic phenomena can be both incredibly

1 Brett Reynolds sent (August 24, 2023) me two more CoCA cases: smart as you think youare (sic),
and sexy as I think you’d look in coveralls.
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rare and sharply defined. Second, he was hoping we might nonetheless turn up
attested examples to inform the characterization of PiPPs that he and Rodney
were developing for CGEL. My sense is that, while Geoff is very happy to make
use of invented examples, he feels that a claim isn’t secure until it is supported
by independently attested cases.2 This aligns with how he reported example (6c)
to me: “At last, confirmation of the unboundedness from speech!” (Geoff’s email
message is reproduced in full in Appendix B.)

Ever since that turn-of-the-millenium seminar, PiPPs have occupied a special
place in my thinking about language and cognition. Because of Geoff’s challenge,
PiPPs are, for me, the quintessential example of a linguistic phenomenon that is
both incredibly rare and sharply defined. With the present paper, I offer a deep
dive on the construction using a mix of linguistic intuitions, large-scale corpus
resources, large language models, and model-theoretic syntax. My goal is to more
fully understand what PiPPs are like and what they can teach us.

My investigation centers around corpus resources that are larger than the
largest Web indices were in 1999–2000 (Section 2).3 These corpora provide a
wealth of informative examples that support and enrich the CGEL description
of PiPPs (Section 3). They also allow me to estimate the frequency of PiPPs
(Section 4). The overall finding here is that PiPPs are indeed incredibly rare: I
estimate that under 0.03% of sentences in literary text contain the construction
(and rates are even lower for general Web text). By comparison, about 12% of
sentences include a restrictive relative clause. Nonetheless, and reassuringly, this
corpus work does turn up naturalistic PiPP examples in which the unbounded
dependency crosses a finite-clause boundary; were Geoff’s offer still open, I
would stand to earn $58 (see Appendix E).

The vanishingly low frequency of PiPP’s raises the question of how people
manage to acquire and use the construction so systematically. It’s very hard to
imagine that these are skills honed entirely via repeated uses or encounters with
the construction itself. In this context, it is common for linguists to posit innate
learning mechanisms – this would be the start of what Pullum and Scholz (2002)
call a stimulus poverty argument, based in this case on the notion that the evidence
underdetermines the final state in ways that can only be explained by innate
mechanisms. Such mechanisms may well be at work here, but we should ask
whether this is truly the only viable account.

2 Pullum (2017) criticizes the extremes of “corpus fetishism” and “intuitional solipsism”and argues
for a wide-ranging approach to evidence in linguistics (see also Pullum 2007b). For a lively
summary of this view, see Pullum 2009: §5.

3 The C4 corpus I use in this paper has 365M documents in the en section. According to Sullivan
(2005), the largest Web indices in 1999 had 200M pages, though Google announced in June
2000 that it had reach 500M.
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To probe this question, I explore whether present-day large language models
(LLMs) have learned anything about PiPPs. Building on methods developed
by Wilcox et al. (2023), I present evidence that GPT-3 models (Brown et al.
2020) have excellent command of the core properties of PiPPs identified in CGEL
and summarized in Section 3. These models are exposed to massive amounts
of text as part of training, but they are in essentially the same predicament as
humans are when it comes to learning about PiPPs: PiPPs are exceedingly rare in
their training data. Importantly, these models employ only very general purpose
learning mechanisms, so their success indicates that specialized innate learning
mechanisms are not strictly necessary for becoming proficient with PiPPs (for
discussion, see Dupoux 2018, Wilcox et al. 2023, Warstadt and Bowman 2022,
Piantadosi 2023, Frank 2023a,b).

As an alternative account, I argue that, for LLMs and for humans, PiPPs arise
from more basic and robustly supported facts about English. To begin to account
for this capacity, I develop a model-theoretic syntax (MTS; Rogers 1997, 1998,
Pullum and Scholz 2001, Pullum 2007a, 2020) account in which PiPP’s follow
from a mix of mostly general patterns and a few very specific patterns (Section 6).
My central claim is that this MTS account is a plausible basis for explaining how
PiPPs might arise in a stable way even though they are so rare.

2 Corpus resources

The qualitative and quantitative results in this paper are based primarily in
examples from two very large corpus resources: BookCorpusOpen and C4.

2.1 BookCorpusOpen

This is a collection of books mostly or entirely by amateur writers. The original
BookCorpus was created and released by Zhu et al. (2015), and it formed part of
the training data for a number of prominent LLMs, including BERT (Devlin et al.
2019), RoBERTa (Liu et al. 2019), and GPT (Radford et al. 2018).4

Bandy and Vincent (2021) offer a deep investigation of BookCorpus in the
form of an extensive Datasheet (Gebru et al. 2018) with commentary. This
provides important insights into the limitations of the resource. For instance,
though BookCorpus contains 11,038 book files, Bandy and Vincent find that it
contains only 7,185 unique books. In addition, they emphasize that the corpus
is heavily skewed towards science fiction and what everyone in this literature
refers to euphemistically as ‘Romance’.

4 The ‘Books’ corpora included in the training data for GPT-2 (Radford et al. 2019) and GPT-3
(Brown et al. 2020) seem to be different.
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Zhu et al. stopped distributing BookCorpus some time in late 2018, but a
version of it was created and released by Shawn Presser as BookCorpusOpen.5

BookCorpusOpen addresses the issue of repeated books in the original corpus
but seems to have a similar distribution across genres. This is the corpus of
literary texts that I use in this paper. It consists of 17,688 books. The NLTK
TreebankWordTokenizer yields 1,343,965,395 words, and the NLTK Punkt sen-
tence tokenizer (Kiss and Strunk 2006) yields 90,739,117 sentences.

2.2 C4

C4 is the Colossal Clean Crawled Corpus developed by Raffel et al. (2020). Those
authors did not release the raw data, but rather scripts that could be used to
recreate the resource from a snapshot of the Common Crawl.6 Dodge et al. (2021)
subsequently created and released a version of the corpus as C4, and explored
its contents in detail. Overall, they find that C4 is dominated by mostly recent
texts from patent documents, major news sources, government documents, and
blogs, along with a very long tail of other sources.

Dodge et al.’s discussion led me to use the en portion of their C4 release. This
is the largest subset focused on English. The steps that were taken to create the
EN.CLEAN and EN.NOBLOCKLIST subsets seemed to me to create a risk of losing
relevant examples, whereas my interest is in seeing as much variation as possible.
The en subset of C4 contains 365M documents (156B tokens). I tokenized the
data into sentences using the the NLTK Punkt sentence tokenizer, which yields
7,546,154,665 sentences.

3 English Preposing in PP constructions

This section reviews the core characterization of PiPPs developed in CGEL (see
also Culicover 1980). Examples from C4 are marked C, and those from Open-
Books with B. To find these examples, I relied on ad hoc regular expressions and
the annotation work reported in Section 4. At a certain point, I realized I had
annotated enough data to train a classifier model. This model is extremely suc-
cessful (nearly perfect precision and recall on held-out examples) and so it turned
out to be a powerful investigative tool. This model is described in Appendix D. I
used it in conjunction with regexs to find specific example types.

5 https://github.com/soskek/bookcorpus
6 https://commoncrawl.org
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3.1 Prepositional head restrictions

Perhaps the most distinctive feature of PiPPs is that they are limited to the
prepositional heads though and as:

(7) a. CThat disaster, bad as it was, would be a pinprick compared to what
could happen if Line 5 broke.

b. BYoung though he was, he deserved an explanation for why his life
had been turned upside down.

As observed in CGEL, even semantically very similar words do not participate in
the construction:

(8) a. That disaster, although/while it was bad, . . .

b. ∗That disaster, bad although/while it was, . . .

Another peculiarity of PiPPs is that as can take on a concessive reading that
it otherwise lacks. For example, (9a) invites an additive reading of as that is
comparable to (9b).

(9) a. Happy as we were with the proposal, we adopted it.

b. As we were happy with the proposal, we adopted it.

By contrast, the concessive context of (10) means that, whereas the PiPP is fine,
the non-PiPP variant seems pragmatically contradictory because the concessive
reading of as is unavailable.

(10) a. Happy as we were with the proposal, we couldn’t adopt it.

b. # As we were happy with the proposal, we couldn’t adopt it.

