
Semantics and deep learning

Cambridge Elements in Semantics

Lasha Abzianidze
Utrecht University

Lisa Bylinina
University of Groningen

Denis Paperno
Utrecht University

Abstract: The survey covers the interaction of two research areas:linguistic semantics and deep learning. It focuses on three phenomenacentral to natural language interpretation: reasoning and inference;compositionality; extralinguistic grounding. Representation of thesephenomena in recent neural models is discussed, along with the qualityof these representations and ways to evaluate them (datasets, tests,measures). The survey closes with suggestions on possible deeperinteractions between theoretical semantics and language technologybased on deep learning models.
Draft from December 6, 2023

© Lasha Abzianidze, Lisa Bylinina, Denis Paperno, 2023The authors are listed in alphabetic order. Given the authors’ equalcontribution, each author has a right to list themselves as a first authorwhen citing the paper.Main author of Section 2 ‘Textual Inference’: Lasha Abzianidze; mainauthor of Section 3 ‘Compositionality’: Denis Paperno; main author ofSection 4 ‘Grounding: Language and Vision’: Lisa Bylinina. Introductionand Conclusions: equal contribution.

ACKNOWLEDGMENTS
We would like to thank – in alphabetical order – Albert Gatt,Dmitry Kourmyshov, Emar Maier, Timothee Mickus, RickNouwen and Joost Zwarts for discussions, help withillustrations and feedback on previous drafts. We wouldalso like to thank anonymous reviewers who read an earlierversion of this survey and gave us illuminating feedback.This allowed us to improve the text in many ways. Last butcertainly not least we would like to thank JonathanGinzburg and Daniel Lassiter, the editors of CambridgeElements in Semantics, for their patience, comments andencouragement. Any remaining issues are our own.

2

Contents

1 Introduction 1
2 Textual Inference 22
3 Compositionality 44
4 Grounding: Language and Vision 59
5 Conclusions, open problems and furtherdirections 70

References 73

Semantics and deep learning 1

1 Introduction

This survey covers the interaction of two areas of research: linguistic
semantics and deep learning. These fields share a lot of mutually relevant
ground, but at the same time, the dialogue between the respective research
communities is often constrained by the lack of transparency in terminology
and background assumptions. With this survey, we aim to foster the connections
between the two fields by highlighting the relevance of these fields to each other
and by providing an introduction into the pointswhere natural language semantics
and deep learning meet. Instead of enumerating all possibly relevant topics,
we will take a close look at three fundamental meaning-related phenomena –
semantic inference, compositionality and extra-linguistic grounding – and use
them as study cases, discussing how these phenomena are treated in modern
computational models. The discussion is accompanied by demonstrations that
readers are invited to play with. No prior programming experience is required
to run the code.1

In recent years, the deep learning revolution has changed the landscape of
natural language processing (NLP), especially so after a deep neural architecture
that is the basis of practically all of today’s most successful models – the
Transformer (Vaswani et al., 2017) – was introduced, and various models based
on this architecture were trained on large quantities of primarily linguistic data.
AI systems built on these models are growing and getting higher and higher
scores on various tasks as we speak, advancing the state of the art (SOTA).
These systems and tools are rapidly becoming a part of everyday life for more
and more people, obviously so after the notable release of one of such systems,
ChatGPT, in late 2022. 2

Given the ever growing omnipresence of such tools, a solid understanding
of both their successes and weaknesses is important. Some of the seemingly
simple, but at the same time fundamental questions that one can ask here are,
Do these models understand the texts they process and produce? Do they
capture the meaning of texts in natural language?

There are two aspects to these questions: an instrumental and a theoretical
one. Instrumentally, the answer depends on how well deep learning models
perform on tasks that – presumably – require semantic competence. As the
discussion below will show, despite the fact that deep learning models have
pushed the state of the art forward in many areas of NLP, it’s still the subject of
ongoing study what kinds of linguistic – and in particular, semantic – knowledge

1See our public repository at https://github.com/kovvalsky/SemDL for code and demos
for the three phenomena discussed in this paper.

2https://openai.com/blog/chatgpt

2 Cambridge Elements in Semantics

these models develop as a result of training. Indeed, NLP evaluation is typically
organized around datasets that may or may not reflect the generality and real
nature of linguistic knowledge. More specifically, various semantic tasks have
been reported to still prove hard for modern models despite their superficial
success (see Rogers, Kovaleva, and Rumshisky 2020; Talmor, Elazar, Goldberg,
and Berant 2020 a.o.).

On a theoretical level, the answer to the questions above obviously depends on
what meaning is and what is required of true natural language understand-
ing. These questions lie at the core of the discipline of theoretical semantics.
Theoretical choices concerning the nature of linguistic meanings provide a
framework for the instrumental evaluation and development of NLP systems:
What do we need to test in order to address models’ semantic capabilities? What
types of learning agents do we think lead to better meaning representations?

This instrumental-theoretical relation goes both ways: On the one hand,
theories of how humans convey and extract linguistic meanings set the stage
for what to expect from artificial linguistic systems and agents. On the other
hand, performance of deep learning models can inform linguistic theory: If we
observe a particular success or failure of a model on some task, is it expected
under our view on how meanings are represented and acquired, given how
this model was trained? Or should we adjust our theoretical understanding of
semantics accordingly?

These are all questions with no definitive answers, and we will not try to
pretend otherwise in this survey. Instead, we will give substance to the debates
around these questions and invite the readers to think about them together with
us.

We start with laying out the necessary technical background on text repre-
sentation in models of interest. Then, we establish the theoretical context for
our discussion and how it relates to the current debates about semantics in such
models.

Then, we move on to the three topics this overview will focus on. We start
from the inferential perspective on semantics in Section 2. We discuss how
deep learning systems apply to modeling inference between sentences or larger
linguistic units. Then, in Section 3 we discuss how vector based and deep
learning methods approach the phenomenon of semantic compositionality, and
how semantic compositionality is tested and probed. Finally, in section 4 we
turn to the quickly developing field of language and vision, where referential
properties of language expressions receive an automated treatment. We discuss
the representation of these phenomena in recent neural models, the quality
of these representations, as well as ways to evaluate them (datasets, tests,
measures). We close the paper with possible directions for future research

Semantics and deep learning 3

and deeper possible inter-connections between deep learning and theoretical
semantics.

1.1 Technical context: Vector representations
Artificial neural networks are mathematical structures that formalize data

processing as operations over numeric vectors. Let’s unpack this.

Word vectors

A (k-dimensional) vector is a sequence of k numbers. Vectors or vector
combinations can be employed to represent diverse kinds of data. This includes
linguistic data: for example, one version of the GloVe model (Pennington,
Socher, & Manning, 2014) assigns every word of English a 50-dimensional
vector, such as:

to: h0�680��0�039� 0�302��0�178� � � � ��0�094��0�073��0�065��0�260i
and: h0�268� 0�143��0�279� 0�016� � � � ��0�312��0�632��0�250��0�381i

government: h0�388��1�083� 0�450��0�233� � � � ��1�643� 1�194� 0�653��0�763i

Vectors are estimated from data, most commonly from the way words are
used in texts. This is true for the GloVe model just mentioned and many others.
The numeric values in resulting word vectors encode diverse word properties,
including semantic and syntactic properties. Simplifying, one can think of these
values as encoding word features including part of speech, gender, animacy, etc.,
although the values are continuous and do not usually correspond to interpretable
features in a perfect or one-to-one fashion. So while the dimensions are usually
estimated from distributions, they can be seen as reflecting an underlying
conceptual space in the spirit of Gardenfors (2004).

Relations between word vectors are often regular, allowing for methods
such as vector analogy solving: to solve UK:London=France:?, one can apply
arithmetic operations to words involved and search for a word with the nearest
vector to vec(London)-vec(UK)+vec(France).

1.1.1 Word Embedding Models and Neural Language Models

Neural networks have been applied to many practically useful tasks. Many
of them can be thought of as classification tasks, whereby the system turns its
input into an output vector of scores for each class of the classification. In the
case of text input, the classification task can involve choice between two classes

4 Cambridge Elements in Semantics

(e.g. whether a product review is positive or negative), or more classes (e.g.
determining the part of speech tag for a word given its sentence context, or the
topic of a given text).

Naturally occurring texts can serve as a rich source of data for classifying
contexts according to which words (tend to) occur in those contexts. The task of
language models can be thought of as classifying sequences of words according
to which word can serve as a likely continuation of the sequence. In this case,
the number of classes is huge as each vocabulary item is its own class.

For example, one can take as input a single word (e.g. scientific), encode it as
a vector, and use the output of the model to encode scores assigned to different
words to appear next to it. The scores can then be mapped to probabilities:

classes approach word major with � � �

scores 7.8 -0.9 5.0 -5.3
probabilities 0.1 1�7 � 10�5 0�006 2 � 10�7

The table above shows only a handful of columns; in principle, there is
one for each vocabulary item. Words which are likely in the context are
assigned relatively high probabilities while unlikely words’ probabilities are
near-zero. In practice, an intermediate representation for each context (e.g.
scientific) is used, not a vector the size of the whole vocabulary, but with a
much more compact vector E from which a vector of scores is derived via matrix
multiplication ",�E. There are good reasons to use vectors of relatively
low dimensionality. First, they are more practical in computation, including
various vector operations used in neural network models. Second, features of
lower dimensional vectors may better approximate abstract features of words,
including features corresponding to semantic properties. Because of this, inputs
with similarities in meaning or syntactic properties end up with substantial
overlap in their vector features.

Systems that predict likely words in this way are known as word embedding
models. They operate with individual word inputs, as in the example above. In
contrast, neural language models predict the probability distribution over the
next word (or other text elements) given a sequence of other elements in context,
e.g. the sequence Let’s use the scientific � � � or The cat is sitting � � �). For the
latter sequence, the next word prediction may look as follows:

classes on the by . from he my at under � � �

scores 7.1 2.3 2.6 7.5 1.8 0.22 0.25 4.74 6.0
probabilities 0.23 0 0.02 0.34 0 0 0 0.02 0.08

Semantics and deep learning 5

As seen in this example, the sequence is predicted to be continued with a dot
or “on", with prepositions like “under" or “by" predicted less likely, and many
other words having negligible predicted probabilities (here rounded to 0).

Early methods that estimated word vectors from corpus data included the
Hyperspace Analog of Language (Burgess & Lund, 1995) and Latent Semantic
Analysis, also known as LSA (Landauer & Dumais, 1997). The advent of neural
network methods in the 2010s led to the creation of several efficient algorithms
for word vector estimation, which were released as word2vec (Mikolov, Chen,
Corrado, & Dean, 2013) and GloVe (Pennington et al., 2014). Similar to
word2vec, fastText (Bojanowski, Grave, Joulin, & Mikolov, 2017) extended
its coverage to rare and unseen words by exploiting cues from the character
sequences within the word. These algorithms proved robust and fared better in
empirical evaluations than earlier methods (Baroni, Dinu, & Kruszewski, 2014).

The Sequence Neural models: From Recurrent Networks to
Transformers

Often, vector operations proceed via multiple computation steps, i.e. output
vector E is computed from vector D that is itself computed from the input vector
G. The intermediate computation steps are called the hidden layers of the model,
and a model that includes hidden layers is considered a deep neural network.
Machine learning methods that create such models are known as deep learning.

Hidden layers produce vectors that serve as the model’s learned intermediate
internal representations of the inputs it receives. Often, the hidden layers can be
thought of as word vectors, often in the context of the whole input sequence.

For most purposes, assigning vectors to words is not enough if the goal is to
process diverse kinds of structures, such as phrases, sentences, or longer texts.
This motivates several types of sequence models, which can adapt to inputs
of variable length. In all sequence models, the input is a sequence of vectors
representing text units, e.g. words, and the output is a sequence of calculated
vectors:

G1� G2 � � � G= �! �1� �2 � � � �= (1.1)

The vector representations �1� �2 � � � �= that a sequence model derives can
then be used for diverse tasks such as sequence classification, tagging (token
classification), etc.

The oldest type of sequence neural network, inspired by real-time signal
processing in humans, is the recurrent neural network (RNN). Recurrent neural

6 Cambridge Elements in Semantics

networks process the input one element at a time, computing the memory
representation �: from �:�1 and the :th input element G: . Simple recurrent
networks (SRN), proposed by Elman (1990), already showed promising results
on toy linguistic input, but presented diverse problems at training time. More
efficient recurrent architectures were proposed later, with two gaining wide
adoption: the Long Short-Term Memory, or LSTM (Hochreiter & Schmidhuber,
1997), and the Gated Recurrent Unit, or GRU (Cho et al., 2014).

Most current applications, however, rely on the Transformer model (Vaswani
et al., 2017), which abandons the item-by-item processing in favor of the
so-called self-attention mechanism. In addition to other practical benefits,
the self-attention mechanism makes it easier to learn and execute non-local
operations on the sequence.

Subword tokenization

For practical reasons, modern NLP models limit the size of their vocabulary.
As a result, neural networks often represent text as sequences of tokens, where
each word can be a token on its own (if the word is frequent) or broken into
multiple tokens (if the word is rare). For example, in the first lines of Hamlet’s
monologue To be or not to be, the state of the art GPT4 model treats most words
and punctuation marks as one token each. However, GPT4’s underlying BPE
tokenizer breaks rare word forms such as nobler into subword tokens, e.g. nob
and ler, character sequences that often occur as parts of other rare words.3

There are several widely used subword tokenization algorithms, usually built
upon the Byte Pair Encoding (BPE) method (Sennrich, Haddow, & Birch, 2015).
The WordPiece algorithm (Song, Salcianu, Song, Dopson, & Zhou, 2021),
inspired by BPE but built upon a proprietary Google technology, was used in
BERT and related models. SentencePiece (Kudo & Richardson, 2018) can use
BPEs but doesn’t require word separated input, applying to diverse languages
and writing systems.

Regardless of the precise underlying neural architecture, sequence models
can be used to produce contextualized token vectors. If G: is an input word
embedding, corresponding �: in the output can be used to represent the word in
context. One can also select one of the output vectors, often the last one �=, to
represent the whole sequence. For example, in a task like Natural Language
Inference, the vector resulting from processing the concatenation of the premise
and the hypothesis can serve to provide features for the inference classification

3For a visual demonstration of subword tokenization in GPT4, see https://platform.openai
.com/tokenizer.

Semantics and deep learning 7

of the example (i.e. labeling it as entailment / contradiction / neutral, see Section
2).

1.1.2 Transformer architecture

Self-Attention

Attention mechanism originally gained wide acceptance in text processing in
the field of machine translation as a useful addition to recurrent neural networks,
starting from Bahdanau, Cho, and Bengio (2014). Later, Vaswani et al. (2017)
introduced self-attention as the core mechanism for sequence processing that
allowed to completely replace recurrent neural networks with the Transformer
architecture. Self-attention allows for efficient training of ever-larger models on
ever-larger data that was not technically possible with RNNs.

We reproduce the equation of self-attention here:

�CC4=C8>=„&� �+” = B> 5 C<0G„&
)

p
3:
”+ (1.2)

where &, , + are computed from the underlying sequence embedding "
by multiplying it with matrices of numeric parameters: & = ",&� =

", � + = ",+ . The B> 5 C<0G function normalizes the scores that reflect
the match between ‘query’ vectors in & and the ‘key’ vectors in , so that
the weights for each position are positive and sum to 1; see an example below.
Several self-attention components, so-called ‘attention heads’, are computed
in parallel and combined into ‘multihead attention’ "D;C8�403, which is then
combined with the input embedding matrix " via the residual connection,
giving " ‚ "D;C8�403 „"” as output.

Informally, self-attention copies to a given token vector <: information from
token vectors at other positions. The tokens to be copied from are determined
by the match between the query value of token <: from matrix &, and the key
values of all token from matrix .

