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The recent successes of neural networks producing human-like language have captured
the attention of the general public. They have also caused significant stir in cognitive
science, with many researchers arguing that classical puzzles about human cognition and
challenges to artificial intelligence are being solved by neural networks. An article recently
published in Nature [1], covered by the journal’s media department as a “breakthrough” in
AI, argues that a particular machine-learning technique has succeeded where others failed:
to match and perhaps explain the human ability to reverse engineer generative processes
(rules) based on few examples. We demonstrate that these conclusions are premature.
Among other results, we found that the model displays different rates of generalization
success depending on what labels are attached to what meanings. This is in sharp contrast
with the fact that there are no linguistic or broader cognitive benefits from calling a carbon-
ated beverage “pop” or “soda,” nor from calling the objects of study of dendrology “trees”
or “Bäume.” Crucially, our examples of failures lie squarely within the narrow task that the
article focuses on, calling into question the ambitious conclusions and the bullish media
coverage the article received.

1 Failures of systematic generalization

One stated central goal of Lake and Baroni’s (L&B) is to address Fodor and Pylyshyn’s
(F&P) negative outlook on the prospects of neural networks as models of higher cognitive
faculties [2]. The gist of this argument from systematicity is that many distinctively human
faculties display biconditional interdependencies: a human has faculty X precisely to the
extent that they have faculty Y . One has the ability to understand “Ann introduced Bill to
Claire” precisely to the extent that one can understand “Bill introduced Claire to Anne,”
“Claire introduced Dan to Ed,” and so forth. As one of the arguments goes, due to their
high sensitivity to the training data, neural networks cannot guarantee systematicity in this
sense, while symbolic systems would have to go out of their way to be unsystematic.

There are legitimate reasons to be critical of F&P’s arguments, both regarding the prob-
lem with neural networks and the virtues of classical symbolic systems [3, 4]. Since L&B
manifestly accept the challenge, we take it as fair to assess their results through the lens
of classical systematicity, whatever its flaws. Moreover, some neural networks (curiously,
trained in a non-traditional way) were already known to be capable of classical systematic-
ity [5]. This would not have surprised F&P: their question was whether purely associative
learning can guarantee systematicity, not whether there exist particular neural networks
that are systematic. Consequently, the importance of L&B’s results must be that their
meta-learning technique indeed guarantees systematic learning.
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With these considerations in mind, we took a close look at the “gold grammar” defined
by L&B. The gold grammar is a blueprint for languages where the rules are all the same,
but different labels and colors are used. We also evaluated similar language blueprints with
small changes to the rules. We found failures of systematicity that we classify into three
levels, in increasing (qualitative) abstraction. Level one failures are within-grammar fail-
ures, where the model succeeds for a string but fails for a minor modification of it. Level
two considerations look across instantiations of a grammar blueprint at correlations be-
tween network performance and properties of grammars which oughtn’t to matter, specif-
ically what labels (words) are mapped to what colors (meanings). At level three we look
across grammar blueprints at the learning profiles for different rules. Our observations
here concern the algebraic model, which had the best generalization performance, but
these problems are present with the other variants.

Below, we use ci both to represent a specific color and the word for that color. c1, c2,
c3 are the colors that were used with function words in training examples and ch is the
held-out color used to test generalization. The three rules of the gold grammar are “after”
(flip two strings), “thrice” (repeat a color three times) and “surround” (surround a color
with two instances of another color). For example, “c1 surround ch” can be instantiated in
a particular language as dax kiki fep. This string would have the schematic meaning
c1chc1.

1.1 Level one failures

The article reports several successfully generalized strings, but we found the model fails
for strings of comparable complexity. Thus, the models do not display compositionality, a
central feature of systematicity in natural language.

A striking example is the schema “c1 surround ch after ch thrice,” which is incorrectly
predicted in many grammars (see Table 1 and the supplementary materials). Importantly,
this schema is a very minor variation on one tested in the article and successfully learned
within the same grammars that fail our variant: “ch surround ch after ch thrice.” The two
schemata are different special cases of “x surround y after z thrice,” showing that perfor-
mance differs dramatically between equally valid combinations of x, y, z (ch, ch, ch vs. c1,
ch, ch). This is akin to a human understanding the English sentence “Ann introduced Bill
to Claire” while being stumped by “Dan introduced Claire to Anne.”

1.2 Level two failures

The model is sensitive to precisely which labels (words) are mapped to which meanings
(rules and colors), with different mappings producing different performances. Thus, the
networks do not conform to the arbitrariness of linguistic signs, whereby no particular
benefits or drawbacks are created by American English “sofa” vs. (Old) Canadian English
“chesterfield.”

For example, the same schema discussed above (“c1 surround ch after ch thrice”) shows
different learning successes across grammars, being correctly generalized for some label-
color pairs and not for others (Table 1). Additionally, we found that the model has different
success rates on the schema, depending on precisely which color is held out (Table 2).