It seems unlikely that we will be able to derive the prepositional-head restric-
tions from deeper syntactic or semantic properties. First, PiPPs don’t generalize
to other semantically similar concessive markers like although and while. Second,
the primary distributional difference between though and these other candidate
heads is that though has a wider set of parenthetical uses (They said, though/∗al-
though, that it was fine). However, the PiPP use is not a parenthetical one. Third,
even if invoking the parenthetical uses of though seemed useful somehow, it
would likely predict that as does not participate in the construction, since as lacks
the relevant parenthetical uses. Fourth, PiPPs license an otherwise unattested con-
cessive reading of as. However, fifth, PiPPs are not invariably concessive, as we see
from the additive readings of as-headed cases. These facts seem to indicate that
the prepositional-head restrictions are idiomatic and highly construction-specific.
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3.2 Gap licensing

While the prepositional head restrictions in PiPPs are likely construction-specific,
many properties of PiPPs do seem to follow from general principles. For example,
I would venture that any Predicator that takes a PredComp in the sense of (2)
can host the gap in a PiPP. Here is the relevant configuration from (2):

(11) Predicate

Predicator PredComp:
GAPi

Here are some examples that help to convey the diversity of PiPP Predicators
(which are in bold):

(12) a. B I admire the tenacity, useless though it is.

b. CClay, her best surface, mitigates the flaws in her game to some extent
but lovely and talented as she was and is, Ana simply never was as
good as many people seem to think she was.

c. CCrushing though it seems innovation is a hard game requiring confi-
dence passion and experience by the bucket load and tenacity.

d. CThat’s what’s great about these modern techniques, cliched though
spherification has become.

e. CStrange though it feels to say it and strange it may be to hear it,
knowing that I’m going to die feels liberating.

f. BPrecarious though they looked, they were actually quite solid, a
formation from once-buried strata now exposed to open air.

g. BRidiculous though it sounds, tis true.

h. BTheir armour, strong though it appeared, was brittle, and no match
for the strong steel of the lokchangs imperial blades.

i. CBut something about that recipe nags me still, perfect though it
tastes.

Other predicational constructions seem clearly to license PiPPs as well. Some
invented examples:

(13) a. Busy as/though they kept us, I was quite bored.

b. Clean though/as they wiped the table, I still worried about germs.
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Thus, I venture that any local tree structure with Predicator and PredComp
children (as in (11)) is a potential target for a PiPP gap.

PiPP gaps can also be VP positions:

(14) a. BBut try as he might, he couldn’t quiet his racing thoughts.

b. BStruggle though he might, her grip on his hands was simply too
strong.

c. BBut somehow there was always a horizon and beyond it I could not
see, peer though I did.

The try as/though X might locution is extremely common by the standards of
PiPPs. There are at least 870 of them in BookCorpusOpen, 861 of which are
as-headed. Examples like (14c) are less common but still relatively easy to find.

These non-predicational PiPP gaps can be assimilated to the others if we
assume that the fronted constituent is abstractly a property-denoting expression
and so has the feature PredComp. Constituents with other semantic types are
clearly disallowed:

(15) a. Though Sandy saw the movie,

b. See the movie though Sandy did, . . . VP

c. ∗The movie though Sandy saw, . . . Direct object

d. ∗See/Saw though Sandy (did) the movie, . . . Verb

CGEL briefly discusses adverbial and degree modifier PiPP gaps as well
(p. 635). Here are two such cases:

(16) a. B I’m debating going with something else with more yardage, much
though I want this to be in cashmere,

b. CHard though I looked, I didn’t see any plants with unusual markings
on the outer segments.

These cases seem not to satisfy the generalization that the preposed element is
property denoting. It is also hard to determine what is licensing the gaps; (16b)
could involve a head–complement relationship between look and hard, but there
seems not to be such a relationship for much in (16a).

3.3 A diverse range of preposable predicates

PiPPs also permit a wide range of predicational phrases to occupy the preposed
position (the Prenucleus in (2)). Here is a selection of examples:
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(17) a. BDark, gloomy, and dangerous though it might be, our town square
was a center of admiration throughout the universe

b. BHis ears were still stinging from her words as from the lashes of a
whip, kindly spoken though they were.

c. BTempted to run though he was, Will stood his ground.

d. BThe intervening years, few though they might be, have worked their
inevitable magic.

e. BThis child who demanded her maternal love, withered thing though
it was.

I would hypothesize that any phrase that can be a predicate is in principle possible
as the preposed element in a PiPP. However, there are two important caveats to
this, which I turn to now.

3.3.1 Adverbial as modification

CGEL notes that, “With concessive as some speakers have a preposed predicative
adjective modified by the adverb as” (p. 634). This version of the construction is
very common in the datasets I am using:

(18) a. CAs spectacular as his career was, what Ali stood for as a man made
the biggest impression on me.

b. CAs fun as those digital adventures are, as determined as digital heroes
are, they both pale in comparison with what God has done and is
doing.

c. BAs nervous as she was, she was still enjoying the view.

d. BAs frightening as that fall was, there was something very freeing
about it.

In addition, the following may be a case in which the as. . . as version of the
construction has an additive rather than a concessive sense:

(19) BAs sensitive as she was, she was aware of the gesture, and paused.

Here, the author seems to use the PiPP to offer rationale; a concessive reading
would arise naturally if the continuation said she was unaware of the gesture.

In these cases, there is a mismatch between the preposed constituent and what
could appear in the gap site, since this kind of as modification is not permitted in
situ; examples like (20a) and (20b) work only on a reading meaning ‘equally
fast’, which is quite distinct from the PiPP (20c).
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(20) a. They are as fast, . . .

b. As they are as fast, . . .

c. As fast as they are, . . .

These PiPP variants superficially resemble equative comparative constructions
of the form X is as ADJ as Y, and they are united semantically in being restricted
to gradable predicates. However, the meanings of the two seem clearly to be
different (CGEL, p. 634). In particular, whereas (20c) seems to assert that they
were fast (probably in order to concede this point), examples like Kim is as fast
as Sandy is do not entail speediness for Kim or Sandy, but rather only compare
two degrees (Kennedy 2007). Thus, it seems that the as. . . as form is another
construction-specific fact about PiPPs, though the adverbial as seems to have a
familiar degree-modifying sense.

3.3.2 Missing determiners

When the preposed predicate is a nominal, it typically has no determiner (CGEL,
p. 634):

(21) a. BThat’s why I threw in my lot with you, bloody usurping sod though
you are.

b. CMacbeth, great warrior though he is, is ill equipped for the psychic
consequences of crime.

c. BHe had the time to discover that his mind, soldier’s though it was,
burned brighter than most, . . .

d. BYou weren’t enjoying our meetings at all, relatively short ones though
they were.

e. BSweet succor though such a death would be, . . .

In all these cases, the non-preposed version requires an indefinite determiner:

(22) a. Though you are a bloody usurping sod, . . .

b. ∗Though you are bloody usurping sod, . . .

(23) a. Though it was a soldier’s, . . .

b. ∗Though it was soldier’s, . . .

Conversely, retaining the determiner in the PiPP seems to be marked. However,
Brett Reynolds found the following attested case in CoCA (p.c., August 24, 2023):

11



Christopher Potts

(24) I figured I could handle Brownsville, a high-crime neighborhood though it
was.

The option to drop the determiner in the preposed phrase seems like another
construction-specific aspect of PiPPs.

3.4 Modifier stranding

In PiPPs, the entire complement to the Predicator can generally be preposed.
However, it is common for parts of the phrase to be left behind, even when they
are complements to the head of the PredComp phrase (CGEL, p. 634):

(25) a. BHis wilderness-bred ears were keener even than the ears of techotl,
whetted though these were by a lifetime of warfare in those silent
corridors.

b. B Impatient though they were to get on, they slowed their pace . . .

c. BBut even so, difficult though it might be for you to believe, . . .

d. BThe decibels she employed in that one word, spoken as it was both
aloud and with telepathy, pounded the hell out of his eardrums and
shattered all the bottles on the bar.

In these situations, the fronted element must include the head of the predicative
phrase; parts of the embedded modifier cannot be the sole target:

(26) a. ∗For you to believe though it might be difficult, . . .

b. ∗By a lifetime of warfare though these were whetted, . . .

c. ∗Get on though they were impatient to, . . .

The generalization seems to be that the preposed element needs to a phrasal
head of the PredComp. For example, in (27), both the PredComp:AdjP and
Head:AdjP nodes are potential targets, but the AdjComp:AdjP is not (nor is the
non-phrasal Head:Adj):
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(27) Predicate:
VP

Predicator:
V

seems

PredComp:
AdjP

Head:
AdjP

Modifier:
Adv

extremely

Head:
Adj

close

AdjComp:
PP

to the top

On this approach, the ungrammatical cases in (26) are explained: their
gap sites do not match (27). Where there is such a match, the examples are
actually fine (assuming independent constraints on unbounded dependencies
are satisfied). For example, (28) contains four local trees in which a Predicator
and PredComp are siblings, and in turn there are four ways to form the PiPP:7

7 This example is modeled on an BookOpenCorpus case: Harsh though the old man was predisposed
to be, even his caviling nature found little to quibble about . . . . Brett Reynolds notes (p.c.) that
analyzing harsh and predisposed as phrasal may be at odds with CGEL. However, the corresponding
PiPP gap positions have to be phrasal, since they are linked to a phrasal Prenucleus as in (2).
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(28) PP

P

though

Comp:
Clause

Subject:
NP

the old man

Predicate:
VP

Predicator:
V

was

PredComp:
AdjP

Head:
AdjP

predisposed

VP

Marker:
Subordinator

to

Head:
VP

Predicator:
V

be

PredComp:
AdjP

Head:
AdjP

harsh

PP

in his criticisms

a. [Harsh] though the old man was predisposed to be in his criticisms,

b. [Harsh in his criticisms] though the old man was predisposed to be,

c. [Predisposed] though the old man was to be harsh in his criticisms,

d. [Predisposed to be harsh in his criticisms] though the old man was,

3.5 Long-distance dependencies

It is common for PiPPs to span infinitival clause boundaries, as in (5) and (29).
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(29) a. BGuilty though I believe Mars to be,

b. BThe call to power, to salvation, and false though he knew it to be, it
had gained strength with every rising.