For example, take input " to encode text as a sequence of numeric feature
vectors:

-7 -1 -10 -7
-1 -4 5 2
-6 6 2 7
the cat is sitting

Vectors encoding tokens can be similar to each other in different ways. The

8 Cambridge Elements in Semantics

vectors for is and sitting are the most similar. One can immediately see, for
example, that the sign of all their vector components is the same: negative for
the first dimension and positive for the others. Numbers in token vectors can
encode semantic and syntactic information, for example, the second dimension
could encode some part of speech information, with positive values for verbs.

Match between queries and keys is computed as &) , which after applying
vector size and softmax normalization gives an attention matrix, e.g.:

0 0 0 0
0.99 0.01 0.86 0
0.01 0.19 0.14 1
0 0.8 0 0

The attention matrix specifies how much update each token’s vector receives
from different tokens. In our example, the last token sitting gets its entire update
from token is while token is receives 86% of the update from the cat and the
rest from itself.

The values of the updates are taken from a separate matrix + :
-8.7 2.4 2.3 5.8
-5.5 1.1 -2.6 0.01
-8 -3.6 -3 -2.5
the cat is sitting

The attention update

2.3 5.1 2.3 2.3
1.1 -0.49 0.59 -2.6
-3.6 -2.6 -3.6 -3
the cat is sitting

is added to the input.

After self-attention, the updated vector representations become more contex-
tualized. In our toy example, both the and is received most of their attention
update from cat. As a result, the vectors of the and is not only encode more
information about context, including aspects of their relation to the word cat.
Being updated wit hsimilar information, these token also become more similar
to each other:

-4.7 4.1 -7.7 -4.7
0.1 -4.5 5.6 -0.6
-9.7 3.4 -1.6 4
the cat is sitting

There are many more kinds of computation steps in Transformers, but

Semantics and deep learning 9

self-attention is central. Informally, self-attention allows for information
flow between positions in the sequence by selecting which positions to copy
information from (via to & matching) and what form this information takes
(via the + matrix). Roughly speaking, self-attention is the operation of selecting
positions according to features in and copying features from + . Components
of self-attention specify the source, target, and nature of the copied information.
For instance, Transformers could naturally approximate rules like “copy into
the vector of a verb (encoded in &) ontological semantic features (+) from the
closest noun to the left ()".

Other Transformer components

In addition to the core self-attention mechanism that drives contextualization
of word or token representations, there are several other components to the
computation. Each of the components contributes nontrivially to the vector
output values of the Transformer (Mickus, Paperno, & Constant, 2022).

For example, layer normalization is applied to intermediate vector repre-
sentations at various points of computation. Every vector is scaled so that
its dimensions have the average of 0 and the standard deviation of 1, making
sure that no vector’s dimensions take extreme values. This technique makes
the training more efficient and reliable. It balances potentially unbounded
contributions of other computation component, especially the feedforward step
(see below) which can introduce extreme vector value updates.

Positional encodings are another component required for the Transformer
to work for natural language. The self-attention mechanism updates the inputs
on the basis of their vector representations. This means that if the input words
were encoded simply via word vectors, the Transformer would reduce to a bag
of words model, ignoring the order in which the words appear. To avoid this
and inject order information, each token in the input is encoded as the sum of
token vectors and positional encodings, special vectors uniquely characterizing
the position of the token in text. Positional encodings are so designed that
nearby positions in the sequence receive similar positional encoding vectors.
This allows self-attention operations to target not only word features but also
positional features (e.g. “copy features from a preceding adjective to the noun").

Feedforward networks are interleaved in Transformers with self-attention
and normalization operations. During the feedforward step, each token vector E
(previously contextualized via self-attention) is passed through a neural network
��# , which consists of multiplying by two matrices of numeric weights and a
nonlinear operation: ��# „G” = ,2<0G„0�,1G”.

10 Cambridge Elements in Semantics

The result is added to the input via a residual connection: E ‚ ��# „E”.
Feedforward step is the one that introduces nonlinear transformations of the
information about the current token and its context. Most of the numeric
parameters of modern Transformer models correspond to the feedforward step.
It has been argued that it is the feedforward networks which embodies most of
the knowledge encoded by Transformer models, including relational mappings
such as correspondence between embeddings of present and past tense of verbs
(Merullo, Eickhoff, & Pavlick, 2023).

1.1.3 Neural Model Training

Deep neural network models include a large number of numeric parameters
that need to be estimated, or learned, from data. In case of Transformer language
models, these trainable parameters include numeric values in vectors of all
tokens in the vocabulary and in matrices that define the model’s self-attention
and feedforward operations.

Ultimately, large language models are evaluated on downstream tasks. For
example, the Natural Language Inference task often boils down to classifying
sentence pairs as exemplifying an entailment, a contradiction, or neither.

Pre-training and Fine-tuning

Modern deep learning models for language such as BERT have shown
impressive results on datasets for diverse compositional tasks such as inference,
question answering and sentiment analysis. A common approach taken in
achieving state-of-the-art results in specific tasks combines self-supervised
pre-training with task-specific fine-tuning.

Typically, a large language model is pre-trained on a distributional task,
meaning that its output representations are optimized for predicting match
between the context and the textual element that can appear in it. For instance, the
vector representation of a sentence can be trained to predict what continuations
the sentence is likely to have. In GPT-like models, the training signal comes
from predicting the next token in the context of the preceding sequence of
tokens. In other models (like BERT; Devlin, Chang, Lee, and Toutanova
2019), token prediction happens in a bidirectional context, with tokens to be
predicted typically replaced by a dedicated [MASK] token. As such, the vector
representation that is useful for token prediction cannot be immediately applied to
alternative tasks involving reasoning, question answering, or sentiment analysis,
inviting additional approaches including fine-tuning; see however Radford et al.

Semantics and deep learning 11

(2019) and Brown et al. (2020) for influential views on the transfer of pre-trained
language models to new tasks without such computationally expensive steps.

After pre-training on context prediction in some form, the pre-trained model
produces vector outputs. Those vectors can serve as input to a simpler neural
component such as feedforward neural network. The latter component makes
the actual task-specific predictions, such as whether one sentence in a pair
entails the other. The whole pipeline can then be trained on the task-specific
data (e.g. inference data), updating both the feedforward network’s weights
and the weights of the pre-trained language model such as BERT. As a result,
a fine-tuned language model differs from the original pre-trained one, and
produces task-specific vector representations of the input. Note that fine-tuning
only produces reasonable empirical results when applied to a pre-trained model,
rather than learning the weights from scratch on task-specific data. One can
think of the process of fine-tuning as highlighting the features of compositional
representations produced by the pre-trained model that are relevant for the
specific task at hand, and suppressing or downplaying irrelevant features. The
intuition here is that the distributional pre-training allows the model to extract
a wide set of features from the text, different subsets of which are useful for
different downstream tasks. Features useful for one task (e.g. inference) may
happen to be complementary to the features useful for another task (e.g. sentiment
analysis), and as the result instances of the same model fine-tuned on these tasks
may prove quite distinct. Note that fine-tuning mainly affects representations
at the top layers of deep models like BERT while the bulk of processing that
happens in a majority of layers remains largely intact (Mickus et al., 2022).

Both pre-training and fine-tuning follow the end-to-end training approach.
This means that model parameters (weights) are not estimated for each module
separately. Instead, even in the biggest models with dozens of hidden layers, all
parameters is tuned with an eye on how it affects the output in a given task. In
pre-training, the output is the likelihood score assigned to the currently predicted
token, and in fine-tuning, to the currently predicted other output such as the
likelihood score of different classes in a classification task.

Fine-tuning a neural network on a dataset may lead to a loss of its generality.
There is often a risk that a fine-tuned model adapts to biases of the data on
which it was fine-tuned, learning shallow statistical regularities of the specific
dataset. For example, presence of the word not may be associated in a dataset
with the example being a contradiction. A system fine-tuned on such a dataset
may learn the shallow heuristic not)contradiction and fail to apply correctly to
data from other sources where the heuristic is not helpful. For more discussion
see Section 2.

Methods for adjusting model parameters in neural networks rely on gradient

12 Cambridge Elements in Semantics

Random
weights

Pre-trained
model

Model for
task 1

Model for
task 2

Word prediction Task-specific objective

Task-specific objective

Text corpora Data for task 1

Data for task 2

pre-training

fine-tuning

Figure 1 Two-step training paradigm: in the pre-training stage the model is
trained on large text corpora on a word prediction task. Task-specific training
(fine-tuning) happens separately, with pre-trained model as a starting point.

descent. In simple terms, this means that each numeric parameter of the deep
neural network is updated proportionally to the degree to which its change moves
the model’s prediction towards the desired output. Measures of discrepancy
between the prediction and the desired outputs are known as loss functions.

Instruction-tuning

Instruction-tuning is a specific type of refinement for pre-trained language
models that has shown a distinctive potential since 2022.

A language model that predicts probabilities of tokens in context can be
used for text generation. In this case, one may first estimate the probabilities
of possible tokens, and pick a likely one to be generated. The newly generated
token is appended it to the context, and the next possible token is predicted.
This text generation process is called autoregressive decoding and exists in
several alternative algorithms such as greedy decoding, nucleus sampling, topK
sampling, and beam search.

Text generation is one of the tasks on which language models can be fine-
tuned. In particular, one can fine-tune language models to generate responses to
textual instruction. This is called instruction tuning. Furthermore, one can ask
human annotators to rate or rank a language model’s multiple possible responses
to instructions. On the basis of human preferences, language models can be
further refined using techniques such as reinforcement learning (Ouyang et al.,

Semantics and deep learning 13

2022). This approach underlies the creation of ChatGPT and similar models
(Touvron et al., 2023), which have proven effective at following many types of
textual instructions.

F F F

With this technical background in mind, we can turn to the second main
ingredient of our survey: natural language semantics.

1.2 Theoretical context: Natural language semantics
In this section we set the theoretical foundation in semantics for the rest of

the survey. Throughout the paper, we will talk a lot about ‘meaning’, so we
need to make this notion a bit more specific before we embark on the main
discussion.

The nature of linguistic meanings and their place in the overall architecture
of natural language grammar have been debated over for millennia, and we will
certainly not try to settle this debate here or follow its historic development,
even though it’s an exciting journey.4

Instead, let’s take a different route: rather than directly asking fundamental
questions about meaning, we shift our attention to more practical but related
questions and let them guide us in building the theoretical basis for our discussion.
Rather than asking ‘What is natural language semantics?’ we can ask something
like ‘How can semantic knowledge be detected in linguistic behavior?’. On a
more concrete level, instead of asking ‘What’s the meaning of sentence -?’ we
can ask ‘How do we find out whether someone knows the meaning of sentence
-?’

Take the sentence A cat is sitting on a chair. We know what this simple
sentence means. This knowledge can show in a number of ways – for one,
we are able to distinguish situations which can be truthfully described by this
sentence from situations in which this sentence is false.

For example, given a schematic depiction of a situation in Fig. 2 on the left,
we can agree that the sentence A cat is sitting on a chair is true in this situation
and false in the situation on the picture on the right – this is one of the ways our
knowledge of the meaning of this sentence manifests itself.

4If you are interested in the history of ideas about possible theories of linguistic semantics and
its place in natural language grammar, we highly recommend Harris (1993) ‘The Linguistics Wars’ –
a book describing probably the most dramatic and fruitful time in the recent history of linguistics,
the 1960-70s, that directly shaped the current mainstream approaches to semantics.

14 Cambridge Elements in Semantics

3 A cat is sitting on a chair. 7
Figure 2 Depictions of two situations: The sentence A cat is sitting on a chair

is true in the left-hand situation, but not in the right-hand one.
Images generated with AI image generation tool Midjourney, accessed on 15 April 2023.

As trivial as this observation may seem, it’s the intuitive basis for the currently
most widespread approach to linguistic meanings, truth-conditional semantics.
Knowledge of truth conditions of a sentence – the ability to distinguish situations
where it is true from the ones where it’s not – is under this approach explicitly
tied to the knowledge of what the sentence means. Heim and Kratzer (1998)
open their classic textbook with the statement that equates truth-conditions
with sentence meaning: ‘To know the meaning of a sentence is to know its
truth-conditions.’

To sketch an implementation of this idea, let’s think of sentence interpretation
as a function � that takes two arguments – a sentence in natural language and
a situation – and returns a truth value: True or False (along with whichever
additional possible truth values your system is designed to have, like, for instance,
the truth value Undefined). For our running example, this function will return
True if its first argument is A cat is sitting in a chair and the second argument
is the situation depicted in the left-hand side of Fig. 2 (and it will, of course,
return False for the other situation of the two, given the same sentence):

� „A cat is sitting on a chair” '›« “fi‹ = True (1.3)

A different but related function � 0 would simply output the set of situations

Semantics and deep learning 15

in which the sentence is true:

� 0„A cat is sitting on a chair” =

8>><>>:
9>>=>>; (1.4)

Both functions have their place in semantic practice. For instance, the latter
can be used to pinpoint one possible notion of the meaning of a sentence: the
set of situations where it is true.

Another core meaning-related intuition – besides the knowledge of truth
conditions – is the ability to recognize whether sentences stand in a particular
meaning relation to each other, that is, to draw inferences between sentences.
Simply put, if we know the meaning of a sentence, we know what conclusions
we can draw from it and what conclusions are not justified. Entailment – one
type of this semantic inference – is typically defined on pairs of sentences �
and � along the following lines (Coppock & Champollion, 2022):

A entails B if and only if:
In any case where A is true, B is true too.

(1.5)

Note that both semantic notions corresponding to basic meaning-related
intuitions we discussed – truth conditions and semantic inference – operate on
the level of sentences. Formal semantics as we know it has indeed been shaped
primarily by sentence-level phenomena. This does not, of course, mean that
no meanings are assigned to smaller linguistic units – sub-sentential phrases
and individual words. But it would be fair to say that in this tradition lexical
meanings are viewed through the lens of their potential to combine into bigger
units – ultimately, sentences. For instance, the overall meaning of a sentence like
Milo is a cat that has to do with Milo belonging to the class of cats is built from
the meanings of its parts (Milo, cat) in this particular structural configuration,
where ‘catness’ is predicated over Milo. One can design lexical meanings that
would capture this directly: The process of interpretation would map Milo (and,
more generally, all proper names) to an individual (in this case, Milo!), and
the noun cat (as well as all other common nouns) would correspond to a set
of individuals (in this case, the set of all cats). Combining them in a sentence
likeMilo is a cat would semantically amount to stating that the individual is a
member of this particular set.

If you are familiar with the classic Saussurean linguistic tradition (de Saussure,
1916), you might have seen a diagram like Fig. 3[a] representing a linguistic
sign, where the sound or written form of a word is paired with something that

16 Cambridge Elements in Semantics

represents its meaning. In the system we sketch here, it might be helpful to
think of the modification of this diagram, where on the meaning side instead of
one representative of the class of – in this case – cats, we have the whole set of
objects the word cat applies to.

[a] Linguistic sign (de Saussure, 1916) [b] Sketch of noun meaning

Figure 3 Interpretation of common nouns

This is, admittedly, a wild oversimplification, but it works as an illustration
of lexical meaning design with combinatorial potential in mind: word meanings
need to be of the right type to combine into meanings of sentential type when
used in a sentence. The sentential meanings, in turn, need to support evaluation
for truth or falsity given a state of affairs, and be of the right type for semantic
inference.

Circling back to the main content of our survey, we can now formulate the
questions we will focus on in the forthcoming sections:

• How do deep learning models capture semantic relations between sentences?
(Section 2 ‘Textual Inference’)

• How do deep learning models build sentential meanings from meanings of
smaller expressions? (Section 3 ‘Compositionality’)

• How do deep learning models relate linguistic meanings to non-linguistic
information – in particular, visual information? (Section 4 ‘Grounding:
Language and Vision’)

Before we move on to the main sections discussing these questions, let’s take
a step back and have another look at the two main semantic notions that we
introduced above: truth conditions and semantic inference. Now, with some
theoretical and technical background, we can elaborate a bit more on the role of
these notions in semantic theory and in deep learning models trained on textual
data.

Semantics and deep learning 17

Truth conditions or inference?