1.3 Level three failures

We found that the network is sensitive to what it saw at the meta-learning phase. The meta-
learning protocol only exposed the networks to rules whose outputs had lengths between
2 and 8 words, and we found that they could not learn a rule that was a trivial extension,
violating this 2–8 constraint. Specifically, while the model can learn a function that takes
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Count across label-color pairs
Output Static order Shuffled order

ch ch ch c1 ch c1 1993 2785
c1 ch ch ch ch c1 1045 934
ch ch ch ch c1 c1 1282 598
ch ch ch ch c1 ch 0 3

Table 1: Four very different outputs for the same schema “c1 surround ch after ch thrice,”
with counts across label-color pairings. The first is the normatively correct output. The
second is a possible output if one parses the string as “x surround (y after z thrice),” though
technically this was unintended with the gold grammar, as “surround” examples only ever
take two primitives (color-denoting labels) as arguments. The third and fourth aren’t ac-
ceptable outputs under any parse. Static order vs. shuffled order concerns the order in
which the study items were presented to the network. With static order of presentation the
network’s accuracy on this schema is at most 70%, with shuffled order at most 86%. The
different results depending on order of presentation are instructive, as they indicate their
own kind of non-systematic fragility.

Constant presentation order Shuffled presentation order
Held out color % correct SEM % correct SEM

Blue 56.11 1.8506 59.72 1.8291
Green 62.08 1.8094 73.47 1.6464
Pink 38.47 1.8144 67.36 1.7487
Purple 50.28 1.8647 69.03 1.7244
Red 53.75 1.8594 75.83 1.5965
Yellow 16.11 1.3710 41.39 1.8368

Table 2: Accuracy on held-out-label-color combinations for the string “c1 surround ch after
ch thrice.”
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Figure 1: Learning functions that take an argument x and return n repetitions of x. Gener-
alize strings are the original test sequences where we replace thrice by n. Copy shows the
model’s ability to repeat sequences that are provided as study examples (i.e. lookup). The
figure shows confidence intervals but the distribution is has so little variation that they are
hard to see.

one argument and repeats it n times for 2 ≤ n ≤ 8, it couldn’t learn an analogous rule that
repeats its argument, say, 9 times. This shows that the model isn’t a systematic learner,
instead, it is entirely beholden to what precisely appeared in the meta-learning phase. Ad-
ditionally, we found that performance within the 2–8 length bounds drops as the output gets
longer, mirroring the frequency with which functions were encountered at meta-learning
(Figure 1, note that performance drops even for the simple copying task where the query
string was one that occurred in the study set).

2 Discussion and conclusions

We found three different levels of failures of systematic generalization in L&B’s algebraic
network. We conclude that, while the network was indeed successful at later learning on
the basis of extremely small datasets, these successes cannot be described as instances of
systematic generalization, so that F&P’s challenge is in fact not addressed by L&B’s MLC
protocol, in its current shape.

One counter to our conclusion, consonant with the methodology of the article concern-
ing behavioral data from humans, is to propose that neural networks only need to be as
systematic as humans are in performance. There are all manner of reasons why a particular
human in a particular circumstance might behave differently on the basis of the two stimuli
“Ann introduced Bill to Claire” and “Claire introduced Dan to Ed.” Having had an unpleas-
ant experience with someone named Bill might do the trick. Cognitive science recognizes
that a faculty may be systematic, while particular circumstances of use of a faculty might
not show it.

Now, we strongly suspect that the failures of systematicity we presented here would
not be observed in humans. Authors and readers might not share our expectation, but we
submit that our findings pose an important challenge to the conclusions of the target article
nonetheless. Because the puzzle the article ostensibly attempts to solve concerns compe-
tence, one of two positions would have to be argued for. The first option is to accept the
classical points about systematicity, despite performance complications, and to somehow
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investigate the competence of MLC networks, to show that it is systematic in the required
sense [6]. At points, the authors imply that the algebraic model is a model of competence,
while the models supplemented with heuristics and human performance data would be
models of performance. Yet, our discoveries here concern precisely the algebraic model,
and show that on it its face it is not systematic. The second option is to reject the classical
arguments: perhaps classical systematicity is actually not a property of human cognition, or
competence is too idealized a notion to be of real interest, or any number of other responses
that argue F&P’s challenge away. The points made by the authors about systematicity in
the classical sense would be moot, and the interest of the work would shift from a strong
claim about the human-like generalization powers of MLC networks to the far more mod-
est point about successes producing human-like performance partly on the basis of human
performance data, which we haven’t the space to comment on properly in this brief reply.

However, neither of these options is pursued in the article, which instead positions itself
clearly and boldly as a solution to the systematicity challenge. Consequently, our conclu-
sions stand, calling into question the success of the authors’ MLC technique, irrespective
of behavioral experimentation investigating precisely how humans fare with the failures of
systematicity we document here.
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