As discussed in Section 1, the initial impetus for this project was the question of
whether we could find naturalistic examples of spanning finite-clause boundaries.
Intuitively, these examples seem natural, but they are incredibly rare in actual
data. However, they can be found. Here are two such cases:

(30) a. BHonourable though I am sure his intentions were, he betrayed you,
Ruben.

b. BEriks reassurance, heart-felt though she knew it was, did little to ease
her anxiety over the impending day.

Appendix E contains all of the examples of this form that I have found. All are
from written text. Geoff’s example (6c) is a spoken example.

It is natural to ask whether PiPPs are sensitive to syntactic islands. This
immediately raises broader questions of island sensitivity in general (Postal 1998,
Hofmeister and Sag 2010). I leave detailed analysis of this question for another
occasion. Suffice it to say that I would expect PiPPs to be island sensitive to
roughly the same extent as any other unbounded dependency construction.

3.6 Discussion

The following seeks to summarize the characterization of PiPPs that emerges
from the above CGEL-based discussion:

1. PiPP heads are limited to though and as, and PiPPs are the only environ-
ment in which as can take on a concessive reading.

2. Any complement X to a Predicator, or one of X ’s phrasal heads, can in
principle be a PiPP gap.

3. The Preposed element can be any property-denoting expression (and even
an adverbial in some cases), and PiPPs show two idiosyncrasies here:
gradable preposed elements can be modified by an initial adverbial as,
and the expected determiner on preposed nominals is (at least usually)
missing.

4. PiPPs are unbounded dependency constructions.

What sort of evidence do people (and machines) get about this constellation
of properties? The next section seeks to address this question with a frequency
analysis of PiPPs.
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4 Corpus analyses

The goal of this section is to estimate the frequency of PiPPs in usage data.

4.1 Materials

I rely on the corpora described in Section 2, which entails a restriction to written
language. In addition, while C4 is a very general Web corpus, BookCorpusOpen
is a collection of literary works. Intuitively, PiPPs are literary constructions, and
so using BookCorpusOpen will likely overstate the rate of PiPPs in general texts,
and we can expect that rates of PiPPs are even lower in spoken language. Overall,
though, even though I have chosen resources that are biased in favor of PiPPs,
the central finding is that they are vanishingly rare even in these datasets.

4.2 Methods

PiPPs are infrequent enough in random texts that even large random samples
from corpora often turn up zero cases, and thus using random sampling is noisy
and time consuming. To get around this, I employ the following procedure for
each of our two corpora C , both of which are parsed at the sentence level:

1. Extract a subset of sentences M from C using a very permissive regular
expression. We assume that M contains every PiPP in all of C . The regex I
use for this is given in Appendix C.

2. Sample a set of S sentences from M and annotate them by hand.

3. To estimate the overall frequency of sentences containing PiPPs and get a
95% confidence interval, use bootstrapped estimates based on S:

a. Sample 100 examples B from S with replacement and use these
samples to get a count estimate c̃ = (p/100) · |M |, where p is the
number of PiPP-containing cases in B.

b. Repeat this experiment 10,000 times and use the resulting c̃ values
to calculate a mean ĉ and 95% confidence interval.

4. By assumption 1, ĉ is the same as the estimated number of cases in
the entire corpus C . Thus, we can estimate the percentage of sentences
containing a PiPP as ĉ/|C |.
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4.3 Frequency estimates

BookCorpusOpen For BookCorpusOpen, we begin with 90,739,117 sentences.
The regex in Appendix C matches 5,814,960 of these sentences. I annotated 1,000
of these cases, which yielded 5 annotated examples. This gives us an estimate
of (5/1000) ·5,814,960 = 29,075 examples in all of BookCorpusOpen. The
bootstrapping procedure in step 3 above yields an estimated count of 29,249±
761, which in turn means that roughly 0.0322% of sentences in BookCorpusOpen
contain a PiPP.

C4 For C4, we begin with 7,546,154,665 sentences. The permissive regex
matches 540,516,902 of them. I again annotated 1,000 sentences, which iden-
tified 4 positive cases. This gives us an estimate of (4/1000) ·540,516,902=
2,162,068, which is very close to the bootstrapped estimate of 2,108,556±
63,370, which says that roughly 0.0279% of sentences in C4 contain a PiPP.
This is lower than the BooksCorpusOpen estimate, which is consistent with the
intuition that PiPPs are a highly literary construction (C4 consists predominantly
of prose from non-literary genres; Section 2.2).

4.4 Discussion

The frequency estimates help to confirm that PiPPs are extremely rare construc-
tions, present in only around 0.03% of sentences.

To contextualize this finding, I annotated 100 randomly selected cases from
C4 for whether or not they contained restrictive relative clauses. I found that
12/100 cases (12%) contained at least one such relative clause. This leads to
an estimate of 905,538,559 C4 sentences containing restrictive relative clauses,
compared with 2,215,038 for PiPPs. These are very different situations when it
comes to inferring the properties of these constructions.

How do these numbers compare with human experiences? It is difficult to
say because estimates concerning the quantity and nature of the words people
experience vary greatly. Gilkerson et al. (2017) estimate that children hear
roughly 12,300 adult words per day, or roughly 4.5M words per year. Other
estimates are higher. Drawing on analyses by Hart and Risley (1995), Wilcox
et al. (2023: §6.2) estimate that “a typical child in a native English environment”
hears roughly 11M words per year. Frank (2023a) offers a higher upper bound
for people who read a lot of books: perhaps as many as 20M words per year.

At the time Geoff issued his PiPP challenge, I was 23 years old, and I was
excellent at identifying and using PiPPs, if I do say so myself. The above suggests
that I had experienced 100M–460M words by then. Assuming 12 words per
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sentence on average, and using our rough estimate of 0.03% as the percentage of
PiPP-containing sentences, this means that I had heard between 2,500 and 11,500
PiPPs in my lifetime, compared with 1M–4.6M sentences containing restrictive
clauses. Is 2.5K–11.5K encounters sufficient for such impressive proficiency? I am
not sure, but it seems useful to break this down into a few distinct subquestions.

In Section 3, I reviewed the CGEL account of PiPPs. Some of the properties
reviewed there seem highly construction-specific: the prepositional-head restric-
tions (Section 3.1), the quirky adverbial as appearances (Section 3.3.1), and the
missing determiners (Section 3.3.2). For these properties, 2.5K–11.5K may be
sufficient for learning. However, it seems conceptually like this holds only if we
introduce an inductive bias: the learning agent should infer that the attested
cases exhaust the range of possibilities in the relevant dimensions, so that, for
example, the absence of although-headed PiPPs in the agent’s experience leads
the agent to conclude that such forms are impossible.

We need to be careful in positing this inductive bias, though. Consider the
generalization that any predicate is preposable (Section 3.3). This seems intu-
itively true: I presented attested PiPPs with a wide range of preposed phrases.
However, the attested cases cannot possibly cover what is possible; even 11.5K
examples is tiny compared to the number of licit two-word adverb–adjective
combinations in English, and of course preposed phrases can be longer than
two words. Thus, the learning agent seemingly needs to venture that the set of
attested cases is not exhaustive. Here, experience needs to invite a generalization
that all property-denoting phrases work.

The same seems true of the unbounded nature of the construction (Sec-
tion 3.5). Despite working very, very hard to track down such cases, I have
found only 58 PiPPs spanning finite-clause boundaries in my corpus resources
(Appendix E). This seems insufficient to support the conclusion that PiPPs can
span such boundaries. And none of these cases spans two or more finite-clause
boundaries. Yet we all recognize such examples as grammatical.

This seems genuinely puzzling. We have no direct experience indicating that
PiPPs can span multiple finite-clause boundaries, and yet we infer that such
constructions are grammatical. Oh the other hand, we have no direct experience
with PiPPs involving although as the prepositional head, and we infer that such
constructions are ungrammatical. What accounts for these very different infer-
ences? It is of course tempting to invoke very specific inductive biases of human
learners, biases that cannot be learned from experience but rather are in some
sense innate. This is a reasonable explanation for the above description. Before
adopting it, though, we should consider whether agents that demonstrably do
not have such inductive biases are able to learn to handle PiPPs. I turn to this
question next.
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5 Large language models

Over the last five years, large language models (LLMs) have become central
to nearly all research in AI. This trend began in earnest with the ELMo model
(Peters et al. 2018), which showed how large-scale training on unstructured text
could lead to very rich contextualized representations of words and sentences
(important precursors to ELMo include Dai and Le 2015 and McCann et al.
2017). The arrival of the Transformer architecture is the second major milestone
(Vaswani et al. 2017). The Transformer is the architecture behind the GPT family
of models (Radford et al. 2018, 2019, Brown et al. 2020), the BERT model
(Devlin et al. 2019), and many others. These models not only reshaped AI and
NLP research, but they are also having an enormous impact on society.