Which of the two notions – truth conditions or semantic inference – is taken
as basic with respect to the other one defines the two views on natural language
semantics that, in turn, provide two different perspectives on semantics in deep
learning models. Let’s zoom in on this a bit.

The currently most widely adopted version of compositional formal semantics
builds on truth conditions – a view that can be traced back to the philosophical
tradition that includes Alfred Tarski, Rudolf Carnap, Donald Davidson, David
Lewis and Richard Montague. As famously formulated by David Lewis (1970),
‘Semantics with no treatment of truth conditions is not semantics.’ Under this
truth-conditional view – we will call it referential to contrast with its alternative
– sentence-level semantics amounts to an association between sentences and
sets of situations that make them true. Under the referential view, semantic
inference relations within sentence pairs RE mediated by sets of situations they
are mapped to: the relation holds by virtue of a set-theoretic relation between
their respective meanings.

The objects that the sentences are mapped to can have different specifics –
they can be situations, worlds, circumstances, models, cases etc., depending
on the implementation. There is also variation among systems in whether
the mapping between sentences and objects that express truth conditions is
direct (Kratzer & Heim, 1998; Montague, 1970) or indirect via a representation
language, typically some logic (Coppock & Champollion, 2022; Montague,
1973). Regardless of these implementation decisions, the core of the referential
view on semantics is the same: meaning is defined by reference, understood as
a mapping between linguistic objects on something external to language itself.

Alternatively, semantic inference relations (including, but not limited to,
entailment) can be taken as basic – defined directly on sentence representations,
without referencing the situations or worlds these representations are mapped
to. We will call the view that builds on semantic relations the inferential
view (Fitch, 1973; Lakoff, 1970; Moss, 2010, 2015; Murzi & Steinberger,
2017; Schroeder-Heister, 2018; Sommers, 1982; Van Benthem, 1986, 2008).
This description groups together theories that have very important differences
between each other, but, crucially for our discussion, they all capitalise on
semantic relations between linguistic expressions (primarily, sentences) as the
core semantic notion.

The guiding observation for this view is that, given that people reason
using language, the logical structures underlying human reasoning should
correspond to the grammatical structure of natural language in a deep way. If
these regularities are given central stage in accounting for meaning, reference

18 Cambridge Elements in Semantics

and truth conditions can be explained as their by-product. This program can
be summed up in two theses: 1) The meanings of linguistic expressions are
determined by their role in inference; 2) To understand a linguistic expression is
to know its role in inference.

The difference between these referential and inferential views is deep, but
at the same time carries mostly metasemantic value, being a difference in the
order of explanation and departing points such as formal and traditional logics.
The radical versions of each of the views can also be seen as endpoints on the
scale of importance of corresponding intuitions for semantics – those of truth
conditions and those of inference. In practice, the views of most semanticists
probably lie somewhere in between: grounding in non-linguistic information
has doubtless potential to enrich linguistic meanings; on the other hand, at least
for some semantic phenomena, it’s most useful to directly examine semantic
relations between expressions.

The importance of the referential/inferential distinction in the context of deep
learning has to do with the fact that most of the deep learning models we will
discuss are trained on exclusively textual data. This means that representations
these models develop are not referentially grounded to anything external to
linguistic data itself (see however Section 4 on vision-and-language models).

The text-only training set-up has stirred a debate around the semantic
properties of language model representations. Do models trained on exclusively
textual data develop representations that encode the full range of semantic
information? Can tasks formulated as text-only be informative and useful for
enhancing and/or probing models’ semantic capabilities? We will now give an
overview of this debate.

Grounding argument against semantics in text-only models

Language is inherently grounded in a variety of extralinguistic experiences
(Barsalou, 2008; H. H. Clark, 1996; Harnad, 1990; Meteyard, Cuadrado,
Bahrami, & Vigliocco, 2012; Parikh, 2001). Linguistic communication essen-
tially involves a connection between what we say and what we mean, naturally
implemented as a mapping between two separate spaces – the ‘what we say’
and the ‘what we mean’, respectively. The expression the smell of coffee, for
example, describes a corresponding non-linguistic olfactory experience. Can an
agent that has not been exposed to the ‘what we mean’ side of messages develop
an understanding of what any message means?

The architecture of a lot of widely used computational models for language
does not involve explicit mapping between text and ‘states of affairs’ (although

Semantics and deep learning 19

see Radford et al. 2021 and Section 4); they are usually not trained with the
objective of mapping between object language and such model-theoretic space.
This has led many to conclude that such models don’t encode semantics at
all – a conclusion that seems practically unavoidable under a referentialist
truth-conditional view on semantics.

An influential position piece elaborating on this argument is Bender and
Koller (2020), even though it might be a stretch to classify their position as
strictly referentialist (their ‘what is meant’ includes things like communicative
intent, which is not really model-theoretic). In their own words, they ‘argue that
the language modeling task, because it only uses form as training data, cannot in
principle lead to learning of meaning.’ Since the language modeling task is that
of string prediction, the ‘meanings’ – whatever they are – are not in the training
signal. Bender and Koller conclude that, for this reason, meanings cannot be
learned as the result of this process, since language models are not provided
the means of solving the ‘symbol grounding problem’ (Harnad, 1990) – that is,
they have no means to connect text representations to the world these texts are
used to communicate about.

To illustrate this position, Bender and Koller introduce a thought experiment
that they call the octopus test, largely inspired by the Turing test for Artificial
Intelligence (Turing, 2009). In the scenario, two people are stranded on
two islands not far from each other and are communicating via telegraph
using an underwater cable. Meanwhile, an intelligent octopus underwater is
eavesdropping on their conversations and, being extremely good in detecting
statistical patterns, learns to predict the two people’s replies to each other.
Eventually, the octopus inserts itself into conversation, successfully pretending
to be one of the people. But when facing a situation which requires real-world
knowledge of what a coconut is, the octopus fails since it knows nothing about
the referent of the word.

Bender and Koller (2020) conclude that statistical patterns of co-occurrence
cannot be enough to develop knowledge of meaning.5 In the discussion that
followed, other researchers cast doubt on this conclusion. Let us now review
their arguments in favor of semantics without grounding (Merrill, Warstadt, &
Linzen, 2022; Piantadosi & Hill, 2022; Potts, 2020).

5It’s worth noting that this argument applies to a different extent to pure language models (models
trained exclusively for next-word prediction) and to models that underwent additional training
on potentially more semantically-grounding tasks, such as Reinforcement Learning with Human
Feedback (Ouyang et al., 2022; Touvron et al., 2023) or Natural Language Inference (Section 2).
We thank one of the reviewers for this point.

20 Cambridge Elements in Semantics

Meaning without grounding?

It’s one thing for a theoretical semantic framework to predict that text-based
models should be unable to encode semantic information – but it’s up to the
actual behavior of these models to either support this or suggest otherwise.

Following Potts (2020), let’s shift our focus from a priori semantic evaluation
of language models to a more practical reformulation: ‘Is it possible for language
models to achieve truly robust and general capabilities to answer questions,
reason with language, and translate between languages?’ In this way, the extent
to which the models can do so defines the extent to which they encode semantics
(and therefore, have the capacity to achieve natural language understanding),
regardless of the training data and objective.

There are at least two reasons for optimism. First, the general ability of
deep learning models to acquire abstract information not explicitly given during
training has been shown on, for example, hierarchical syntactic structure, see for
instance the survey in Linzen and Baroni (2021). Second, empirically, we don’t
really know which types of input are necessary for humans to learn meanings
and manipulate them. Visual grounding is clearly not necessary as congenitally
blind people still acquire language (Landau & Gleitman, 1985), the same holds
for smell (returning to the example with the smell of coffee above), and so on.
This does not mean that human semantic knowledge does not have a grounding
component to it at all, but the extent to which human semantic representations
can be constructed in the absence of different types of grounding suggests that
the same can in principle hold of artificial learners.

Piantadosi and Hill (2022) address the same question from the perspective
of conceptual role theory – a view on cognition in many ways close to the
inferentialist semantic paradigm (see Margolis and Laurence 1999 for an
overview of conceptual role theory and its alternatives). While acknowledging
that the string-prediction training setup typical with language models differs in
format from human language acquisition, they suggest that current language
models, in fact, may already encode human-like meanings. They review the
arguments suggesting that the meaning of a significant fraction of natural
language expressions is primarily determined by the role they play in a larger
mental theory rather than their reference.

Studies in language acquisition show some support for this idea: learning
the meanings of various classes of words relies heavily on structural linguistic
information (L. Gleitman 1990; L. R. Gleitman, Cassidy, Nappa, Papafragou,
and Trueswell 2005; Landau and Gleitman 1985 a.o.). This is particularly true
of expressions for concepts without observable correlates, such as, for instance,
attitude predicates like think or believe (see Hacquard and Lidz 2022 for a

Semantics and deep learning 21

review).6
Taking this view to its extreme, a system relying on relations within one

modality is not necessarily meaningless, with additional modalities providing
various enrichments. Reference or grounding then adds to the ‘conceptual
role’ the word plays. The signal that the learner gets from text alone is already
quite rich in conceptual role information, explicit and implicit. The task of the
learner is to invert from observations to mechanisms that generate these data
(see Merrill et al. 2022 for an estimation of how entailment could be learned
by a text-only model under particular assumptions about speaker strategies and
distribution of entailment relations between sentences in texts produced by such
speakers).

This perspective, again, gives a practical turn to the question of semantics in
text-only language models: In order to know whether language models learn to
represent semantics during training and what it looks like, one has to examine
the models’ internal representations and how they relate to each other.

This practical angle motivates our survey: In order to study semantics
in deep learning models, we will take a closer look at how these models
perform on semantic tasks and examine the semantic properties of their internal
representations.

The result can sometimes be disappointing: despite often-reported impressive
performance of current deep learning models, upon closer investigation, it often
turns out to be mere pattern memorization or bias propagation — and the
sometimes ‘super-human’ scores on such tasks go down dramatically when the
benchmark datasets are manipulated in a relevant way. At the same time, studies
of language model representations reveal rich semantic structures, such as color
space geometry (Abdou et al., 2021) or relative geographical positions of major
cities (Gatti, Marelli, Vecchi, & Rinaldi, 2022); some work shows indications
that contextual representations of the latest text-only language models implicitly
encode models of entities and situations evolving as text progresses (B. Z. Li,
Nye, & Andreas, 2021) – however, see Kim and Schuster (2023) for a critique
of these results.

In this overview, we would like to give the reader a balanced picture of
challenges and successes in this domain, and suggest possible future directions.

F F F

We are now moving on from the Introduction to the main part of the survey.
We went over both technical and theoretical background for the upcoming
discussion. We introduced vector representations for words and larger linguistic

6We thank a reviewer for pointing out the relevance of this literature on acquisition.

22 Cambridge Elements in Semantics

sequences; discussed how such representations are usually obtained from deep
neural network models, often ones based on the Transformer Architecture
(Devlin et al., 2019; Radford et al., 2019). We introduced the main notions
and intuitions in theoretical semantics: truth conditions and semantic inference.
Finally, we highlighted the tension between text-only set-up common in deep
learning language modeling and the architecture of most common theoretical
semantics frameworks that involve a separate interpretation space. This tension
is the driving point for the rest of the discussion.

We will start the main part with an overview of reasoning and inference in
deep learning models (Section 2), then we turn to compositionality (Section 3)
and language grounding (Section 4).

2 Textual Inference

Studying semantic relations between declarative sentences in a textual form
has long been the focus of linguistic and formal semantics. When modeling
the meaning of sentences, regardless of the choice between the referential and
inferential views (see Section 1.2), one of the central goals is to license as many
semantic relations between sentences as possible. For example, modeling the
meaning of the sentences A cat is sitting on a chair and A cat is on a chair is
inadequate if it doesn’t license the entailment of the latter from the former.

It wouldn’t be an overstatement to say that textual inference has been the most
common way in NLP to directly evaluate to what degree a language model (LM)
captures the meaning of sentences (along with the semantic relations between
them). This brings us to a popular NLP task that was originally referred to
as Recognizing Textual Entailment (RTE) and is currently known as Natural
Language Inference (NLI). Following Dagan, Roth, Sammons, and Zanzotto
(2013):

Textual entailment is defined as a directional relationship between pairs
of text expressions, denoted by) (the entailing Text) and � (the entailed
Hypothesis), where) entails � if humans reading) would typically infer
that � is most likely true.

A Text-Hypothesis pair annotated with a ground truth inference label is called a
textual inference problem or an RTE/NLI problem. The terms Premise and
Conclusion are also commonly used instead of Text and Hypothesis, respectively.
Originally, Dagan, Glickman, and Magnini (2006) proposed an NLP task on
textual inference as a shared challenge called RTE.7 They created a textual

7A shared challenge or a shared task in NLP is a competition among NLP systems where systems

Semantics and deep learning 23

inference dataset, i.e., a collection of textual inference problems, where they
labeled the problems with entailment ()) and non-entailment (6)) labels.
(1)–(3) represent instances of the RTE problems.

(1) About two weeks before the trial started, I was in Shapiro’s office in
Century City.
) Shapiro works in Century City.

(2) Green cards are becoming more difficult to obtain.
) Green card is now difficult to receive.

(3) The town is also home to the Dalai Lama and to more than 10,000
Tibetans living in exile.
6) The Dalai Lama has been living in exile since 10,000.

Although the RTE name and inference labels involve the term entailment, the
notion of entailment found in the initial and subsequent inference datasets is a
softer version of the logical entailment. This softness in the definition of textual
entailment is reflected by the terms humans reading, typically, and most likely as
highlighted in the definition above. For example, while (1) is considered textual
entailment, strictly speaking, one can think of a possible scenario where a person
has an office in Century City but does not work there. Another scenario that
makes (1) non-entailment could be one where Shapiro currently doesn’t work in
Century City but used to work there. However, during the creation of the RTE
dataset, the authors deliberately gave little importance to tense to prevent a large
number of problems from being labeled as non-entailment. In a similar spirit,
(2) is an example of textual entailment, but becoming more difficult doesn’t
necessarily mean that it is difficult. There are at least two perspectives on this.
First, if obtaining green cards was previously very easy, then making it more
difficult might mean that it became slightly difficult on the scale of difficulty,
but this is not sufficient to regard it as difficult. Second, becoming more difficult
doesn’t necessarily mean that it is already difficult but might be in a week or so.8

Due to the mismatch between textual and logical entailments, Zaenen,
Karttunen, and Crouch (2005) suggested using textual inference instead of
textual entailment. Under the umbrella term textual inference they distinguish

are designed to tackle a common NLP problem. The shared task organizers usually provide training
and test data for participant systems.

8To investigate to what extent textual entailments are logical entailments, Bernardy and
Chatzikyriakidis (2020) analyzed 150 randomly selected entailment problems from the RTE dataset
of the 3rd RTE task (Giampiccolo, Magnini, Dagan, & Dolan, 2007) and explicitly added missing
presuppositions or knowledge to RTE problems to make them logical entailments. They found that
only 30% of the analyzed problems were logical entailments and required no augmentation of the
Text part.

24 Cambridge Elements in Semantics

logical entailment from the inference triggered by conventional or conversational
implicatures. We find their suggestion appealing and use textual inference,
instead of RTE and NLI, throughout the paper.9 Another reason why we find
inference a better description of the task than entailment is that lately, RTE
problems are often three-way labeled: entailment, neutral, and contradiction,
where the latter two labels together make up the non-entailment label.

Textual inference is an integral part of natural language understanding
(NLU). Condoravdi, Crouch, de Paiva, Stolle, and Bobrow (2003) argue that the
detection of entailment and contradiction relations between texts is a minimal,
necessary criterion for evaluating NLP systems on text understanding. A couple
of inference evaluation datasets are a part of the standard NLU benchmarks
GLUE (Wang, Singh, et al., 2019) and SuperGLUE (Wang, Pruksachatkun, et
al., 2019). The textual inference task is considered a generic task for natural
language understanding.10 Initially, it was assumed that a good quality inference
system could be used for several downstream NLP applications, like question
answering (QA), information retrieval (IR), information extraction (IE), (multi-)
document summarization, etc. For example, in QA, an RTE system should
entail a candidate answer from a source text. While in IR, an RTE system can
be used to validate a retrieved document based on its passage entailing the
query phrase, in IE, the system should find a passage that entails entities in a
target relation. Similarly, a good summary should be entailed from the source
document(s). Despite these initial goals and expectations, the textual inference
task became a stand-alone task over time. If previously inference problems were
inspired by other downstream tasks and created based on other NLP systems’
output (Dagan & Glickman, 2004), nowadays, inference problems are often
targeting general purpose inferences or certain semantic phenomena. Also, due
to the high performance of end-to-end models and the relative simplicity of
their development, it is not very common to use textual inference systems as a
component of other systems.

There are many other NLP tasks where the meaning of natural language
text plays a central role, e.g., semantic parsing, question answering, machine
reading comprehension, sentiment analysis, etc. However, we opt for the textual
inference task as arguably the task offers the most comprehensive list of datasets

9We prefer textual inference over NLI because NLI is too general. It ignores the textual modality
of the task, and previously it was used to refer to tasks that generally require inference with meaning,
not necessarily in the format of classification of Text-Hypothesis pairs. For instance, Schwarcz,
Burger, and Simmons (1970) and Wilks (1975) use NLI in the context of question answering and
pronoun resolution, respectively.

10The organizers of the RTE-2 and RTE-3 challenges Bar-Haim et al. (2006); Giampiccolo et al.
(2007) even hoped that, like part-of-speech taggers and syntactic parsers, the entailment engines
would be used as a standard module in many NLP applications.

Semantics and deep learning 25

that evaluate NLP systems from the perspective of various semantic phenomena.
In the rest of the section, we will touch on several subtle and peculiar charac-

teristics of the textual inference task as practiced in NLP. These characteristics
might not be obvious for semanticists and to some extent overlooked in the
NLP community. This will be followed by a discussion of several semantic
phenomena with a description of the corresponding textual inference datasets.

2.1 Things to know about the textual inference task
The inference capacity of NLP systems, including LMs, is evaluated on

particular textual inference datasets. Therefore, it is important to have a general
idea of how the inference datasets are constructed and what kind of inference
problems can be found in them. In this subsection, we would like to draw the
reader’s attention to several peculiar and somewhat non-obvious properties of
textual inference datasets.

2.1.1 Collecting Text-Hypothesis pairs

Many textual inference datasets are created in twomajor steps: first, collecting
Text-Hypothesis pairs, and second, annotating them with inference labels.
The way Text-Hypothesis pairs are collected defines the text genre, sentence
structures, and types of inferences in a textual inference dataset. The methods
of collecting Text-Hypothesis pairs can roughly be divided into: human-elicited,
semi-automated, and fully automated methods.

In a human-elicited method, human annotators are directly involved in
creating an inference problem, e.g., creating an entirely new problem, pairing
existing sentences, or providing a Hypothesis given a Text or vice versa. Initially,
the inference problems in the series of RTE challenges were human-elicited by
expert annotators and the organizers of the challenges.11 Due to the involvement
of experts, the collection process was expensive and each iteration of the
challenge prepared only 1,000-1,600 new inference problems. The step forward
in the human-elicited collection came fromBowman, Angeli, Potts, andManning
(2015) who created the Stanford NLI (SNLI) dataset, a collection of ca. 570,000
sentence pairs. Hypotheses were elicited from crowdworkers given a premise
sentence and a target inference label. The size of SNLI has triggered a surge
of deep learning models for textual inference. A collection protocol similar
to SNLI was used to create another large inference dataset, multi-genre NLI

11To facilitate the collection process, texts were adopted from existing datasets of other NLP
tasks and output of NLP systems specific to tasks like IE, IR, and QA.

26 Cambridge Elements in Semantics

(MNLI, Williams, Nangia, and Bowman 2018).
A Semi-automated collection method partially automatizes the generation

of sentences or automatically transforms existing sentences. Manual work in
this method usually involves verification of Text-Hypothesis pairs on fluency or
carrying out certain tasks that are difficult to reliably automatize. For example,
Marelli, Menini, et al. (2014) were the first to semi-automatically collect about
10,000 sentence pairs for the SICK inference dataset.12 They used comparable
sentences from the captions of images and videos as a source. The sentences
were first manually normalized (e.g., removing multi-word expressions and
names) and then semi-automatically transformed into candidate sentences with
semantically similar, contrasting, or compatible meanings. The final sentence
pairs were obtained by automatically pairing the candidate sentences in a
predefined way.

There are three main groups of approaches when collecting inference pairs
with a fully automated method. The first method takes advantage of already
existing textual inference datasets and automaticallymodifies the problems. For
example, Naik, Ravichander, Sadeh, Rose, and Neubig (2018) employ problems
from MNLI to create a stress test on spelling errors and shape distractions
(e.g., a high word overlap and length mismatch between a premise and a
hypothesis). The second method, somewhat similar to the first, recasts datasets
for other NLP tasks as inference datasets. For instance, White, Rastogi, Duh,
and Van Durme (2017) elicited inference problems from three datasets that
target three distinct semantic phenomena: semantic roles, paraphrases, and
pronoun resolution. The third method substantially differs from the first two as
it automatically generates Text-Hypothesis pairs. This is usually done with the
help of manually pre-designed templates or formal grammar such as regular or
context-free grammar. To automatically generate inference problems, Geiger,
Cases, Karttunen, and Potts (2018) use the regular grammar in (4) to construct
sentences. Optional elements are marked with ?, Q2{every, not every, some,
no}, and other grammatical category variables range over predefined sets of
words.

(4) Q Adj? N (does not)? Adv? V Q Adj? N

All three methods are actively used when collecting Text-Hypothesis pairs for
new textual inference datasets. When pairs are human-elicited, one needs to be
aware of potential biases that human annotators (usually, crowd workers) might

12SICK stands for Sentences Involving Compositional Knowledge and it was created to evaluate
compositional distributional semantic models. It was used as a training and evaluation dataset at the
SemEval task on semantic relatedness and textual entailment (Marelli, Bentivogli, et al., 2014).

Semantics and deep learning 27

introduce (see Section 2.1.4 for more details). Inference datasets generated
with a fully automated method usually focus on a particular set of semantic
phenomena and tend to have sentences with less structural or lexical diversity.
Finally, semi-automated methods try to combine the best of both worlds to
produce Text-Hypothesis pairs with diversity and at scale.

2.1.2 Annotating inferences

Annotation of textual inferences means labeling Text-Hypothesis pairs with a
ground truth inference label, in other words, with gold (standard) labels. Since
ground truth labels play a key role in training and evaluating NLP systems, the
quality of the annotation process is directly related to the quality of the dataset.
Methods of annotating inferences can be roughly divided into three categories.
We briefly describe each of them below.

Inference annotation by humans is a common method and it defines gold
inference labels based on human judgments. Usually, crowd workers rather
than experts or trained annotators are employed to collect human judgments.
This is mainly due to a trade-off between expert/time/financial resources and the
size of annotation work. The gold label of an inference problem is commonly
set to the label that receives a majority of votes from annotators. For example,
a Text-Hypothesis pair in the SICK dataset is labeled as entailment if at least
three out of five crowdsourced judgments are in agreement. When annotating a
pair, sometimes one of the inference judgments comes from the author of the
pair. For instance, this is the case for SNLI, MNLI, and the datasets of RTE
challenges. If there is no majority-vote consensus for an inference pair, the pair
is discarded.

Automatic annotation of inferences is used when inference pairs are fully
automatically generated (see Section 2.1.1). When modifying or recasting an
existing dataset, an automatic annotation method can simply map original labels
to inference labels. For example, if an original inference problem is entailment,
a new problem that is obtained by adding an informative and consistent conjunct
(with respect to the Text and Hypothesis) to a Hypothesis will have a neutral
inference label. When a Text-Hypothesis pair is automatically generated, usually
either the generation process reliably and automatically induces the inference
labels or a rule-based system is used that faithfully models inferences in the
generated fragment. For instance, one can use a first-order logic theorem prover
for a decidable fragment of natural language.

The third category of annotation lies between the two above-mentioned cate-
gories. To deduce inference labels, this category leverages human annotations

28 Cambridge Elements in Semantics

for a task simpler than inference. For example, the Monotonicity Entailment
Dataset (MED, Yanaka et al. 2019a) asks crowdworkers to make certain phrases
in a sentence more specific, e.g., make spectator in every spectator bought a
ticket more specific with female spectator. With the help of the human-elicited
phrasal inference and the monotonicity calculus (see Section 2.2.2), one can
automatically detect that the original sentence, e.g., every spectator bought a
ticket, entails the new sentence, e.g., every female spectator bought a ticket,
obtained with the phrase replacement.

The annotation process yields inference problems with gold labels. However,
it is important to be aware that not all gold labels are gold (see Section 2.1.5 for
further evidence). The annotation methods that involve humans might introduce
erroneous gold labels due to human errors, insufficient annotation guidelines,
or ambiguity stemming from an inference pair. For example, it is known that a
substantial number of gold labels in the SICK dataset are inconsistently applied
to the inference problems (Kalouli, Hu, Webb, Moss, & de Paiva, 2023; Kalouli,
Real, & de Paiva, 2017; Marelli, Menini, et al., 2014). The reason behind this
is that annotators interpreted subjects with indefinite articles in different ways:
a boy is running and a boy is not running can be judged as contradiction or
neutral depending on the coreference between the indefinite NPs (see Section
2.1.3 for more discussion about coreference and inference).

2.1.3 Two interpretations of contradiction

So far talked about the annotation process but haven’t said much about how
the inference labels are defined per dataset. As we have already noted at the
beginning of Section 2, the definition of textual entailment in the RTE challenge
datasets intentionally contains vague concepts to capture human-style entailment
instead of the logical one. While for several inference datasets, the definition of
entailment undergoes slight changes to be more accessible for crowd workers
during inference annotation, it is still kept vague.

The contradiction label was introduced at the 3rd RTE challenge (Giampiccolo
et al., 2007) as part of a pilot 3-way classification of textual inference. Compared
to the 2-way classification inferences in RTE challenge datasets, the 3-way
classification distinguishes contradiction (j=) and neutral (##) in non-entailment
inferences (6)).13 The contradiction label was defined in a similar vague
fashion as the entailment label. In particular, following de Marneffe, Rafferty,
and Manning (2008), contradiction occurs when a Text and a Hypothesis are
extremely unlikely to be true simultaneously. For the contradiction label,

13Originally, the three labels where yes, no, and unknown.

Semantics and deep learning 29

the annotation guidelines instructed that compatible referring expressions had
the same reference in the absence of clear countervailing evidence.14 This
definition of contradiction worked well for the RTE challenge datasets mainly
because the datasets kept Text-Hypothesis pairs grounded in real data, which
means that the pairs contained longer Texts and more definite NPs and named
entities.

The annotation results of the SICK dataset showed that if the coreference
of compatible referring expressions is not explicitly instructed for caption-like
sentence pairs, crowd workers provide mixed annotations for the inference
problems involving indefinite NPs and negation. For example, the SICK
inference problems in (5) and (6) have the exact same structure from an inference
perspective, but (5) gets the neutral gold label while (6) gets contradiction:

(5) A couple is not looking at a map. ## A couple is looking at a map.
(6) A soccer ball is not rolling into a goal net.

j= A soccer ball is rolling into a goal net.

Many Text-Hypothesis pairs are not in a contradiction relation if no corefer-
ence of events and entities is assumed. For instance, A cat is sleeping and A cat
is not sleeping do not form a contradiction pair unless a cat in both sentences
refers to the same entity.15 Moreover, the event coreference helps to make A
cat is sleeping and A dog is sleeping contradiction: the only participant of the
sleeping event cannot be a cat and a dog. This type of contradiction seems
odd from a strictly logical point of view. To intensify the contrast between
logical contradiction and the coreference-enforced contradiction, consider
a Text-Hypothesis pair: A cat is sleeping and A dog is running. When the
coreference is assumed, this textual inference problem becomes contradiction
due to the incompatibility of sleeping and running events. Such a notion of
contradiction is highly odd from a purely logical perspective.

To instruct crowd workers about annotating coreference-enforced contra-
diction, the authors of SNLI grounded sentences in photos without showing
actual photos to the crowd workers. In particular, the crowd workers were asked
whether a Hypothesis could definitely be a true, might be a true, or definitely be
a false description of a photo whose caption was the Text.16 Such a guideline
prevents the coreference issue the SICK dataset suffers from, but on the other

14https://nlp.stanford.edu/RTE3-pilot/contradictions.pdf
15Moreover, to make Garfield slept and Garfield didn’t sleep a contradiction, one needs to assume

that both sentences refer to the same period of time. However, textual inference problems usually
assume the common event time across the Text and Hypothesis.

16Similar instructions were shown to crowd-worker annotators of MNLI, but the word photo was
replaced with situation or event as, unlike SNLI, MNLI contains sentences in various text genres.

30 Cambridge Elements in Semantics

hand, it introduces somewhat odd contradiction problems that involve unrelated
sentences as illustrated by an SNLI problem in (7). It is important to note that
problems like (7) are labeled as neutral in SICK. Hence, models shouldn’t be
trained on SICK and evaluated on SNLI/MNLI or vice versa as these datasets
use different interpretations of contradiction.17

(7) Dog carry[sic] leash in mouth runs through marsh.

j= A ship hitting an iceberg.

The majority of the existing inference datasets adopt the coreference-enforced
notion of contradiction. Due to the subtle difference between coreference-
enforced and logical contradictions, several inference datasets are annotated
with binary labels, entailment and non-entailment, to avoid opting for one of
the contradiction notions.

2.1.4 Biases in textual inference

The main idea behind collecting textual inference datasets is to teach an
NLP system regularities governing natural language inference or to evaluate its
semantic capacity. However, high system performance on a particular inference
dataset doesn’t necessarily mean that the system has learned the underlying
inference regularities. It might easily be the case that the system learned
accidentally introduced regularities behind the gold labels in the dataset.
For example, a high word overlap between a Text and a Hypothesis is often
a good indicator of the entailment relation, but it has little to do with the
underlying rationale of inferences. Learning such accidental regularities might
be easily overlooked in deep learning as models employ representations and
transformations that are opaque for humans. Below we present two biases in
textual inference datasets that further encourage models to learn accidental
regularities about inferences.

A hypothesis-only bias is a dataset bias that allows models to achieve
relatively high accuracy on the dataset while the models take only a Hypothesis
as an input, completely ignoring the Text part. The hypothesis-only bias for
the SNLI and MNLI datasets was concurrently reported by several works
(Gururangan et al., 2018; Poliak, Naradowsky, Haldar, Rudinger, & Van Durme,
2018; Tsuchiya, 2018). They showed that some neural models can correctly
classify 63-69% of SNLI problems by looking only at a Hypothesis; This

17Despite this, there are several works (we refrain from explicitly mentioning them) that overlook
this mismatch between the interpretations of contradiction and jointly use these datasets for training
and evaluation.

Semantics and deep learning 31

accuracy is twice as high as the majority baseline (34%).18 For MNLI, the
hypothesis-only performance range is 52-53% compared to 35% of the majority
baseline. The root of the hypothesis-only bias lies in the data collection method
of SNLI and MNLI, where crowd workers type Hypothesis sentences and
voluntarily or involuntarily introduce biases in the dataset.19 Using several
neural models as examples, Gururangan et al. (2018) showed that after training
on the datasets, the hypothesis-only bias gets projected into the predictions of
the models.

Another common bias associated with inference datasets and learned by
models is a high word overlap between a Text and a Hypothesis for entailment
problems.20 The HANS (Heuristic Analysis for NLI Systems) dataset byMcCoy,
Pavlick, and Linzen (2019) intends to evaluate a model on the extent it uses a
word-overlap heuristic for entailment classification. The dataset covers three
types of heuristics depending on whether a Hypothesis is a subset, subsequence,
or constituent of a Text. The entailment and non-entailment inference problems
for each heuristic are given in (8). Note that every word in the shared Hypothesis
sentence occurs in the Text sentences.