The Transformer architecture marks the culmination of a long journey in NLP
towards models that are low-bias in the sense that they presuppose very little
about how to process and represent data. In addition, when the Transformer is
trained as a pure language model, it is given no supervision beyond raw strings.
Rather, the model is self-supervised: it learns to assign high probability to attested
inputs through an iterative process of making predictions at the token level,
comparing those predictions to attested inputs, and updating its parameters
so that it comes closer to predicting the attested strings. This can be seen as
a triumph of the distributional hypotheses of Firth (1935), Harris (1954), and
others: LLMs are given only information about cooccurrence, and from these
patterns they are expected to learn substantive things about language.

One of the marvels of modern NLP is how much models can in fact learn
about language when trained in this mode on massive quantities of text. The
best present-day LLMs clearly have substantial competence in highly specific and
rare constructions (Socolof et al. 2022, Mahowald 2023), novel word formation
(Pinter et al. 2020, Malkin et al. 2021, Yu et al. 2020, Li et al. 2022), morpho-
logical agreement (Marvin and Linzen 2018), constituency (Futrell et al. 2019,
Prasad et al. 2019, Hu et al. 2020), long-distance dependencies (Wilcox et al.
2018, 2023), negation (She et al. 2023), coreference and anaphora (Marvin and
Linzen 2018, Li et al. 2021), and many other phenomena (Warstadt et al. 2019,
2020, Tenney et al. 2019, Rogers et al. 2020). The evidence for this is, at this
point, absolutely compelling in my view: LLMs induce the causal structure of
language from purely distributional training. They do not use language perfectly
(no agents do), but they have certainly mastered many aspects of linguistic form.
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5.1 Models

The primary experiments I report are with the variant of the GPT-3 model that is
available via the OpenAI API as ada.8 I chose ada because I believe it is the oldest
GPT-3 variant available and thus the one most likely to match the description
offered in the original GPT-3 paper (Brown et al. 2020). In particular, we know
from the paper that the original GPT-3 was trained on a mixture of the Common
Crawl dataset, some books datasets, and some additional Web-derived datasets
(see their Section 2.2). The results of Section 4 lead me to infer that the rate of
PiPPs is around 0.03% at best in these corpora as well. As the train sets for these
models approach 1 trillion words, this means they might encounter 30M PiPPs –
a large absolute number, but tiny relative to other phenomena and infinitesimal
alongside the number of possible PiPPs.9

Figure 1 is a schematic diagram of GPT-3. Input sequences are represented as
sequences of one-hot vectors used to look up k-dimensional vector representations
in a dense embedding space for the vocabulary V.10 The resulting sequence of
token-level vectors (the labeled gray rectangles) are the input to a series of
Transformer layers. These layers are depicted as green boxes. Each green box
represents a deep, complex neural network with parameters shared throughout
each layer.

Attention connections are given as gray arrows. These connect the different
columns of representations, and they can be seen as sophisticated ways of learning
to model the distributional similarities between the different columns. GPT-3 is
an autoregressive language model, meaning that it is trained to generate text
left-to-right. Thus, the attention connections go back in time but not forward –
future tokens have not been generated and so attending to them is impossible.
The original Transformer paper (Vaswani et al. 2017) is called ‘Attention is all you
need’ to convey the hypothesis that these very free-form attention mechanisms
suffice to allow the model to learn sophisticated things about sequential data.

In the final layer of the model, the output Transformer representations are
combined with the initial embedding layer to create a vector of scores over
the entire vocabulary. These scores are usually given as log probabilities. In
training, the output scores are compared with the one-hot encodings for the
actual sequence of inputs, and the distance between these two sequences of

8 https://platform.openai.com
9 Do LLMs get more information about language than human babies? The standard answer is yes,

but the issue is complex. Human babies encounter less language, but they encounter it as embodied
creatures in complex social settings. LLMs, by contrast, experience only decontextualized snippets
of text – a strange and narrow slice of the world we live in. For discussion, see Frank 2023a.

10 For many models in this class, the token-level vectors are combined with special positional vector
representations that help the model keep track of word order. I have not depicted these here.
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Figure 1: Schematic GPT-3 architecture diagram. This toy model has three layers
and a vocab size V of 8. GPT-3 has 96 layers, a vocab size of around 30K items,
and k (the dimensionality of almost all the model’s representations) is 12,288.

vectors serves as the learning signal used to update all the model parameters via
backpropagation. For our experiments, the output scores are the basis for the
surprisal values that serve as our primary tool for probing models for structure.
In Figure 1, the model’s highest score corresponds to the actual token everywhere
except where the actual token is with, in the final timestep. Here, the model
assigns a low score to with, which would correspond to a high surprisal for this
as the actual token. In some sense, with is unexpected for the model at this point.
(Additional training on examples like this might change that.)

The Transformer depicted in Figure 1 has 3 layers. The GPT-3 variants used in
my analyses have 96 layers. The value of k sets the dimensionality of essentially
all of the representations in the Transformer. The models I use set k to 12,288.
In my diagram the size of the vocabulary V is 8 (as seen in the dimensionality of
the one-hot and score vectors). The size of the vocabulary for GPT-3 is around
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50K items. This is tiny compared with the actual size of the lexicon of a language
like English, because many tokens are subword tokens capturing fragments
of words.11 The entire model has 175B parameters, most of them inside the
Transformer blocks.

Appendix F reports results for a few other models: GPT-2 large, GPT-3 with
the text-davinci-001 engine, and GPT-3 with the text-davinci-003. GPT-2
large is an older model and significantly smaller than GPT-3, at 1.54B parameters.
I believe text-davinci-001 is the version of GPT-3 used by Wilcox et al. 2023
and is similar to ada.

Both ada and text-davinci-001 are trained with pure self-supervision. In
contrast, text-davinci-003 may be quite different, as it was additionally Instruct
fine-tuned, meaning that it was trained on human created input–output pairs
specifically designed to imbue the model with specific capabilities (Ouyang et al.
2022). OpenAI has not disclosed the nature of this Instruct data, and so for all
we know their models have now been directly instructed about how PiPPs work
(though this seems unlikely). For these reasons, I disfavor text-davinci-003
(and subsequent models like ChatGPT and GPT-4) in this paper, though it should
be noted that the results for all the models I tested are very similar.

The autoregressive nature of GPT-3 is limiting when it comes to studying
aspects of well-formedness that might depend on the surrounding context in
both directions. In particular, if we want to study whether LLMs know about
the prepositional-head constraints on PiPPs (Section 3.1), the initial context will
often be too short to even fully determine a PiPP parse. What we would like is to
study strings like Happy X we were with the idea, to see what expectations the
model has for X. Luckily, the BERT model (Devlin et al. 2019) supports exactly
this kind of investigation. BERT is also based in the Transformer, but it is trained
to do masked language modeling, in which the model learns to fill in missing
items based on the surrounding context. The structure of BERT is schematically
just like Figure 1 except the attention connections go in both directions. I use
the bert-large-cased variant, which has 24 layers, dimensionality k= 1,024,
a vocabulary of roughly 30K items, and about 340M parameters in total.

5.2 Methods

To assess whether an LLM has learned to represent PiPPs, I employ the behavioral
methods of Wilcox et al. (2023): the model is prompted with examples as strings,
and we compare its surprisals (i.e., negative log probabilities) at the gap site (see
also Wilcox et al. 2018, Futrell et al. 2019, Hu et al. 2020).

11 These tokenizers are also learned in a distributional fashion. GPT-3 uses the byte-pair encoding
(BPE) method (Gage 1994, Sennrich et al. 2016).
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In a bit more detail: as discussed above, autoregressive LLMs process input
sequences token-by-token. At each timestep, they generate a sequence of scores
(log probabilities) over the entire vocabulary. For instance, suppose the model
processes the sequence 〈s〉 happy though we were with, as in Figure 1. Here,
〈s〉 is a special start token that has probability 1. The output after processing
〈s〉 will be a distribution over the vocabulary, and we can then look up what
probability it assigns to the next token, happy. Similarly, when we get all the
way to were, we can see what probability the model assigns to the token with as
the next token. The surprisal is the negative of the log of this probability value.
Lower surprisal indicates that the token with is more expected by the model. In
Figure 1, with has low log probability, i.e., high surprisal.

Wilcox et al. (2023) use surprisals to help determine whether models know
about filler–gap dependencies, using sets of items like the following:12

(31) a. I know what the lion devoured ____ yesterday. (Filler/Gap)

b. ∗ I know that the lion devoured ____ yesterday. (No Filler/Gap)

(32) a. I know that the lion devoured the gazelle yesterday.
(No Filler/No Gap)

b. ∗∗ I know what the lion devoured the gazelle yesterday. (Filler/No Gap)

The examples in (31) contain gaps. For these, Wilcox et al. (2023) define the
wh-effect as the difference in surprisal for the post-gap word yesterday between
the long-distance dependency case (31a) and the minimal variant without that
dependency (31b):

(33) − log2 P(yesterday | I know what the lion devoured)−
− log2 P(yesterday | I know that the lion devoured)

In the context of an autoregressive neural language model like GPT-3, the pre-
dicted scores provide these conditional probabilities. We expect these to be large
negative values, since the left term will have low surprisal and the right term
will be very surprising indeed.