(8) a. Subset heuristic
(i) The cat with a collar slept.)
(ii) The cat saw the dog slept. 6)

b. Subsequence heuristic
(i) The dog and the cat slept.) The cat slept.(ii) The dog near the cat slept. 6)

c. Constituent heuristic
(i) The dog saw the cat slept.)
(ii) If the cat slept, the dog was away. 6)

Several works (He, Wang, & Zhang, 2020; McCoy, Pavlick, & Linzen,
2019) showed that when neural models fine-tuned on large inference datasets
are evaluated on HANS, they display a substantial discrepancy between the
accuracy scores of entailment and non-entailment problems. In other words,
the accuracy on (i)-style problems is much higher than on (ii). For instance, the

18A majority baseline refers to a model (or its performance metric) that always predicts the most
common label in a training dataset.

19For example, in the test part of SNLI, a part used for system evaluation, 90% of inference
problems with a wordform of sleep in a Hypothesis is labeled as contradiction. Similarly, 94% of
the problems with tall in a Hypothesis is neutral, and 85% with instrument is entailment. This
reflects the tactics crowd workers used to quickly provide a Hypothesis sentence per inference label.

20Since the word overlap is positively correlated with entailment, it has been a common feature
in feature-based machine learning models for textual inference.

32 Cambridge Elements in Semantics

accuracy gap is greater than 70% for BERT fine-tuned on MNLI. This indicates
that the neural models have difficulties to distinguish high lexical overlap from
entailment.

Besides the two mentioned biases, there are also other dataset biases. A
reversed word-overlap bias is a tendency to label a problem with a low word
overlap as non-entailment (Rajaee, Yaghoobzadeh, & Pilehvar, 2022). Yet
another bias is a negation bias, which is a preference to classify a problem as
contradiction if it contains a negation word. The negation bias exists in SICK,
SNLI, and MNLI (Gururangan et al., 2018; Lai & Hockenmaier, 2014). There
is an entire research line in the textual inference that attempts to debias inference
models or to make them generalizable to other inference datasets.

2.1.5 Should the textual inference task be categorical?

The textual inference is modeled as a two- or three-way classification task.
But taking into account the soft nature of the entailment and contradiction
notions, is a categorical classification suitable for textual inference? There have
been at least two proposals for an alternative modeling of the textual inference
task. One proposal models the textual inference as a subjective probability of
entailment while another one uses the distribution of human judgments over the
inference labels instead of a single inference label.

T. Chen, Jiang, Poliak, Sakaguchi, andVanDurme (2020) argue forUncertain
Natural Language Inference (UNLI) where a Text-Hypothesis pair is estimated
with a probability score rather than a single inference label. The probability
score represents an average of subjective probabilities elicited from crowd
workers. In particular, during crowdsourcing, annotators are asked to estimate
how likely the situation described in the Hypothesis would be true given the
Text. The individual responses per inference problem are averaged to create a
gold standard probability score.21 An inference problem that gets the neutral
gold label in SNLI but 0.84 entailment probability in UNLI is given in (9):

(9) A man is singing into a microphone.
„0�84”) A man is performing on stage.

Nie, Zhou, and Bansal (2020) modeled the textual inference task as predicting a
probability distribution over the inference labels. They created the ChaosNLI
dataset where gold standard distributions per inference problem were derived

21Note that the average might result in a probability close to 0.5 if annotators provide mixed
estimates close to 0 and 1. To avoid such undesired results, one could opt for the mode or median of
the estimates or simply drop the inference problems with such mixed judgments.

Semantics and deep learning 33

from 100 crowdsourced judgments.22 For instance, (10) illustrates an SNLI
problem that originally had the entailment gold labels obtained as a majority
label from three entailment and two neutral judgments. However, after re-
annotating the problem as a part of ChaosNLI, it gets contradiction as the most
probable label in the label distribution.

(10) The lady wearing a red coat is giving a speech.
»„0�40”)� „0�01”##� „0�59” j= … Woman is the center of attention.

In total 25% of the SNLI problems that were reused in ChaosNLI received a
major inference label different from the original SNLI label. This indicates that
the inference gold labels that are defined as a majority among several judgments
are difficult to replicate and begs a question about the adequacy of the gold
standard inference labels and the categorical nature of the textual inference task.

F F F

In the subsection, we covered several crucial characteristics of the textual
inference task. Since evaluating NLP systems on the task reduces to evaluations
on particular textual inference datasets, we summarized common methods
of creating datasets, namely, collecting and annotating Text-Hypothesis pairs.
During the dataset creation, one can control the interpretation of the contradiction
label via annotation guidelines—whether to opt for the coreference-enforced
contradiction or amore logical notion that largely narrows down the contradiction
inference problems. However, it is not easy to keep inference datasets free from
biases, especially when the sentences are collected via crowdsourcing. The
notable biases of inference datasets are the hypothesis-only bias and the high
word overlap for entailment problems. Finally, there are inference problems for
which a single inference label is not representative. While there have been at
least two suggestions for abandoning a single inference label in textual inference,
most of the inference datasets are still created as a basis of a two- or three-way
classification task.

2.2 Phenomena-specific Textual Inference
In this section, we describe several textual inference datasets that were created

with clear linguistic and semantic phenomena in mind, in other words, contain

22The idea of considering a distribution of judgments as a gold standard was proposed by Pavlick
and Kwiatkowski (2019) when they empirically showed that various textual inference datasets
contain inference problems exhibiting inherent disagreements among annotators.

34 Cambridge Elements in Semantics

inference problems that require correct treatment of certain semantically-heavy
words or semantically peculiar constructions. Such inference datasets are
usually inspired by studies on formal semantics. The list of the datasets is
given in Table 1 at the end of the section. Additionally, we also mention
the results of the deep neural networks (DNNs) on these datasets as reported
by the original works.23 Our focus on semantic phenomena-driven inference
datasets distinguishes this section from other works that also summarize existing
inference datasets (Chatzikyriakidis, Cooper, Dobnik, & Larsson, 2017; Poliak,
2020; Storks, Gao, & Chai, 2019).

2.2.1 FraCaS test suite

We start with the FraCaS test suite (Cooper et al., 1996) as it covers several
semantic phenomena that have been intensively studied in semantics literature.
The FraCaS test suite was originally created as a yes/no/unknown-QA test suite
for NLP systems. Only later it was converted and used as a textual inference
test suite by MacCartney and Manning (2007).24 It contains only 334 well-
formed inference problems but has nine focused sections covering generalized
quantifiers (74), plurals (33), nominal anaphora (28), ellipsis (55), adjectives
(22), comparatives (31), temporal reference (70), verbs (8), and attitudes (13).
Background knowledge is explicitly encoded in the FraCaS inference problems
as premises (e.g., Every Swede is a Scandinavian), and (multi-step) logic-based
reasoning is the only challenge built in the dataset.

The FraCaS inference dataset has been rarely used for evaluating DNNs due
to its small size and imbalance of inference labels (e.g., entailment covers 52%
of the problems while contradiction only 9%).25

As was already mentioned, the size and imbalance of the labels make FraCaS
a non-representative evaluation set. Its treatment of semantic phenomena and
clear structure motivate new ways of creating inference problems and datasets.
FraCaS is also used by most purely logic-based (Abzianidze, 2016; Bernardy &
Chatzikyriakidis, 2021; Hu, Chen, &Moss, 2019; Mineshima, Martínez-Gómez,

23We are aware that the results get outdated given the fast progress in the development of new
DNN architectures or scaling up the DNN models. However, the reported results will provide some
sort of indication of the complexity of the datasets from a deep learning perspective.

24Some of the original FraCaS QA problems couldn’t be converted into inference problems. The
dataset can be explored at https://nlp.stanford.edu/~wcmac/downloads/fracas.xml

25Bowman (2016) was one of the first to evaluate DNNs on FraCaS. However, their LSTM model,
which was trained on SNLI, was evaluated only on single-premised problems (55% of all problems)
and obtained 57% of accuracy. Yanaka et al. (2019b) reported 71% of accuracy on the entire
quantifiers section (74 problems) for a BiLSTM model, which was trained on MNLI augmented
with their automatically created inference dataset, called HELP, inspired by monotonicity reasoning.

Semantics and deep learning 35

Miyao, & Bekki, 2015) and some hybrid approaches (M. Lewis & Steedman,
2013).

2.2.2 Monotonicity

Reasoning with monotonicity is the most common phenomenon on which
DNNs have been evaluated. This is because monotonicity reasoning is well
studied froma formal semantics point of view (Icard&Moss, 2014;VanBenthem,
1986) and captures inferences that can be characterized by phrase substitutions
directly in surface forms, without translations into an intermediate formal
meaning representation. This facilitates the automatic generation of inference
problems on monotonicity reasoning. Before discussing inference datasets on
monotonicity, first, we outline monotonicity reasoning.

Not all phrase substitutions in a sentence result in a new sentence that is
entailed from the original one. With the help of monotonicity reasoning, we can
identify certain entailment-preserving substitutions. This is done by modeling
the monotonicity properties of lexical units where quantifiers get the spotlight.
Let’s interpret the quantifier most as a binary function from unary predicates
to f0� 1g (for false and true, respectively), where it is non-monotone in its first
argument position and upward monotone in its second argument position. This
can be denoted as most„G�� H"”. Since most is upward monotone in H’s position,
inserting more general predicates in “most dogs H” should not decrease its truth
value: “most dogs are running” � “most dogs are moving”, where � can be
interpreted as entailment. In the case of the non-monotone position of G, we
cannot predict an order between the values of “most G are running” when two
comparable arguments (e.g., dog and pet) are inserted in it: “most dogs are
running” doesn’t entail “most pets are running” and vice versa.

It gets more complicated when dealing with nested scopes of monotone
operators. Let’s analyze (11) as (110), where each function is marked with
monotonicity properties.26 Following (110), each word in (11) is colored
based on its polarity, i.e., the monotonicity property of the position which
is a result of interference of monotone functions. Green (red) stands for an
upward (downward, respectively) monotone position. When green (red) words
are replaced with synonymous or more general (more specific) concepts, the
resulting sentence is entailed from the initial one as demonstrated by (11))(12);
The results of replacement in (12) are underlined.

26Here, we adopt the quantifier scoping that follows the quantifier order in the surface form and
yet yields a sensible semantic reading.

36 Cambridge Elements in Semantics

(11) Every person without a mustache who consumed alcohol tasted most snacks.

(110) Every#"
�
who""

�
without"#(person, a mustache), consumed"(alcohol)

�
, tasted"

�
most�(snacks)

� �
(12) Every man without facial hair who drank whiskey tried some snacks.

Textual inference datasets on monotonicity reasoning are usually (semi-)
automatically generated. The generation process goes as follows: (a) Polarity
marking automatically detects the polarity of sub-phrases in a sentence by
exploiting a syntactic structure and monotone operators in the sentence, (b)
Phrase substitution substitutes polarity-marked sub-phrases with more general
or specific phrases, and (c) Entailment labeling induces entailment relations
based on the polarity of the substituted sub-phrases and the specificity order
between substituted and substituting sub-phrases. Vanilla monotonicity rea-
soning cannot capture contradiction relations, hence, most monotonicity-based
inference datasets cover only entailment and non-entailment labels. For the
extension of monotonicity reasoning with an exclusion relation, see MacCartney
and Manning (2009) and Icard (2012).

One of the first monotonicity-based inference datasets, the Monotonicity
Entailment Dataset (MED), was semi-automatically created by Yanaka et
al. (2019a). They used the above-mentioned three steps to create the dataset.
Crowdsourcing was employed for the phrase substitution and entailment labeling
steps. The latter step was mainly used to validate the automatically induced
entailment labels.27 The final dataset contains over 5K problems. While the
problems are evenly balanced between entailment and non-entailment classes,
underlying monotonicity phenomena are unevenly distributed: upward (34%),
downward (61%), non (5%). The MED dataset is only intended for evaluation
and comes with no training part.28

Yanaka et al. (2019a) evaluated top textual inference models at that time, incl.
BERT, and found that the models underperform (below the majority baseline) on
downward-monotone problems when trained on standard training sets, SNLI and
MNLI. When augmenting a training set with the HELP dataset, the experiments
showed that if a portion of the upward (downward) monotonicity problems
increases in the training set, it hurts models to learn the downward (upward
respectively) monotonicity reasoning. Z. Chen (2021) reports the highest score
by a DNN on MED: a model with a tree structure encoder (Y. Zhou, Liu, &
Pan, 2016) and a self-attention (Z. Lin et al., 2017) obtains an accuracy of

27In addition to the crowdsourced problems, they also manually added problems collected from
the literature on monotonicity reasoning.

28MED was preceded by the fully automatically generated monotonicity inference dataset, called
HELP (Yanaka et al., 2019b). Due to the automatic generation, which introduces some noise in
inference labels and the naturalness of sentences, HELP is intended to be used as training data.

Semantics and deep learning 37

75.7%. A substantial improvement (93.4%) is reported by Z. Chen, Gao, and
Moss (2021) with a hybrid system that combines a monotonicity reasoning
system with lexical databases and LLMs. However, such hybrid systems have
an obvious advantage over purely neural models as they can faithfully mimic
the algorithm underlying the creation of the evaluation data.

In contrast to the MED dataset, the monotonicity part of Semantic Fragments
(hereafter referred as monFrag) by Richardson, Hu, Moss, and Sabharwal
(2020) is fully automatically created: the sentence pairs are generated with
the regular grammar using a restricted vocabulary of size 119 and following
the polarity markings induced from monotone operators. Such controlled
generation of the pairs backed up with the polarity computation of Hu et al.
(2019) guarantees correct assignments of 3-way inference labels to the generated
problems. monFrag contains 10K problems equally distributed over three labels
and divided into simple and hard parts based on the number of relative clauses
in sentences and the vocabulary size of quantifiers per part. A sample problem
from the dataset is given in (13).

(13) All black mammals saw exactly 5 stallions who danced j=

Some black rabbits did not see exactly 5 stallions who danced

As a result of their probing experiments, Richardson et al. (2020) found that the
DNNs poorly generalize on monFrag, namely, one of the best results is obtained
by BERT: 62.8 accuracy score when trained on SNLI and MNLI. They also
show that BERT predicts monFrag with 97.8% accuracy when fine-tuned on
2K of similar monotonicity problems while its score decreases only by 1.3% on
the MNLI development set.

Monotonicity reasoning represents a substantial challenge for DNNs when
it comes to distinguishing the reasoning processes driven by downward and
upward monotone operators. While within the limited vocabulary (of �100
words) DNNs overall learn the monotonicity reasoning in monFrag, generalizing
monotonicity reasoning for a larger vocabulary remains a difficult problem.

For more details related to monotonicity and DNNs, we refer readers to the
following works: Yanaka, Mineshima, Bekki, and Inui (2020) show DNNs
having difficulties to systematically generalize on monotonicity reasoning when
syntactic structures in the training and test sets differ, Geiger, Richardson, and
Potts (2020) demonstrate that BERT partially mirrors the causal dynamics
of the algorithm that models a fragment of monotonicity reasoning restricted
to negation and lexical entailment, and Geiger et al. (2018) emphasizes the
importance of alignment for reasoning with monotone quantifiers.

38 Cambridge Elements in Semantics

2.2.3 Negation

Negation is a ubiquitous and distinguished phenomenon in linguistics. Un-
derstanding and processing negation is a challenging task for NLP systems,
including those based on DNNs. The experiments by Kassner and Schütze
(2020) and Ettinger (2020) showed that when using BERT as a language model
to predict a word in a sentence and in its negated version, BERT shows little to
no sensitivity to the presence of negation.29 Additionally, Ribeiro, Wu, Guestrin,
and Singh (2020) demonstrated how inserting negation can mislead prominent
commercial models for sentiment analysis.