We can perform a similar comparison between the cases without gaps in (32):

(34) − log2 P(the | I know what the lion devoured)−
− log2 P(the | I know that the lion devoured)

12 It’s assumed here that devour is obligatorily transitive. Glass (2021) shows that intransitive uses
of devour are possible and often motivated by specific contextual factors. This doesn’t challenge
the method, as we require only that (31b) be high surprisal given the context provided.
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For these comparisons, we expect positive values: the is a high surprisal element
in the lefthand context and low surprisal in the righthand context. An important
caveat here is that the gap in the filler–gap dependency could be later in the
string (as in I know what the lion devoured the gazelle with), and so the positive
values here are expected to be modestly sized.

I would also like to probe models for the prepositional-head limitations dis-
cussed in Section 3.1. However, we can’t simply extend the wh-effects idea to
these phenomena, for two reasons. First, we need to compare different lexical
items, whereas the above hypotheses assess the same item conditional on dif-
ferent contexts. Second, the prepositional head in a PiPP occurs too early in the
construction to ensure that the PiPP parse is even a dominant one for a model
(or any agent processing the input in a temporal order).

To address these issues, I propose to use the BERT model to process examples.
As discussed above, BERT uses bidirectional context, so we can ask it for the
score of a word that we have masked out in the entire string. To address the
concern that different words will have different prior probabilities, I propose to
compare the PiPP construction with its minimal grammatical variant, the regular
PP construction. Bringing these ideas together, this means that we consider pairs
of examples like the following:

(35) a. [MASK] they were tired, they pressed on. (PiPP)

b. Tired [MASK] they were, they pressed on. (PP)

At these [MASK] sites, BERT predicts a distribution of scores over the entire
vocabulary, just as GPT-3 does. Here, though, the scores are influenced by the
entire surrounding context. For a given preposition P, we compare the surprisal
for P in the PiPP with the surprisal in the PP. The difference is the prepositional-
head effect for PiPP.

5.3 Materials

Wilcox et al. (2023) show that both wh-effects (33) and (34) are robustly attested
for GPT-3 as well as a range of smaller models. Their methodology is easily
adapted to other unbounded dependency constructions, and so we can ask
whether similar effects are seen for PiPPs. To address this question, I created a
dataset of 33 basic examples covering a range of different predicators, preposed
phrases, and surrounding syntactic contexts. Each of these sentences can be
transformed into four items reflecting the four conditions we need in order to
assess wh-effects.
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Item Condition Prep. Embedding

Happy though we were with the
idea, we had to reject it.

Filler/Gap (PiPP) though None

∗Though we were with the idea, we
had to reject it.

No Filler/Gap though None

∗Happy though we were happy with
the idea, we had to reject it

Filler/No Gap though None

Though we were happy with the
idea, we had to reject it.

No Filler/No Gap though None

Table 1: Sample experimental item. To obtain variants with Prep as or although,
we change though and capitalize as appropriate. To create embedding variants,
we insert the fixed string they said that we knew that right before the PiPP
prepositional head. The target word is in bold. This is the word whose surprisal
we primarily measure.

An example of this paradigm is given in Table 1. Each item can be auto-
matically transformed into ones with different prepositional heads, and we can
add embedding layers by inserting strings like they said that directly after the
PiPP head preposition. I consider three head-types in this paper: as, though,
and as. . . as. The final variant is not strictly speaking a variant in terms of the
prepositional head, but it is the most common type in my corpus studies and so
it seems useful to single it out for study rather than collapsing it with the less
frequent plain as variants.

The materials for these experiments are included in the code repository for
this paper: https://github.com/cgpotts/pipps.

5.4 Results

Figure 2 summarizes the results for the ada engine. Each pair of panels shows a
different prepositional head. The single-clause items are on the left and multi-
clause items are on the right. The multi-clause variants are created using the
fixed string they said that we knew that, which results in PiPPs that span two
finite-clause boundaries.

The dotted lines indicate the two wh-effects. As noted above, we expect the
wh-effect for the gap cases (red bars) to be large and negative, and the wh-effects
for the gapless cases (blue bars) to be positive and modest in size.
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(c) Single clause, as-headed.
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(d) Multi-clause, as-headed.
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(e) Single clause, as. . . as-headed.

0 5 10 15 20
Mean surprisal

PP (No Filler/No Gap)

Filler/No Gap

No Filler/Gap

PiPP (Filler/Gap)

+5.30

2.38

(f) Multi-clause, as. . . as-headed.

Figure 2: Core wh-effects for the GPT-3 ada model. The bars represent means
surprisals for the target word, with bootstrapped 95% confidence intervals. The
wh-effects are indicated with dotted lines, and the numerical value of those
effects is given (based on the surprisal means).
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Figure 3: Prepositional-head comparisons using BERT.

In all contexts, the expected wh-effects emerge. These same patterns hold for
the other models I tested (Appendix F), though the later GPT-3 variants seem
to consistently reverse the expected wh-effect for multi-clause as-headed cases.
We expect these effects to be small. The more important ones for our purposes
are those that compare gap-containing cases. The wh-effects for those are strong
(strongly negative, as hypothesized) for all models.

Figure 3 summarizes the findings for the prepositional-head effect, for single
clause and multi-clauses cases. For these experiments, I used the same materials
as for the filler–gap experiments, but the model is now BERT, as discussed above.
It seems clear that BERT finds although extremely surprising in PiPPs. Strikingly,
on average, although is the lowest surprisal of the prepositions tested in the
regular PP cases like (35b). The PiPP context reverses this preference. In contrast,
though and as are low surprisal in PiPP contexts as compared to the PP context.

We can probe deeper here. The prepositional-head constraints lead us to
expect that though and as will be the top-ranked choices for PiPPs. Figure 4
assesses this by keeping track of which words are top-scoring in each of the 33
items, for the [MASK] position corresponding to the prepositional head. For the
single-clause cases (Figure 4a), as is the top prediction for 30 of the 33 items,
and though is the second-place prediction for 25 of the 33 items. This looks like
an almost categorial preference for these items. Interestingly, when we insert a
single finite-clause boundary (Figure 4b), these preferences are less clear, though
as and though remain dominant. For the double embedding (Figure 4c), the
preference for as and though has mostly disappeared. This is interesting when set
along side the clear gap-sensitivity for these multi-clause embeddings in Figure 2
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Figure 4: Ranking of PiPP prepositional heads for BERT, at different levels of
embedding.

(though those results are for GPT-3 and these are for BERT, so direct comparisons
are speculative).

5.5 Discussion

GPT-3 seems to have learned to latently represent PiPPs at least insofar as it
has an expectation that (1) a PiPP gap will appear conditional on an earlier
PiPP filler configuration, and (2) the prepositional head will be as or though.
These expectations hold not only in the single-clauses case but also in the sort of
multi-clause context that we know to be vanishingly rare even in massive corpora
like those used to train the models (Figure 2).

Where does this capacity to recognize PiPPs come from? In thinking about
humans, it was reasonable to imagine that specific inductive biases might be at
work in allowing the relevant abstract concepts to be learned. For LLMs, this is
not an option: the learning mechanisms are very general and completely known
to us, and thus any such inductive biases must not be necessary. This does not
rule out that the human solution is very different, but it shows that the argument
for innate learning mechanisms will need to be made in a different way. There
evidently is enough information in the input strings for the learning task at hand.

The above experiments are just the start of what could be done to fully
characterize what LLMs have learned about PiPPs. We could also consider probing
the internal representations of LLMs to assess whether they are encoding more
abstract PiPP features directly. For example, we might ask whether a preposed
phrase followed by a PiPP preposition triggers the model to begin tracking that it
is in an unbounded dependency state. Ravfogel et al. (2021) begin to develop such
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methods for relative clause structures. More recent intervention-based methods
for model explainability seem ideally suited to these tasks (Geiger et al. 2021,
2022, 2023a,b, Wu et al. 2023). We could process minimal pairs like those used
in our experiments, swap parts of their internal Tranformer representations, and
see whether this has a predictable effect on their expectations with regard to
gaps. This would allow us to identify where these features are stored in the
network. These experiments would take us beyond behavioral testing to more
deeply understand the latent structures models have learned.

One final note: one might wonder whether LLMs can perform the intuitive
transformation that relates PPs to PiPPs, as in Though we were happy⇒ Happy
though we were. I should emphasize that I absolutely do not think this ability
is a prerequisite for being proficient with PiPPs. Many regular human uers of
PiPPs would be unable to perform this transformation in the general case. Still,
the question of whether LLMs can do it is irresistible. I take up the question in
Appendix G. The quick summary: LLMs are good at this transformation.

6 Model-theoretic syntax characterization of PiPPs

It seems that both people and LLMs are able to become proficient with PiPPs
despite very little experience with them. Moreover, this proficiency entails a few
different kinds of inference from data: for some properties (prepositional heads,
dropping the determiner in preposed nominals), the learner needs to infer that
the attested cases exhaust the possibilities. For other properties (which phrases
can be preposed, where gaps can occur), the inferences need to generalize beyond
what exposure would seem to support. In addition, the LLM evidence suggests
that a simple, uniform learning mechanism suffices to achieve this. What sort of
theoretical account can serve as a basis for explaining these observations?

In this section, I argue that model-theoretic syntax (MTS) is an excellent
tool for this job. In MTS, grammars take the form of collections of constraints
on forms. More precisely, we cast these constraints as necessary (but perhaps
not sufficient) conditions for well-formedness by saying that a form is licensed
only if it satisfies all the constraints. Rogers (1997, 1998) showed how to define
prominent generative approaches to syntax in MTS terms and began to identify
the consequences of this new perspective. Pullum and Scholz (2001) trace the
history of the ideas and offer a visionary statement of how MTS can be used both
to offer precise grammatical descriptions and to address some of the foundational
challenges facing generative syntactic approaches in general. Pullum (2007a,
2020) refines and expands this vision.

In offering an MTS description of PiPPs, I hope to further elucidate the nature
of the construction. However, I seek in addition to connect the MTS formalism
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with the very simple learning mechanisms employed by LLMs. In essence, this
reduces to the scores that LLMs assign to the vocabulary at each timestep. In
training, these scores are continually refined to be closer to the vectors for the
training sequences. In this way, frequent patterns achieve higher scores, and
infrequent patterns get low scores. What counts as a “pattern” in this context?
That is a difficult question. We know from the results I summarized at the start
of Section 5, and from our lived experiences with the models themselves, that
they are able to identify extremely abstract patterns that allow them to recognize
novel sequences and produce novel grammatical sequences.

My MTS description will be somewhat informal to avoid notational overload.
The constraints themselves all seem to be of a familiar form, and it is hard to
imagine a reader coming away from reading Rogers (1998) or Pullum and Scholz
(2001) with concerns that MTS grammars cannot be made formally precise, so I
think an informal approach suffices given my current goals.

6.1 Gap licensing

Let’s begin with the most substantive and interesting constraint on PiPPs: the
gap licensing environment. The following states the proposed constraint:

(36) If a node N has category XP and a child with the feature GAPi, then N has
the features PredComp and /XPi (for some variable i).

Here, XP is a variable over phrasal syntactic categories. I assume that the feature
PredComp is itself licensed on a node only if that node is the complement of a
Predicator node or part of a head path that ends in such a complement node.

Constraint (36) centers on the gap site, enforcing requirements for the sur-
rounding context. The goal is to license gaps in the following sort of configura-
tions:

(37) Predicate/XPi

Predicator PredComp, Head:
XP/XPi

GAPi

Predicate/XPi

Predicator PredComp, Head:
XP/XPi

PredComp, Head:
XP/XPi

GAPi
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On the left, we have the simple case where the relevant PredComp is the direct
complement of a Predicator. On the right, we have a head path of two nodes.
This opens the door to the sort of modifier stranding we saw in Section 3.4.

The above constraint does not cover PiPPs in which the preposed phrase is
an adverbial or degree modifier, as in (16). For example (16b), there is a case to
be made that the adverb is a complement of the predicate, but this seems less
plausible for (16a). I leave accounting for these cases as a challenge for future
work.

The complex feature XP/XPi begins to track the filler–gap dependency, in
essentially the same manner as is done in GPSG (Gazdar et al. 1985). In (37),
I have shown how this would be inherited through the chain of nodes that
constitute the head path for the PredComp and up to the Predicate node. The
full MTS grammar should include constraints that manage the series of local
dependencies that make up these unbounded dependencies constructions. Such
an MTS theory is given in full for both GPSG and GB in Rogers 1998.

Arguably the most important feature of (36) is that it does not have any
PiPP-specific aspects to it. Any predicational environment of the relevant sort
is expected to license gaps in this way, all else being equal. This seems broadly
correct, as PiPPs are just one of a number of constructions that seem to involve
this same local structure:

(38) a. They are happier than we are.

b. They are as happy as we are.

c. BPoor as church mice they were, but it didn’t matter.

d. They wanted to run the race, and run the race they did.

e. B the view, such as it was, never failed to intimate that reality is negli-
gible as dreams

f. C . . . however amusing the posturing and gestures may seem it is in
extremely bad taste to laugh, make asides etc and it will give deep
offence - it is not a case where the customer is always right.

The comparative construction in (38a) and (38b) may be the key to all of this:
such constructions are incredibly common. If learners are able to infer from them
that they contain gaps and those gaps are licensed by predicators – that is, if they
infer the latent structure depicted in (37) – then they have learned a substantial
amount about PiPPs even if they never encounter an actual PiPP.
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6.2 Prenucleus constraints

Constraint (36) licenses an unbounded dependency gap element, and we assume
that this dependency is passed up through a series of local feature relationships.
The following constraint requires that this dependency be discharged at the top
of the PiPP construction:

(39) If a PP node N has child nodes labeled Prenucleus and Nucleus, then the
Prenucleus has feature XPi (for some variable i), the Nucleus has feature
PP/XPi, neither of them has any other slash features, and N does not have
any slash features.

This describes trees like (40) and entails that the PiPP unbounded dependency is
discharged here.

(40) PP

Prenucleus:
XPi

Nucleus:
PP/XPi

In addition, it entails that PiPPs can contain only one unbounded dependency
and that they are islands for unbounded dependencies.

We could supplement (39) with additional constraints on the Prenucleus
phrase, for example, to block determiners (Section 3.3.2) and to allow adverbial
as (Section 3.3.1).

Importantly, nothing about the above set of constraints requires that the
Prenucleus element would be grammatical if placed in the gap site. There is no
“movement” in any formal sense. The constraints center around the dependency,
which tracks only an index and a syntactic category type.

This constraint is very close to being PiPP-specific; the local tree it describes
(40) is certainly indicative of a PiPP. It may be fruitful to generalize it to cover
the way slash dependencies are discharged in the constructions represented in
(38) and perhaps others.
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6.3 Prepositional head constraints

The final constraint I consider is the prepositional-head constraint. It is highly
specific to PiPPs:

(41) If T matches the form,

PP

Prenucleus:
XPi

Nucleus:
PP/XPi

Head:
Prep

Comp:
Clause/XPi

then the child node of the Head:Prep node in T is though or as.

For LLMs, this be reflected in fact that they will assign very low scores to
other prepositions in this environment. People may do something similar and
intuitively feel that those low scores mean the structures are ungrammatical.

A fuller account would refer to the semantics of the prepositional head, in
particular, to specify that if as has a concessive reading, then it is in the above
environment.

Why is constraint (41) so much more specific than the others we have given
so far? There may not be a deep answer to this question. After all, it is easy to
imagine a version of English in which PiPP licensing is broader. On the other hand,
many constructions are tightly associated with specific prepositions, so LLMs
(and people) may form a statistical expectation that encounters with prepositions
should not be generalized to other forms in that class.

6.4 Discussion

I offered three core constraints: one highly PiPP-specific one relating to preposi-
tional heads (41), one that mixes PiPP-specific things with general logic relating
to discharging unbounded dependencies (39), and one that is general to gap
licensing (36). Taken together, these capture the core syntactic features of PiPPs.

It seems natural to infer from this description that PiPPs are, in some sense,
epiphenomenal – the consequence of more basic constraints in the grammar.
From this perspective, we might not be able to clearly and confidently say exactly
which constructions do or don’t count as PiPPs. For example, the adverbial cases
in (16) might be in a gray area in terms of PiPP status. But ‘PiPP” is a post hoc
label without any particular theoretical status, and so lack of clarity about its
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precise meaning doesn’t mean that the theory is unclear. For highly relevant
discussion, see Culicover 1999.

I am confident that the constraints can be learned purely from data by sophis-
ticated LLMs. For the prepositional-head constraint, this seems like a straightfor-
ward consequence of LLM scoring. For the other constraints, we need to posit
that LLMs induce latent variables for more abstract features relating to syntactic
categories, constituents, and slash categories. The precise way this happens re-
mains somewhat mysterious, but I cited extensive experimental evidence that
it does arise even in LLMs trained only with self-supervision on unstructured
text.13 The final state that LLMs are in after all this will also not reify PiPPs
as a specific construction. Rather, PiPPs will arise when the model’s inputs and
internal representations are in a particular kind of state, and this will be reflected
in how they score both well-formed PiPPs and ill-formed ones, as we saw in
Section 5.

7 Conclusion

The origins of this paper stretch back to a challenge Geoff Pullum issued in the
year 2000: find some naturally occurring PiPPs spanning finite-clause boundaries.
With the current paper, I feel I have risen to the challenge: conducting numerous
highly motivated searches in corpora totaling over 7.6B sentences, I managed to
find 58 cases (see Section 3.5 and Appendix E).