Negation is present as a part of the challenge in most of the monotonicity
reasoning-based inference datasets since it is one of the main sources of
downward monotone operators. However, the complementing nature of negation
is not fully captured by vanilla monotonicity reasoning. There are also synthetic
challenge test sets (Richardson et al., 2020) and adversarial/stress sets (Naik
et al., 2018) that focus on negation, but their coverage or the naturalness of
sentences are rather low. Instead, we will discuss the textual inference dataset
from Hossain et al. (2020), hereafter referred to as negNLI, which is a manually
created and labeled dataset of size 4.5K. It builds on the standard inference
datasets such as RTE, SNLI, and MNLI.

The motivation behind creating negNLI was to test SOTA transformer
models and their training datasets on the proper treatment of negations and
their coverage, respectively.30 To create new inference problems, they extracted
500 Text-Hypothesis pairs per dataset (in total 1,500), added negation manually
to the main verb of each sentence, and formed three new negation-involving
problems: Tneg-H, T-Hneg, and Tneg-Hneg. Hence, negNLI consists of three
subparts: negRTE, negSNLI, and negMNLI corresponding to RTE, SNLI, and
MNLI, respectively.

After experimenting with transformers such as BERT, RoBERTa (Y. Liu
et al., 2019) and XLNet (Yang et al., 2019), Hossain et al. (2020) found that
the models underperform on negNLI when trained on the standard inference
datasets: the best accuracy of 66.7% is obtained by RoBERTa on negMNLI

29In some cases of natural sentences, e.g., “Most smokers find that quitting is/isn’t very ”,
opposed to samples like “A robin is (not) a ”, BERT’s first prediction can be appropriate but its
top candidates as a collection is self-contradictory (Ettinger, 2020).

30Hossain et al. (2020) used a high-performing negation cue detector to show that the portions of
sentences with negation in large general-purpose English corpora are on average greater (9%-30%)
than in the standard inference datasets, namely, RTE (7%), SNLI (1%) and MNLI (23%). Moreover,
they manually checked the importance of negation to the inference label for 100 randomly selected
examples per dataset that contain negation. The analysis showed that a relatively high number of
negations are unimportant for inference: RTE(76%), SNLI (48%), and MNLI (52%).

Semantics and deep learning 39

while its scores are much higher on the development part of MNLI (87.9%)
and its negative subpart (88.0%). The results of these experiments are negative
despite the problems in the subparts of negNLI being very similar to the original
inference problems, differing only in terms of inserted negation particles.

Another inference dataset on negation worth mentioning is the NaN-NLI test
suite (T. H. Truong et al., 2022), where NaN stands for Not another Negation.
As the name test suite suggests, the dataset is a small curated set of 258 inference
problems and is intended only for evaluation use. The distinct feature of
NaN-NLI is that it covers types of negation that rarely affect the inference labels
in the datasets. In particular, the dataset contains negation of type non-verbal
(e.g., not all and not very) and sub-clausal (e.g., negating a prepositional phrase
as in not for the first time). The premises in the dataset are drawn from Pullum
and Huddleston (2002). For each premise, the authors hand-crafted around five
hypotheses to form inference problems driven by a negation item.

In the evaluation experiments, T. H. Truong et al. (2022) use two pre-trained
language models: RoBERTa and negRoBERTa, a variant of RoBERTa pre-
trained with negation data augmentation and a negation cue masking strategy
(T. Truong, Baldwin, Cohn, & Verspoor, 2022). Both models are fine-tuned
on MNLI and MNLI augmented with negMNLI of Hossain et al. (2020). The
highest results are obtained when fine-tuning the models on the augmented data.
The obtained scores of both models are comparable (ca. 62.7%) and represent a
moderate improvement over the majority class baseline (45.3%).

Negative results on modeling negation are also reported by Hartmann et al.
(2021) when evaluating the multilingual BERT model on five languages. Unlike
previous datasets, Hartmann et al. (2021) structured their multilingual inference
dataset in minimal pairs of inference problems. In this way, the dataset tests a
model on whether it correctly recognizes the effect the presence and absence of
negation have on inference labels.

Classifying textual inference problems with negation still remains a challenge
for DNNs. The challenge stems from the scope-taking nature of negation and its
ability to flip the meaning of a phrase when inserted into the sentence. The latter
behavior contrasts with the general word insertion mechanism which usually
introduces additional information to the meaning (e.g., inserting adjuncts or
complements).

2.2.4 Implicatures & Presuppositions

Implicatures and presuppositions are pragmatic inferences that are different
from standard logical entailment. While implicatures are defeasible suggestions

40 Cambridge Elements in Semantics

made by an utterance, presuppositions are assumed true by an utterance as they
are essential for interpreting its meaning. Unlike entailments, presuppositions
can survive even when they are embedded under questions, conditionals, and
negation. For instance, (14) shows examples of a presupposition and an
implicature, which is referred to as a scalar implicature.

(14) Some of John’s kids are playing outside.
presupposes that John has kids.
implicates that One of John’s kids is not playing outside.

Note that the same presupposition would still be available if we considered the
negated version of the sentence “Some of John’s kids are not playing outside”
or the question “Are some of John’s kids playing outside?”. The implicature is
suggested as the sentence is deliberately formulated as it is, instead of using a
stronger term “all” on the same scale as in “all of John’s kids”. However, the
implicature can be canceled with the follow-up elaborating sentence “Actually
all of John’s kids are playing outside”.

The inference relation built into inference datasets has an imprecise definition
that says “) entails (contradicts) � if humans reading) would typically infer
that � is most likely true (false)” (see p. 22) and represents a weaker relation
than logical entailment. This raises a question: what is the relation between
the entailment the textual inference models learn and pragmatic inferences
like implicatures and presuppositions? Do textual inference models recognize
implicatures as entailment or as neutral? Are they robust enough to consistently
accommodate presuppositions?

To answer these questions, Jeretic, Warstadt, Bhooshan, and Williams (2020)
automatically created an inference dataset, called ImpPres, focusing on scalar
implicatures and presuppositions. The problems were generated from predefined
sentence templates, in total over 25K. The scalar implicature part consists of six
sub-parts, each focusing on a particular lexical scale: determiners hsome,alli,
connectives hor,andi, modals hcan,have toi, numerals h2,3i, gradable adjectives
hgood,excellenti, and gradable verbs hrun,sprinti. The presupposition part
has eight sub-parts involving all N, both, change of state, cleft existence, cleft
uniqueness, only, possessed definites, and questions. As noted by the dataset
authors, ImpPres is solely intended for evaluation purposes since the patterns in
the dataset can be easily learned.

The experiments conducted on MNLI-trained BERT showed that with some
consistency BERT uses pragmatic inference when “some” is in a premise, i.e.,
identifies examples like hsome N V, all N Vi as contradiction. However, the
experiments on other sub-parts suggested that BERT cannot distinguish the

Semantics and deep learning 41

scalar pairs for connectives and gradable concepts, e.g., it treats X is good and
X is excellent as semantically equivalent, and inconsistently handles the cases
of numerals and modals. The evaluation on the presupposition part reveals that
BERT entails the presupposition of clefts (e.g., it is X who V) Someone V),
possessed definites, only, and questions (e.g., John knew why Ann left) Ann
left). But it fails to do so for numeracy (e.g., Both N V) Exactly two N V) and
change of state (e.g., X was healed) X used to be ill).

Jeretic et al. (2020) conclude that the pragmatic reasoning capacity of BERT
mostly comes from the pre-training stage, i.e., masked language modeling, as
MNLI contains an insufficient number of pragmatic inferences and almost no
samples of those triggered lexically. This leaves the question open whether
DNNs are able to consistently carry out pragmatic reasoning.

A follow-up study by Parrish et al. (2021) created a test dataset of over
2K inference problems on presuppositions. In the dataset, the Text repre-
sents naturally occurring multiple sentences while the Hypothesis is manually
constructed for each Text. To model the gradable nature of presupposition
projection/cancellation, they also designed variants of Text that contain negated
presupposition triggers. The results of their experiments show that models
performed comparably to humans on relatively simple cases (e.g., cleft, numeric
determiners, and temporal adverbs) but failed to fully capture human-level
context sensitivity and gradience.

For related work, we refer the readers to Ross and Pavlick (2019), Jiang
and de Marneffe (2019), and Schuster, Chen, and Degen (2020). Ross and
Pavlick (2019) studied whether BERT can make correct inferences about
veridicality in verb-complement constructions. While the projectivity behavior
of verb-complement verbs is different from presupposition projection, they
share similarities when it comes to inferring embedded meaning. Jiang and de
Marneffe (2019) recast samples of CommitmentBank (de Marneffe, Simons, &
Tonhauser, 2019) to inference problems, where the Text consists of multiple
sentences, and the Hypothesis is a complement of clause-embedding verbs under
entailment-canceling environments (conditional, negation, modal, and question).
Based on the experiments with BERT models, they concluded that the models
still do not capture the full complexity of pragmatic reasoning. Schuster et
al. (2020) explored whether an LSTM-based sentence encoder can be used to
predict the strength of scalar inferences, namely, predicting semantic similarity
between “some kids play” and “some, but not all, kids play”.

42 Cambridge Elements in Semantics

Dataset Size Train
part

Pair
coll.

Lab.
anno.

Lab.
num. Phenomena

FraCaS
(Cooper et al., 1996)

334 No HE TA 3
Quantifiers, plurals, anaphora, ellipsis, adjectives,
comparatives, temporal ref., verbs, attitude

MED
(Yanaka et al., 2019a)

5,382 No ME CW 2 Monotonicity reasoning

Semantic fragments
(Richardson et al., 2020)

40,000 Yes Auto Auto 3
Negation, Boolean connectives, quantifiers,
counting, comparatives, monotonicity

negNLI
(Hossain et al., 2020)

4,500 Noy ME TA 3 Verb-level negation

Nan-NLI
(T. H. Truong et al., 2022)

258 No HE TA 3
Diverse types of negation: verbal & non-verbal,
clausal & sub-clausal, analytic & synthetic

IMPPRES
(Jeretic et al., 2020)

25,500 No Auto Auto 3
Scalar implicature (6 sub-parts) and presupposi-
tions (8 sub-parts)

NOPE
(Parrish et al., 2021)

2.732 No HE CW 3
Context-sensitivity of 10 different types of pre-
supposition triggers

TEA
(Kober, Bijl de Vroe, & Steedman, 2019)

11,138 Noy HE TA 2
Tense & aspect: all combinations of present/past,
simple/progressive/perfect andmodal future, cov-
ering perfect, and progressive aspect

HANS
(McCoy, Pavlick, & Linzen, 2019)

30�1,000 Noy Auto Auto 2 Overlap heuristics: lexical, subsequence, sub-
constituent

EQUATE
(Ravichander, Naik, Rose, & Hovy, 2019)

9,606 No AE
Auto

TA
CW
Auto

2/3

Quantitative reasoning (5 subsets): verbal reason-
ing with quantities, basic arithmetic computation,
inferences with approximations and range com-
parisons

ConjNLI
(Saha, Nie, & Bansal, 2020)

1,623 Dev AE TA 3
(Non-)Boolean use of connectives (e.g., and, or,
but, nor) with quantifiers and negation

SpaceNLI
(Abzianidze, Zwarts, & Winter, 2023)

160�200 Noy Auto Auto 3
Diverse types of spatial expressions: directional,
argument orientation, projective, non-projective

AmbiEnt
(A. Liu et al., 2023)

1,645 Dev HE
Auto TA 3f

Ambiguity: sentences involving a variety of lexi-
cal, syntactic, and pragmatic ambiguities

Table 1 A list of phenomena-specific textual inference datasets discussed in the
current section. C � ? in the size column stands for generating ? number of

inference problems from C number of templates. yA part of a dataset was used
for training in the original experiments. =fMulti-labeling with = number of
labels. “Dev” stands for a dataset having a designated development set. A list

of abbreviations used: trained annotators (TA), crowd workers (CW),
human-elicited (HE), and automatically/manually edited existing text (AE/ME).

2.2.5 Other targeted inference datasets

In addition to the discussed inference datasets, there are many other datasets
that focus on semantic phenomena beyond the scope of the section. Kober et

Semantics and deep learning 43

al. (2019) designed and manually annotated a set of sentence pairs that require
reasoning with tense and aspect.31 Ravichander et al. (2019) prepared the
Equate dataset for quantitative reasoning formatted as inference problems.
Saha, Nie, and Bansal (2020) constructed the ConjNLI challenge set to evaluate
DNNs on understanding connectives (like and, or, but, nor) in conjunction
with quantifiers and negation. In addition to the monotonicity fragment,
Richardson et al. (2020) also created synthetic data fragments for negation,
Boolean connectives, quantifiers, and comparatives. Abzianidze et al. (2023)
curated inference problems on spatial reasoning and showed that DNNs are far
from mastering spatial reasoning. A. Liu et al. (2023) designed an inference
dataset, called AmbiEnt, to evaluate models on reasoning with ambiguous
sentences involving a variety of lexical, syntactic, and pragmatic ambiguities.
The dataset shifts from three-way classification to multi-label classification with
three inference labels. Inference problems that are sensitive to the ambiguity of
the Text are classified with more than one inference label.

2.3 Interim Conclusion
Since the first RTE task (Dagan et al., 2006), reasoning with natural language

remains a popular NLP task. In the age of deep learning, the task gained
momentum with the creation of the SNLI (Bowman et al., 2015) and MNLI
(Williams et al., 2018) datasets.32 MNLI and RTE (the merge of RTE1,
RT2, RTE3 & RTE5) are part of the GLUE benchmark (Wang, Singh, et al.,
2019) for natural language understanding (NLU). The new NLU benchmark
SuperGLUE (Wang, Pruksachatkun, et al., 2019) dropped MNLI as by that
time systems had already reached �90% of accuracy on the mismatched set,
close to the human performance (92.8%). However, the RTE set was kept in
SuperGLUE since system performance was nearly eight points lower than the
human performance (93.6%). Currently, RTE’s human threshold is already
beaten by PaLM (Chowdhery et al., 2022).

Recently the NLP community started to actively create numerous inference
datasets that focus on certain phenomena (Rogers & Rumshisky, 2020) to
evaluate the competence of DNNs based on pre-trained LLMs. This opened the

31White et al. (2017), Poliak, Haldar, et al. (2018), and Vashishtha, Poliak, Lal, Van Durme, and
White (2020) together recast 20 datasets of other NLP tasks into inference dataset format. Their
datasets cover phenomena such as temporal reasoning, event factuality, anaphora resolution, and
semantic roles. However, the recast datasets have somewhat unnatural or uniformly structured
Hypotheses.

32It also gradually got a new name Natural Language Inference (NLI), partially due to these
dataset names and terminology used in the corresponding papers.

44 Cambridge Elements in Semantics

door to two new evaluation modalities, in addition to the standard train-and-test
regime: adversarial testing and challenge testing. While the former targets the
weak points of a model to emphasize its brittleness, the latter tries to evaluate
the model’s competence on a particular linguistic phenomenon which is usually
out of the training set distribution.

Interestingly and somewhat unexpectedly, while the largemodels beat the state
of the art on standard inference benchmark datasets (such as SNLI, MNLI, and
RTE), new targeted inference datasets are created that reveal the incompetence
of these large models on a certain set of phenomena. Even if the models
achieve human parity on (semantically) challenging inference datasets, there
is substantial room for improving benchmarking in the textual inference task
(Bowman & Dahl, 2021), which will significantly affect the evaluation results.

3 Compositionality

Compositionality of linguistic meaning is responsible for construction
of propositional meanings from components put together combinatorially in
tandem with the syntax of language.

Compositionality usually assumes a syntactic structure used as an input to
interpretation. Typical deep learning models, however, operate on surface strings
rather than syntactic structures. The assumption is that the relevant aspects
of syntactic parsing are learned implicitly during end-to-end learning. This is
plausible as neural models have shown good results in relevant tasks, namely
recognizing recursive languages (Bernardy, 2018; Weiss, Goldberg, & Yahav,
2018) and learning constrained interpreted languages (Hudson & Manning,
2018; Lake & Baroni, 2018). Sometimes, instead of the general notion of
compositionality, the more special property of systematicity is explored, e.g. in
Lake and Baroni (2018). Systematicity means extending semantic interpretation
to combinations with new (atomic) lexical items.

Recursive compositional interpretation has been mainly explored on artificial
languages of arithmetic expressions and sequence operations (Hupkes, Dankers,
Mul, & Bruni, 2020; Hupkes, Veldhoen, & Zuidema, 2018; Nangia & Bow-
man, 2018). Below, we review proposed methods of assessing compositional
properties of neural systems (Andreas, 2019b; Ettinger, Elgohary, Phillips, &
Resnik, 2018; Mickus, Bernard, & Paperno, 2020; Soulos, McCoy, Linzen,
& Smolensky, 2020). Kim and Linzen (2020), for instance, include depth of
recursion as one of the many aspects of systematic semantic generalization.
We then explicate the computational processes and representations that mirror
Compositionality in SOTA computational models, most notably the Transformer.

Semantics and deep learning 45

The study of compositionality in current machine learning models signif-
icantly overlaps with the study of generalization (Hupkes et al., 2022) as
compositionality is the mechanism that enables semantic generalization to
unseen combinations of linguistic elements.

Notions of Compositionality

Philosophers of language and formal semanticists assume a notion of compo-
sitionality for (linguistic) signs that goes back to the ideas of Gottlob Frege and
his student Rudolf Carnap, whereby the meaning of a complex expression is
a function of the meanings of its parts and the way they are combined. This
notion, although argued to be rather weak (Kracht, 2011), imposes certain
constraints on the nature of the underlying objects. Namely, one distinguishes
the (linguistic) forms and their meanings, and assumes certain combination
operations applied to them. The assumptions of structure building operations,
while weakening the notion of compositionality, are nonetheless useful, because
they allow for an elegant account for structural ambiguity the sentence Mary
saw a man with binoculars has two readings (Mary used the binoculars vs. the
man had the binoculars) which are derived from combining the same words in
different ways.

Some researchers in machine learning and cognitive science discuss compo-
sitionality in different terms. Namely, they discuss compositionality of concept
representations within a model without necessarily a link to a natural or formal
language that may express those concepts. Sometimes this is discussed under the
name of combinatorial properties: e.g. conjunctions of properties (the concept
of being round and striped) are seen as their compositional combinations of
more basic concepts. This differs from the Fregean idea of compositionality for
an interpreted language. Here, instead of (symbolic) linguistic expressions (such
as the phrase round and striped), one focuses on learned meaning representa-
tions in cognitive or computational systems (for example, the model’s hidden
states corresponding to round and striped objects). The question asked in this
literature (e.g. Tokmakov, Wang, & Hebert, 2019) is whether the system learned
representations correspond to a decomposition of the inputs that are represented.
The assumption here is that inputs are combined using some structure building
rules, explicitly building on the analogy with syntactic structure in language
(Andreas, 2019b). For instance, Y. Du, Li, and Mordatch (2020) compose
properties of objects such as shape, color and position, for the purposes of an
image generation system.

Yun, Bhalla, Pavlick, and Sun (2022) specifically probe pretrained language

46 Cambridge Elements in Semantics

and vision models on decomposition of learned representations into primitive
concepts. They observed mixed results: the primitive concepts seem to be
learned well by the best models such as CLIP (Radford et al., 2021), but their
compositions still fail to exhibit a correct treatment.

3.1 Tests of compositionality
To a great extent current neural approaches to language are black boxes.

While neural architectures such as the Transformer are in principle Turing
complete (Pérez, Barceló, & Marinkovic, 2021) and therefore capable of
learning hierarchical syntax and compositional semantics accompanying it,
they are not trying to implement these properties of language directly. Rather,
compositionality is more of an emergent property.

In this light, a natural question that arises is not even about the learned
(computational) behavior, but about the learned representations. Assume that a
learner acquired a correspondence between some kind of language and some
kind of semantic rerpresentation. Regardless of the specific implementation,
is this mapping compositional at all? This question has been most persistently
investigated in the study of emergent communication systems. Kirby, Tamariz,
Cornish, and Smith (2015) argue that compositionality is favored under evo-
lutionary pressure from expressiveness, on the one hand, and ease of learning
(compressibility), on the other.

The method commonly used to measure compositional structure of the
meaning-form mapping is correlation analysis, as proposed e.g. by Kirby,
Cornish, and Smith (2008). It can be applied regardless of whether the meaning-
form mapping arises via iterated artificial language learning in humans or in
computational simulations that may or may not include neural network models.
The idea is as follows: if we have a similarity metric defined on linguistic forms
(such as the Levenstein string edit distance) and a similarity metric defined
on meaning representations (such as cosine of two vector representations of
meaning), the similarities in form vs. meaning should go hand in hand. As
a specific measure of correspondence, a correlation metric such as Pearson’s
product moment can be therefore used as a numeric metric of similarity. Alter-
native but related compositionality metrics have also been explored (Chaabouni,
Kharitonov, Bouchacourt, Dupoux, & Baroni, 2020). The correlation-based
methods are of course a very rough measure of compositionality as defined in
philosophy of language. If the meaning of a complex expression is a function of
the meanings of its parts, containing largely the same parts does not guarantee
relatedness of meaning. Indeed, functions can map related expressions to quite

Semantics and deep learning 47

different values. Take the example of predicate logic where each formula is
interpreted as 0 or 1. An arbitrarily large formula q can be very close to :q in
terms of the string edit distance (1 edit), but its semantic value is opposite.

But even when we stay away from extensionally interpreted predicate logic
and close to natural language examples, meaning-form correlation appears to be
problematic as a measure of compositionality. Common linguistic phenomena
such as ambiguity, semantically irrelevant morphosyntactic variation can bring
meaning-form correlation scores to very low values even in an otherwise
perfectly compositional language, and meaning-form correlation as measured
on naturalistic data is indeed strikingly low (Mickus et al., 2020).

3.1.1 Similarity-based tests

One approach to establishing whether compositional vector semantic repre-
sentations are satisfactory relies on the notion of similarity. Vector spaces have
inherent similarity structures that can be measured numerically with metrics
like the cosine. The cosine values serve as the models’ similarity or relatedness
predictions for pairs of sentences or phrases, and are compared to numeric
similarity or relatedness scores produced by human annotators for the same
phrase or sentence pairs. Metrics of choice for composition model evaluations
are typically correlation coefficients (Pearson’s or Spearman’s).

The first similarity datasets to this end were produced by British researchers
in the 2000s and were rather small in size. For example, Mitchell and Lapata
(2010) collected human similarity judgments for adjective–noun, noun–noun,
and verb–object combinations for 108 phrase pairs for each type of phrase.
The ratings were collected for complete sentences where the phrases were
placed into the predicative position. The aggregated judgments were then used
to evaluate a variety of vector composition models. Other authors created
similarity or relatedness evaluation data for other kinds of composition, such as
determiner-noun combinations (Bernardi, Dinu, Marelli, & Baroni, 2013) and
sentences with transitive verbs (Kartsaklis, Sadrzadeh, & Pulman, 2013).

These small controlled datasets featuring dozens of phrases or sentences
raise concerns of generality and ecological validity. For example, a few
dozen adjective-noun phrases in Mitchell and Lapata’s dataset might not be
representative of semantic composition in English in general. As a result, a
model might work well for this data but fail to extend reasonably to other phrases
or to more syntactically complex data.

These considerations motivated using more ecologically valid datasets
consisting of varied sentences with a range of syntactic structures. The Semantic

48 Cambridge Elements in Semantics

Textual Similarity task (STS), introduced by Agirre, Cer, Diab, and Gonzalez-
Agirre (2012), presents sentence pairs annotated on a scale from 0 (�on di�erent
topics") to 5 (�completely equivalent"). The original sentences in the pairs
were taken from a variety of sources, such as image and video descriptions and
outputs of machine translation models. The SICK dataset (Marelli, Menini, et
al., 2014) was created speci�cally for testing of compositional behavior models,
using deliberately simpli�ed language. The authors of SICK tried to control for
phenomena that may a�ect model predictions but are distinct from composition
and could confound the evaluation of compositional models. For example,
they excluded proper names and limited the range of syntactic options in the
sentences, while still allowing for a relatively broad syntactic variety in the
dataset.

There are also alternatives to human judgments on similarity or relatedness as
the ground truth for evaluation of compositional representations. One proposal
is that the similarity of vector representations of phrases should correspond to
how often one of the components in the phrase is expressed by the same lexical
item across languages (Ryzhova, Kyuseva, & Paperno, 2016). For example, the
vector of the phrasesharp knifeis expected to be more similar to that ofsharp
sawthansharp needlebecause across languages the former two consistently
use the same translation forsharp(e.g. Frenchtranchant), while the latter often
di�ers (Frenchaigu).

There is also therank approachto intrinsic similarity based evaluation.
While ingenious, it has limited applicability and can only be used with vector
models that can produce vector representations of phrases that are comparable
to vectors of words. One can think of such a model as processing a corpus
where every occurrence of the phrasered car is represented as a single token
red_car. Such a model can then create a vector for the phrasered car (the
observedphrase vector) just like it creates vectors for wordsred andcar when
they occur outside of the phrase. Ideally, an adequate composition model should
predict a compositional vector forred carthat closely resembles the observed
vector ofred_car. One metric of success for a compositional model is the rank:
if the observed phrase vector is closer to the compositional one than vectors of
other words and phrases, the model's prediction is on the right track and the
rank is 1; if the compositonal model is further o� track, the rank of the `correct'
phrase vector is higher.

Rank evaluation of vector composition was �rst applied by Baroni and
Zamparelli (2010) to adjective-noun phrases. Rank-based evaluation for more
types of phrases on a larger scale was presented by Dima, de Kok, Witte, and
Hinrichs (2019). See also Boleda, Baroni, McNally, et al. (2013) for a discussion
of adjective-noun vector composition for non-intersective adjectives.

Semantics and deep learning 49

3.1.2 Representation Testing on downstream tasks

Another approach towards establishing that a neural model achieved com-
positional semantic behavior is to test it on a task that presumably requires
compositional semantics. The logic of the argument goes as follows. Take the
following example from (Williams et al., 2018):

(15) At 8:34, the Boston Center controller received a third transmission
from American 11.
) The Boston Center controller got a third transmission from American
11.

If the representations of the two sentences fail to support determining that
there is an entailment relation between them, these representations cannot encode
the compositional meanings that semanticists of natural language postulate in
theories of entailment. So the usefulness of vector representations for entailment
detection is a prerequisite to their semantic validity.

Further support for compositionality of representations produced by neural
models comes from their success at other tasks that presumably require com-
positionality. For instance, the task of question answering (QA) presumably
requires compositional meaning of the passage s well as the compositional
meaning of the question (Rajpurkar, Zhang, Lopyrev, & Liang, 2016):

(16) passage:
In meteorology, precipitation is any product of the condensation of
atmospheric water vapor that falls under gravity.Ÿ � � � ¡
question:
What causes precipitation to fall?

Closely related to question answering, the LAMBADA task (Paperno et al.,
2016) is framed as a test for language models (it is a �ll-the-blank task). However,
the LAMBADA dataset is constructed so that understanding of a whole passage
above and beyond the immediate sentential context of the blanked out word is
required to ful�ll the task successfully.

The LAMBADA task therefore approximately measures the ability of lan-
guage models to process compositional meaning of discourse. While it was
challenging to all existing models at the time the dataset was introduced, very
large language models with few shot learning on the task (Brown et al., 2020;
Chowdhery et al., 2022) recently showed impressive progress on LAMBADA.

Another task for which compositional semantics has been argued to be
necessary is Sentiment Analysis, which consists of determining how positively

50 Cambridge Elements in Semantics

a text describes a certain object, and, optionally, which aspects of the object
are characterized in a positive or negative way. The data commonly subjected
to Sentiment Analysis are product reviews. For instance, determining the
positiveness of customer feedback on a movie or a household item can be hugely
useful for companies or other customers, and sentiment data have been collected
in huge quantities.

Tasks such as ones listed above have been used in the development of
compositional models, since they clearly involve compositional meaning. For
example, a negation placed in a well-chosen position in the text can completely
change the entailment relation between two sentences, the set of correct answers
to a question about the text, or the text's sentiment. In other cases, a negation
placed elsewhere might not interfere with the meaning of the text in the same
ways, showing that proper treatment of negation requires compositionality:
deriving the meaning of a complex text both from the elements in the text and
the way they are combined.

3.1.3 Compositional tasks

Toy tasks

Researchers used dedicated toy tasks to study the ability of deep learning
models to learn recursive compositional behavior. The Arithmetic Languaqe
task (Hupkes et al., 2018) consists in interpreting nested arithmetic expessions
with ¸ and� operations. For example,¹¹4 � 2º � 1º maps to the value1.

Paperno (2022) proposes the Personal Relations task focusing on recursive
composition in referring phrases. For example, learning systems are expected to
mapAnn's friend's childto Donnawhen trained on data that includes a mapping
of Ann's friendto Bill andBill's child to Donna.

Lake and Baroni (2018) propose the SCAN task consisting in mapping
commands such asjump twiceto action sequences such asI_jump I_jump. The
dataset includes recursive structures likejump twice and walk twice. The SCAN
dataset supports multiple data splits into training, development and testing
partition. The random split provides the easiest learning scenario. The most
challenging one is thejumpsplit whereby the training data contains the word
jumponly as the name of an atomic actionI_jumpwhile the test set includes
complex examples withjumpsuch asjump twice and walk twice. This split is
intended to demonstrate true recursive generalization from simple to complex
examples, as opposed to learning to �ll gaps in large numbers of super�cially
similar examples.

Semantics and deep learning 51

Hupkes et al. (2020) develop a more complex `PCFG' task of processing com-
mands that produce sequences, for exampleappend swap F G H , repeat
I J producesG H F I J I J: the sequenceF G Hgets the �rst element
swapped into the last position and appended to sequenceI J repeated twice.

In all the toy tasks above, deep learning models showed mixed results. On both
the Arithmetic Language and Personal Relations, recurrent models such as GRU
showed good generalization behaviours but only for left branching structures,
and robust composition with alternative architectures such as Transformers
or CNNs has not been reported. For the SCAN task, generalization for the
hardjumpsplit has been achieved by custom modi�cations of learning models
that have no (Nye, Solar-Lezama, Tenenbaum, & Lake, 2020) or only a weak
independent justi�cation (Chaabouni, Dessì, & Kharitonov, 2021). However,
the chain-of thought approach of D. Zhou et al. (2022) does appear to generalize
to compositional tasks above and beyond SCAN. For the PCFG data, only some
of the quantitative measures of compositionality showed high values for neural
models.

Larger tasks

Above and beyond intrinsic similarity based evaluation and toy tasks, compo-
sitional properties of neural models have been explored in machine translation
by Dankers, Bruni, and Hupkes (2022); Hupkes et al. (2020), who argue that
more training data make neural models' generalization more compositional.

Kim and Linzen (2020) proposed the COGS dataset that aims to test models on
compositional generalization. The task consists in semantic parsing: translation
of natural language sentences into logical formulae that represent their meanings.
For example,A cat smiledis translated into 17:

(17) cat(G1) and smile.agent(G2– G1)

On the COGS dataset, neural models showed good generalization in cases that
could be treated as lexical substitution but struggled to generalize to novel
structural con�gurations, for example created by deeper recursive syntactic
embedding (e.g.The cat liked that the dog liked that the mouse liked that the
girl saw the rat).

Srivastava et al. (2022) presented a benchmark of 204 language tasks (BIG-
bench) that are supposed to go �beyond the imitation game� and test true
linguistic generalization of language models. Some of these tasks are designed
to probe compositional semantics behavior, and can include reasoning, as in the
cause and e�ect task:

52 Cambridge Elements in Semantics

(18) For each example, two events are given. Which event caused the other?
choice: It started raining.
choice: The driver turned the wipers on.