This paper was partly an excuse to find and present these examples to Geoff.
However, I hope to have accomplished more than that. The massive corpora we
have today allowed me to further support the CGEL description of PiPPs, and
perhaps modestly refine that description as well (Section 3). We can also begin to
quantify the intuition that PiPPs are very rare in usage data. Section 4 estimates
that around 0.03% of sentences contain them, compared to 12% for restrictive
relative clauses (a common unbounded dependency construction).

The low frequency of PiPPs raises the question of how people become pro-
ficient with them. It is tempting to posit innate learning mechanisms that give
people a head start. Such mechanisms may be at work, but data sparsity alone
will not carry this argument: I showed in Section 5 that present-day LLMs are
also excellent PiPP recognizers. Their training data also seem to underdetermine
the full nature of PiPPs, and yet LLMs learn them. This suggests an alternative
explanation on which very abstract information is shared across different con-

13 Bhattacharya and van Schijndel (2020), Mitchell and Bowers (2020) and Lasri et al. (2022)
suggest that earlier LLMs learn in a more fragmentary way, with minimal sharing of information
across related constituents. This may also be true of GPT-3, but it seems likely that LLMs will
continue to improve in this regard.
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texts, so that PiPPs emerge from more basic elements rather than being acquired
from scratch. I offered an MTS account that I think could serve as a formal basis
for such a theory of PiPPs and how they are acquired.

Geoff’s research guided me at every step of this journey: the initial PiPP
challenge, the CGEL description, the role of corpus evidence, the nature of stim-
ulus poverty arguments, and the value of MTS as a tool for formal descriptions
that can serve a variety of empirical and analytical goals. What is next? Well,
Geoff already implicitly issued a follow-up challenge when commenting on Mark
Davies’ example (6b):

That is enough to settle my question about whether the construc-
tion can have an unbounded dependency, provided we assume –
a big but familiar syntactician’s assumption – that if the gap can
be embedded in one finite subordinate clause it can be further
embedded without limit. (Pullum 2017: 290).

A clear, careful generalization from data, and a clear statement of the risk that
the generalization entails. To reduce the risk, we need at least one naturally
occurring PiPP case spanning at least two finite-clause boundaries. On the account
I developed here, such an example would provide no new information to linguists
or to language users, but it still felt important to me to find some. With the help
of a powerful NLP model (Appendix D) and some intricate regexs, I searched
through the roughly 7.6B sentences in C4 and BookCorpusOpen, and I eventually
found three double finite-clause cases:

(42) a. CWell-intentioned though many people may have imagined that the
CIA probably thought they were, their foreign-policy operations were
confused, duplicitous failures.14

b. CAs for planning, as sinister as I think this student thinks our meetings
may be, they are really not!

c. CAs much of a downer as I think we both agree the pistols are, for us,
do you not find the only thing worse than using one yourself is when
someone else in the lobby absolutely dominates with them, when
running them akimbo?

14 This example is from the English Language Learners Stack Exchange. The user is asking for help
in understanding the PiPP. Another user offers the regular PP as an explanation. I have not been
able to find the original source of the example sentence.
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Supplementary materials

A My message to Geoff

From potts@ling.ucsc.edu Tue Dec 24 05:33:49 2002
Date: Tue, 24 Dec 2002 05:33:48 -0800 (PST)
From: Christopher Potts <potts@ling.ucsc.edu>
To: Geoff Pullum <pullum@ling.ucsc.edu>
Subject: Long-distance left extern

Geoff!

Although he sometimes retreated to a stance of pure practicality,
Feynman gave answers to these questions, philosophical and unscientific
though he knew they were.
---James Gleick. 1992. Genius: The Life and Science of Richard Feynman.

New York: Vintage Books (p. 13).

In addition to sporting this rarity, it's a terrific biography. I have
an extra copy if you'd like it for the trip back from Atlanta. I read it
many years ago, many years before I knew to look for long distance fronted
PP left externs.

---Chris

B Geoff’s message

From: "Geoffrey K. Pullum" <gpullum@ling.ed.ac.uk>
Subject: a case from speech
Date: April 12, 2011 at 00:55:05 PDT
To: cgpotts@stanford.edu

Just a minute ago I heard someone speaking on BBC Radio 4 (not reading from
a script) say something about the European Court of Human Rights that began:

Unpopular though I can well see that it might be, ...

At last, confirmation of the unboundedness from speech! The predicate
preposing of the "happy though I am" PP construction is, indeed, an
unbounded dependency.
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I've been looking for good attested examples of that sort for about ten
years, as you well know. You found the first one, in Gleick's biography
of Feynman, when you were a puppy. But from spontaneous speech! This is
a red letter day for evidence-based linguistics.

Best wishes,
GKP

C Initial regular expression

The following is the regex I used to create initial samples to annotate (see
Section 4.2, step 1):

1 import re
2 main_regex = re.compile(r"""
3 (\S+)
4 \s+
5 (?: though|as)
6 \s+
7 (?:\S+\s+)+""", re.VERBOSE | re.I)

I add an additional step of filtering off examples where the case-normalized
initial matching group is in the set {as, even, but, and}. As far as I can tell, the
only risk this runs is in filtering off cases like Even though the odds were, we still
lost. This seems preferable to ending up with samples that are totally dominated
by phrases headed with even though.

D PiPP classifier

I ended up annotating and collecting a lot of examples as part of doing the work
for Sections 3–4. At a certain point, I realized I had collected enough examples
that it seemed plausible that I would be able to train a classifier to help me find
more useful examples. This turned out to be extremely productive.

To build this classifier, I began with BERT-base-cased parameters. I had 7,043
annotated examples: 6,598 negative cases and 445 positive cases. To get a sense
for how effective these models could be, I first split this dataset randomly into
80% train and 20% test examples, which resulted in a test set containing 1,314
negative cases and 95 positive cases – very close to the overall distribution. I
trained the model using a HuggingFace transformers training protocol (Wolf
et al. 2019), with the only departure from the defaults being that I assigned the
positive class twice the weight of the negative class to help make up for the class
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imbalance. I trained the model using a Google Colab notebook with GPU support.
This took about 15 minutes.

This model achieved an F1 of 0.99 for the negative class and 0.92 for the
positive class, for a macro F1 of 0.96. This suggested to me that this classifier
approach could be successful, so I retrained the model on all my labeled examples
using the same protocol. As a check, I evaluated this model on every PiPP and PP
case from my Section 5.3 materials, in every prepositional head and embedding
variant. This led to a global accuracy of 0.99 (two mistakes in the entire test).
On the stress-test case used in Appendix G, the model also got 17 of 18 examples
correct. Overall, the results struck me as excellent, so I began using the model to
find more examples.

The code for the model is included in the project repository, and the model is
available on the HuggingFace Model Hub as cgpotts/pipp-finder-bert-base-
cased. This may be the most obscure and specific model on the HuggingFace
Model Hub right now.

E Naturally occurring PiPPs spanning finite clause boundaries

1. BHonourable though I am sure his intentions were, he betrayed you, Ruben.

2. BHold thy explanation, excellent though I’m sure it is!

3. B “they ’re right here,” she told him and, unlikely though she knew it was,
she couldn’t help wishing he’d squeeze her hand – or give her some other
small token on which to hang all her hope.

4. BEriks reassurance, heart-felt though she knew it was, did little to ease her
anxiety over the impending day.

5. B Impossible as she thought it would be for anyone else, she swallowed the
cold coffee and began once again to type.

6. BCelibate as he wished they were

7. BWeak though I thought they were, when she stamped closer the ground
shook beneath us.

8. BStrange as you may think it is, the soup shortage was part of one . . .

9. BBusy as you say you are, I thought you’d be happy I saved you the extra
work.

10. BGuilty though I believe Mars to be

45



Christopher Potts

11. BPrepared as he thought he was for this confrontation, his knees still
buckled in anticipation for what Antone said next.

12. BOddly, as wrong as she knew it was for Noah to assume his behavior was
acceptable, a very small part of her was thrilled by it.

13. CWe were agog for the Memories of Max Miller and his Life in the Theatre,
risqué though we feared the Cheeky Chappie might be, from the peerless
Mr Bill Pertwee, who spared not our blushes and who appeared in a
Dressing Gown of sorts that almost beggared belief, even though redeemed
in full by the familiar hat & patter.

14. C I will remember that the collective wisdom of gardening and knowledge
of plants is much bigger than my knowledge of gardening, vast though
I think it might be, and therefore, it is possible for a new gardener to
encounter some new wisdom or knowledge that I know nothing about.

15. CThat, for me, is what the whole thing is about, anachronistic though I fear
it may be.

16. CThey are many and, complex though I like to think I am, I am not legion.

17. C In my judgment the Secretary of Statement made it quite sufficiently clear
that what she was doing was simply reaching a different judgment about
the degree of harm, significant though she agreed that it was.

18. CAmen to that, optimistic though I fear it may be.

19. CHe was trying to make a noise; to ward something off or drown something
outwhat, I could not imagine, awesome though I felt it must be.

20. CYou must understand how embarassing it was to discover this melon
felony, inadvertent though I assure you it was!

21. CWe reached for our cameras, inadequate though we knew they would be.

22. C I am hoping that there will be a second referendum, tedious though I
know this will be.

23. CSo, foolish though I think you are, marginal though I know you to be, you
people do indeed manage to do far more real damage than any sensible
person would suspect on a superficial looksee.

24. CHowever, early though we thought our arrival at the gate was, many had
thought to come much earlier and the line was already halfway up the
Mall.
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25. CYou are not like him, Elijah, as much as you seem to think you are.

26. CAs inept as Giovanni and Carwyn seemed to think Lorenzo was about
technology, why did he have a financial guy who had online access in his
super-secret bad guy lair?

27. CPrepared as we think we are, we’re defeated.

28. CBeautiful as many people may think it is, it is such a literary design,
obviously made for text use, that it always seems out of place in display
sizes.

29. CPointless as you think it will be, this post is actually worth spending the
two minutes that it will take to read, because these are so obvious that
theyre most often overlooked.

30. CCrazy as some might think that is, the customer service was incredible
and the product even more so.

31. CDifficult as they say it will be, Inshā’Allāh it will be better than every
Ramad. ān before.

32. CUnsightly as some say it is, wind farming is more sustainable compared
to the generating energy using fossil fuel.

33. Cprejudiced as the test seems to say they are.

34. CSmart though we might think we are, we do not have access to all infor-
mation, nor are we experts in every field of human endeavor, so we have
to rely on others.

35. CClean as you think your hands are, they usually have dirt and bacteria
from items youve touched.

36. CHappy as I want you to be and hope you will be, you must yet understand
that marriage is Gods design and His purposes must be pursued in order
for you to be truly happy.

37. CNeither as clever nor as interesting as it appears to think it is, The Words
maroons its talented stars in an overly complex, dramatically inert literary
thriller that’s ultimately a poor substitute for a good book.

38. CBecause as terrible a thought as she knows it is, Irene is just so damn
tempting.
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39. CFor as small and insignificant as some other luxury and green car brands
might want us to think Tesla is, the name keeps popping up all over the
news, and even when its about Teslas losses in the courtroom, most of the
American public seems to side with Tesla.

40. CFor as independent and fierce as Miley Cyrus wants everyone to think
she is, she’s actually pretty scared of being alone – and as a result, she’s
starting to blame herself for Liam Hemsworth’s alleged wandering eye.

41. CSo as safe as the CSE promoters want you to believe the process is, there
is a significant potential for both loss and inconvenience— enough so that
managed municipal, corporate, and government CEFs, REITs, preferred
stocks, etc.

42. CClever as I thought my nerd humour was, it would appear that this was
a bit of a recurring joke among nerd tweeps and just proved once again
that there is no original thought.

43. CAs entertaining as we may think we are everyone in the room wants to be
in their own area getting ready for kids.

44. CArdent, as pretentious and intelligent as you want to keep trying to tell
people u are, u should know what AI is and how far Siri is from AI.

45. CAs exceptional as your client wants to think you are, you must come in
second to him.

46. CBecause as terrible a thought as she knows it is, Irene is just so damn
tempting.

47. CAs odd as I know it sounds I think that adding a few extra bits is part of
the experience of this set.

48. CAs smart as I think I am now I know that it is only because I had to walk
some long and hard steps to get here.

49. C It is my understanding (as limited as you seem to think it is) is that
trustees (perhaps not the names you’ve mentioned) were the ones who
decided to create an investment office and the parameters of the offices
responsibilities.

50. CAs crazy as I thought it sounded I told him it was fine with me.

51. CAs anonymous as I thought I wanted to be, there was something about
being there and singled out for anything other than panhandling that felt
like a casting call.
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52. CAs practical as I can imagine being sighted must be I sometimes think
sight can be a very big obstacle.

53. CHowever, as secure as many people want to believe blockchain is, it is not
without its vulnerabilities.

54. CAs busy as I know Kelly will want to be on her first day at Gonzaga, . . . .
Hoopfest must come first.

55. CAs profound and self-important as Arrival appears to think it is, your
humble reviewer found it a yawn-inducing snoozefest that borrowed from
every science fiction film from The Day the Earth Stood Still to Close
Encounters of the Third Kind to ET to Contact.

56. CWell-intentioned though many people may have imagined that the CIA
probably thought they were, their foreign-policy operations were confused,
duplicitous failures.

57. CAs for planning, as sinister as I think this student thinks our meetings may
be, they are really not!

58. CAs much of a downer as I think we both agree the pistols are, for us,
do you not find the only thing worse than using one yourself is when
someone else in the lobby absolutely dominates with them, when running
them akimbo?
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F Additional large language model results

Figures 6 and 7 show the results of testing wh-effects in PiPPs using text-
davinci-001 and text-davinci-003, respectively.
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(e) Single clause, as. . . as-headed.
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(f) Multi-clause, as. . . as-headed.

Figure 5: Testing wh-effects for GPT-2 large. The models shows the expected
effects in all conditions.
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(e) Single clause, as. . . as-headed.
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Figure 6: Testing wh-effects for the GPT-3 text-davinci-001 model. The model
shows the expected effects everywhere except for the multi-clause as-headed
condition.
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Figure 7: Testing wh-effects for the GPT-3 text-davinci-003 model. The model
shows the expected effects everywhere except for the multi-clause as-headed
condition.
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G LLMs as linguists

Can LLMs reliably transform PPs into PiPPs? This is an unusual task, and so
it should not be considered a prerequisite for mastering PiPPs, but a positive
result here seems like it would be informative. To begin such an assessment, I
ran some small pilots with text-davinci-001 and text-davinci-003. It should
be emphasized that, in these experiments, the models are frozen objects. To the
extent that they “learn”, it is entirely the result of the prompt placing them in a
particular temporary state. This is what the NLP literature refers to as few-shot
in-context learning (Brown et al. 2020).

The primary materials for my pilot are the 33 base sentences from Section 5.3.
As before, we can automatically create variants of these basic sentences with
different prepositions and different levels of embedding.

The prompt to the LLM includes some high-level instructions, and then it
offers some number of demonstrations of the intended behavior: translating
PPs into PiPPs. The demonstrations are drawn from the experimental materials,
always disjoint from the target item. After the demonstrations, I include the
instruction Now apply the transformation to this input:, a novel input,
and the string Output:. Here is a toy example of the prompt, using two invented
short examples as demonstrations, and a toy target case:

You are an expert grammarian. Your task is to convert the Input
example to a new Output by applying a transformation. Here are
some examples of these transformations:

Input: Though they were happy, they said no.
Output: Happy though they were, they said no.

Input: I am, though it seems odd, friends with a robot.
Output: I am, odd though it seems, friends with a robot.

Now apply the transformation to this input:

Input: Though they felt sad, they smiled.
Output:

The model’s entire continuation (with peripheral whitespace removed) is taken
to be its prediction, and we say the model is correct if and only if its prediction is
an exact string match (EM) with the gold PiPP. For the above, the correct output
would be Sad though they felt, they smiled.
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Table 2 summarizes the results. The text-davinci-001 engine struggles to
perform the task, but text-davinci-003 is outstanding at it. For that model,
the assessment is perhaps unfairly strict, as the three cases that were marked as
incorrect are the following, in which the model created a well-formed PiPP and
happened also to change the position of the entire PiPP in the string:

(43) PP We liked the end of the movie, as they said that we knew that it was
tragic.

Gold We liked the end of the movie, as tragic as they said that we knew
that it was.

Pred As tragic as they said that we knew that it was, we liked the end of
the movie.

(44) PP The proposal is still being assessed, as they said that we knew that it
seemed inspired.

Gold The proposal is still being assessed, as inspired as they said that we
knew that it seemed.

Pred As inspired as they said that we knew that it seemed, the proposal is
still being assessed.

(45) PP They skipped the movie, as they said that we knew that it seemed
exciting.

Gold They skipped the movie, as exciting as they said that we knew that it
seemed.

Pred As exciting as they said that we knew that it seemed, they skipped
the movie.

In these materials, the fronted material is always a single adjective. To assess
whether models could perform the PiPP transformation on a wider range of
constituents, I created nine additional “stress test” cases. These are included
in the code and data release for the paper, as materials-stress-test.csv. I
repeated the above experiments using these items. With demonstrations drawn
from the stress-test examples (always disjoint from the target), text-davinci-
003 gets only 3/9 correct. Essentially the same result obtains (2/9) when the
demonstrations are drawn from the basic materials (randomly sampling from
different preposition types and different embeddings). This suggests that, in the
general case, applying this transformation is challenging for these models – as it
would be for many people.
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Preposing in PP

Engine Preposition Embedding Accuracy (EM)

text-davinci-001

as None 0.70
as they said that we knew that 0.64
though None 0.48
though they said that we knew that 0.55
as. . . as None 0.70
as. . . as they said that we knew that 0.88

text-davinci-003

as None 0.67
as they said that we knew that 0.64
though None 0.70
though they said that we knew that 0.70
as. . . as None 0.88
as. . . as they said that we knew that 0.91

Table 2: Assessment of model abilities to transform PPs into PiPPs using only
few-shot, in-context learning.
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