Many other aspects of compositionality in language models are still waiting to
be explored and tested for.

3.2 Methods for compositionality

3.2.1 Levels of composition

Compositional models exist for all levels of linguistic structure. Formorphol-
ogy, there were di�erent attempts to use morpheme decomposition in computing
vector representations of derived words (Botha & Blunsom, 2014; Lazaridou,
Marelli, Zamparelli, & Baroni, 2013; Luong, Socher, & Manning, 2013). Vector
based representations are thereby learned for individual morphemes. Soricut and
Och (2015) combines a simple composition model with morphology induction.
Most current NLP models do away with morphemes altogether. The simple and
e�cient fastText model (Bojanowski et al., 2017) approximates a word's vector
as the sum of its character n-gram embeddings: rather than simply using the
distribution of e.g.hipsteracross contexts, the system collects and sums the
distributions of n-grams of characters e.g.hips, ipst, pste, ster. The contrasts in
distributional informativeness ofhipsor stervs. ipst or pstemight e�ectively
approximate the e�ect of segmenting a word into morphemes. Another approach
is to divide words into some automatically determined segments which may
or may not correspond to morphemes. Multiple methods employed for such
segmentation are based on text compression and segment infrequent words
using a less linguistically transparent technique. The byte pair encoding method
(BPE), originally proposed for machine translation (Sennrich et al., 2015),
is now standard in general purpose pre-trained language models (e.g. GPT)
along with the alternative WordPiece method (Wu et al., 2016) adopted in
other models (e.g. BERT). At the same time, there is evidence suggesting that
morphologically-informed segmentation might outperform subword segmen-
tation (Hofmann, Pierrehumbert, & Schütze, 2021). Among subword-based
alternatives (including BPE but also others, e.g. Jinman, Zhong, Zhang, and
Liang 2020; Pinter, Guthrie, and Eisenstein 2017, fastText remains a robust
method for producing rare word vectors (Prokhorov, Pilehvar, Kartsaklis, Lio,
& Collier, 2019; Vuli¢ et al., 2020).

For phrase and sentence levelcomposition, various models were proposed
based on deep learning and other machine learning techniques. Originally,

Semantics and deep learning 53

many models relied on parse tree representations as input, and therefore featured
recursive composition that follows grammatical structure (S. Clark, Coecke, &
Sadrzadeh, 2008; Irsoy & Cardie, 2014; Le & Zuidema, 2015; Paperno, Pham,
& Baroni, 2014; Socher, Huval, Manning, & Ng, 2012; Socher et al., 2013, a.o.).
However, state of the art models such as BERT are instead trained end to end on
text data without explicit use of parsing.

The general principle of having the same composition model for all levels of
language structure up to the level ofdiscoursehas evolved as computational
models grew more sophisticated. It was already present in Latent Semantic
Analysis (Landauer & Dumais, 1997) in the simple form of vector addition.
Modern language models such as BERT and GPT employ a much more �exible
mechanism of self-attention that has the same cross-level coverage from tokens
up to monological or dialogical texts.

3.2.2 Theoretically simple models of composition

The additive model of composition

Assume that two items such as words that have vector representations are
combined. What is the vector representation of their combination? The simplest
approach to vector composition consists in adding up vectors of component
words together. Repeated addition e�ectively treats text as abag of words,
meaning that word order and syntactic structure is ignored; texts with the same
words in them are processed identically. Despite its simplicity, vector addition
is surprisingly e�ective and robust in practice. For example, the sum of high
quality word vectors outperformed more sophisticated approaches to vector
composition in the study of preposition ambiguity (Ritter et al., 2015). Vector
addition has been used as a method for arriving at meaning representations of
phrases, sentences, and even texts at least since Landauer and Dumais (1997).
More recently, sentence representations as summed contextualized token vectors
from Transformer-based models were suggested (Cer et al., 2018).

Additive composition is e�cient for a good reason. Ultimately, dimensions
of word vectors are used to predict in which contexts the word is likely to be
used; this is the objective of word embeddings and neural language models. This
means that values in word vectors translate into scores of statistical association
between words and their contexts, which are usually related to the Pointwise
Mutual Information (PMI) score (Levy & Goldberg, 2014):

%" � ¹F– 2º = log
?¹F– 2º

?¹Fº?¹2º
(3.1)

54 Cambridge Elements in Semantics

where?¹Fº– ?¹2º are probabilities of the word and the context and?¹F– 2º is
the probability of their joint occurrence. Under the idealizing assumption that
two words' associations with contexts don't interact non-trivially, it follows that
the sum of two word's PMI values for a given context approximates these two
words' combination's PMI for the same context. As a result, if vector dimensions
of words correspond to PMIs as they do in models like GloVe and skip-gram,
then the sum ®20A̧ ®A43approximates the distributional pro�le of the phrasered
car (Paperno & Baroni, 2016). If dimensions of®20Aindicate thatcar raises
the probability of context2 by 0 orders of magnitude, and dimensions of®A43
indicate thatred raises the probability of context2 by 1 orders of magnitude,
then the phrasered carplausibly raises the probability of context2 by 0 ¸ 1
orders of magnitude. This suggests additive vector composition as a strong
baseline to the extent that words' PMI scores are linear functions of their vector
dimensions. For models that don't include log transformation in the calculation
of association scores, as in Mitchell and Lapata (2010), pointwise multiplication
rather than addition is competitive.

Parametric approaches to vector composition

The additive model has clear practical advantages. However, its conceptual
issues are equally obvious. For instance, addition is e�ectively a bag-of-words
model, agnostic of word order and syntactic structure. Addition predicts the
exact same vectors for sentencesCats chase miceandMice chase cats.

This observation motivates various parametric approaches to vector com-
position. This means that the vector of the phrase includes not just vector
representations of the words involved, but also additional numeric parameters.
Such parameters can be learned from distributional properties of phrases that
can themselves be encoded in vectors. One simple parametric approach that
proved e�cient in di�erent evaluations such as Mitchell and Lapata (2010) is
weighted addition:

®�� = U®� ¸ V®� (3.2)

whereU andV are scalar factors. For example, phrase vector®A4320Acan be
computed by combining vectors for wordsred andcar with di�erent weights
(e.g.0•6 ®A43̧ 0•4 ®20A)

In Mitchell and Lapata's experiments, di�erent weight combinations were
estimated for di�erent types of phrases. the �rst component (adjective) received
a high weight in adjective-noun phrases while the second component (noun)

Semantics and deep learning 55

had a higher weight in noun-noun compounds. One problem of the weighted
addition is its monotonicity. If relations between vectors are expected to
be useful in predicting entailment relations between words and phrases, the
composition system should allow for di�erent monotonic properties of elements
in composition. For example, the determinersomemaintains the entailment
properties between nouns it combines with whileno reverts them; however, in
case of (weighted) addition relations betweensome dogvs.some animaland
no dogvs.no animalwould be characterized by the exact same linear o�set.
In contrast, richer models of composition allow for both monotonic and non-
monotonic computation, and more powerful transformer based large language
models discussed below are known to exploit context monotonicity (Bylinina
& Tikhonov, 2022; Jumelet, Denic, Szymanik, Hupkes, & Steinert-Threlkeld,
2021).

These issues of additive models of composition are addressed by richer
parametric models, which allow compositional combinations to proceed in
more di�erentiated, even idiosyncratic ways. Directly inspired by type-driven
semantic theory, the Lexical Function model (Baroni & Zamparelli, 2010) treats
one element in the phrase as a function and the other as its argument. The
functions in question are linear so composition reduces to the multiplication of
the argument vector by the function-speci�c matrix:

®�� = <0C¹ � º ®� (3.3)

An extension of the lexical function model to higher order functions includes
using multidimensional tensors in addition to matrices (Grefenstette, Dinu,
Zhang, Sadrzadeh, & Baroni, 2013). However, the increase in the number
of parameters brought about with the introduction of tensors renders such
compositional models increasingly impractical, motivating proposals such as
the Practical Lexical Function model (Paperno et al., 2014).

In contrast to Lexical Function and versions thereof, other highly parametric
approaches apply matrix weights to both elements of the composition and related
highly parametric approaches (Dima et al., 2019; Guevara, 2011; Socher et al.,
2012, 2013):

®�� = <0C1 ®� ¸ <0C2 ®� (3.4)

where the matrices<0C1– <0C2 can be speci�c for the lexical items�– (combined,
or be shared across lexical items.

Some studies, such as Gamallo (2021), have also experimented with a
somewhat di�erent compositional approach based on syntactic dependencies

56 Cambridge Elements in Semantics

rather than constituent structure.
The problem with all the parametric approaches to vector composition is in

scaling up to diverse use cases on arbitrarily complex examples. End-to-end
approaches such as large language models work better for most tasks. They are
not only more robust as they scale up rather easily to bigger input data, but they
also do not depend on parsing quality or e�ciency, all while sharing parameters
of composition across di�erent types of constructions.

3.2.3 Composition in SOTA Transformer models

Attention-based composition

Modern computational models based on the Transformer architecture have at
their heart the so-called self-attention mechanism, combined with feedforward
neural network sublayers. There are many di�erentintances of both self-attention
and feedforward layers in multilayer Transformers.

In practice, this means that Transformers are naturally adapted to execute
the simple and relatively interpretable vector compositon strategies discussed
above. Both self-attention and feedforward steps include vector addition and
input multiplication by a matrix. As such, Transformers can easily emulate
(weighted) addition, (practical) lexical function, and other simple methods based
on weighted sums and weight matrix multiplication.

Beyond Attention: Prompting for few-shot learning

The bottleneck of highly parametrized compositional distributional semantic
models is the amount of data required for successful learning. For instance,
in a Lexical Function model built upon=-dimensional word vectors (realistic
case:= = 300), an attributive adjective likered is represented via=2 parameters
(realistic case:90000). Learning compositional semantics therefore requires a
wealth of data to estimate this huge number of parameters for a single adjective.
In constrast, human learners need only a small number of examples to learn
a new adjective and use it correctly with di�erent nouns. Natural language
compositionality can therefore be seen as a skill crucially involvingfew shot
learning. Indeed, few shot learning behavior characterizes current large language
models (Brown et al., 2020; Patel et al., 2022). In case of the few shot evaluation
of large language models, they are not �ne-tuned on the task, but are provided a
few examples of the ful�lled task as context.

necktie -> cravate

Semantics and deep learning 57

wave -> onde

Within that context, the model is tasked with continuing yet another example.

man -> _

The few shot behavior of large pre-trained language models has been
speci�cally demonstrated on presumably compositional tasks, such as question
answering and unsupervised machine translation. The few shot behavior of
large language models is not yet fully understood. Chan et al. (2022) argue that
both the Transformer architecture and the structure of natural language corpora
are necessary for language models to develop the few shot learning behavior.
Olsson et al. (2022) argue for a causal mechanism they call �induction heads", a
speci�c way in which an attention mechanism can explain the few shot learning
behavior of Transformer.

Beyond Attention: chain of thought

Finally, related to few shot learning capacity is the so calledchain-of-thought
approach in SOTA NLP. Under the chain of thought, the model is given not only
example input-output pairs as context, but also the intermediate steps through
which one can arrive at the output.

The following example taken from the Google AI blog33illustrates the
chain-of-thought prompting at work:

Example input

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls.
How many tennis balls does he have now?

Example output

Roger started with 5 balls. 2 cans of 3 tennis balls
each is 6 tennis balls. 5+6 = 11. The answer is 11.

In the example above, only the last sentence of the output constitutes the
answer to the question. The rest of the output only helps show the model to

33https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling
-to.html

58 Cambridge Elements in Semantics

arrive at the �nal answer. Indeed, chain of thought prompting improves the few
shot learning of Transformer models on tasks that involve multiple reasoning
steps.

Ability for step by step computation is useful not only for reasoning but
also for complex semantic composition. Indeed, D. Zhou et al. (2022) propose
least-to-most, a custom version of the chain-of-thought technique which allows
GPT-3 to achieve good generalization on SCAN from just 14 examples, as well
as two other simple compositional tasks. Drozdov et al. (2022) show further
thatleast-to-mostalso helps in more realistic compositional tasks such as COGS
and SCAN.

3.3 Interim Conclusion

The problem of compositionality in neural systems has been seriously
addressed long before the present-day Transformer systems. At the same time
when the �rst recurrent neural networks were designed to model incremental
sequence processing, Smolensky (1990) tried to design a principled way of
neural treatment of compositionality using so called �ller/role decomposition,
with �nal representations derived from combinations of vector representations
of elements combined (`�llers') and their roles in the structure. More recently,
Smolensky and colleagues attempted to establish such �ller-role structures
in modern trained recurrent neural networks (McCoy, Linzen, Dunbar, &
Smolensky, 2019) and tried to enhance Transformers with explicit �ller-role
representations (Schlag et al., 2019).

There is an active ongoing research on compositional generalization using
vector based and neural network systems. This includes methods for helping
achieve compositional goals (e.g. few shot prompting and chain of thought
reasoning), research on testing compositional generalization (e.g. development
datasets like COGS), as well as interpretability of the composition process
()e.g.merullo2023mechanism. Ideally, a successful system should ultimately
satisfy both behavioral and representational expectations. This should include
making correct predictions on examples that require compositional understand-
ing of language (here some systems already show promising behaviour, e.g. for
SCAN), but also using vector representations that make semantic composition
interpretable; the latter is a more remote goal, although analyses like the one by
Merullo et al. already go in this direction.

From di�erent strands of this research emerges ample evidence that the nature
and the order of presentation of training data have a signi�cant e�ect on the
compositional behavior of trained neural models. In the experiments by Paperno

Semantics and deep learning 59

(2022), curriculum (progression of training examples from simpler to more
complex) proves essential for compositional generalization of recurrent neural
networks. Chan et al. (2022) show that statistical distributions of data in natural
corpora enables essentially compositional few-shot behavior of language models.
Akyürek and Andreas (2022); Andreas (2019a) propose and test methods of
generating additional training data (data augmentation) which help neural
models arrive at compositional behavior. In their experiments, improvements
are observed for various tasks that involve compositional behavior, including
language modeling, SCAN, COGS, and other tasks.

4 Grounding: Language and Vision

So far, we have mainly been discussing capabilities of deep learning mod-
els when it comes to meaning-related tasks that are de�ned on text � and,
consequently, can be formulated for text-only models. Let's now take a step
back and return to the theoretical debate we introduced in Section 1.2: Can
text-based models develop representations that contain semantic information,
given that such models lack an explicit separate, non-linguistic, space to ground
language in? We concluded, both on principled grounds and based on empirical
results of text-only models' behavior, that aspects of linguistic semantics are
inferrable from non-grounded text. Are models with non-grounded meaning
representations qualitatively inferior and defective semantically when compared
to models that are trained to connect linguistic representations to non-linguistic
objects and structures?

While for some researchers the answer is a de�nite yes (Bender & Koller,
2020) and for others it's less obvious (Merrill et al., 2022; Piantadosi &
Hill, 2022; Potts, 2020), there is little doubt that information from additional
modalities at least has potential to enrich models' meaning representations. This
section explores such grounding: we will focus on models and tasks that involve
language in combination with additional, non-linguistic, information.

Linguistic data can be grounded in a variety of di�erent ways: the models
can be connected to knowledge bases explicitly storing fragments of world
knowledge (L. Du, Ding, Xiong, Liu, & Qin, 2022; Guu, Lee, Tung, Pasupat, &
Chang, 2020; Verga, Sun, Soares, & Cohen, 2020); texts can be associated with
visual data (L. H. Li, Yatskar, Yin, Hsieh, and Chang 2019; Lu, Batra, Parikh,
and Lee 2019; Tan and Bansal 2019 a.o.), or even some representation of smell
(see an olfactory model Kiela, Bulat, and Clark 2015).

Reviewing all existing types of grounding in deep learning models is hardly
possible within this survey, so we focus on just one type of grounding here:

