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Abstract
Natural language syntax yields an unbounded array of hierarchically structured expres-
sions. We claim that these are used in the service of active inference in accord with
the free-energy principle (FEP). While conceptual advances alongside modelling and
simulation work have attempted to connect speech segmentation and linguistic com-
munication with the FEP, we extend this program to the underlying computations
responsible for generating syntactic objects.Weargue that recently proposedprinciples
of economy in language design—such as “minimal search” criteria from theoretical
syntax—adhere to the FEP. This affords a greater degree of explanatory power to the
FEP—with respect to higher language functions—and offers linguistics a grounding in
first principles with respect to computability. While we mostly focus on building new
principled conceptual relations between syntax and the FEP, we also show through
a sample of preliminary examples how both tree-geometric depth and a Kolmogorov
complexity estimate (recruiting a Lempel–Ziv compression algorithm) can be used to
accurately predict legal operations on syntactic workspaces, directly in line with for-
mulations of variational free energy minimization. This is used to motivate a general
principle of language design that we term Turing–Chomsky Compression (TCC). We
use TCC to align concerns of linguists with the normative account of self-organization
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furnished by the FEP, by marshalling evidence from theoretical linguistics and psy-
cholinguistics to ground core principles of efficient syntactic computationwithin active
inference.

Keywords Active inference · Free-energy principle · Language · Lempel–Ziv ·
Kolmogorov complexity · Compression

Implementational models of language must be plausible from the perspective of neu-
roanatomy (Embick & Poeppel, 2015), but they must also be plausible from the
perspective of how biophysical systems behave. We will argue that the structuring
influence of the free-energy principle (FEP) can be detected in language, not only
via narrative (Bouizegarene et al., 2020), interpersonal dialogue (Friston et al., 2020),
cooperative/intentional communication (Vasil et al., 2020) and speech segmentation
(Friston et al., 2021), but also at the more fundamental level of what linguists consider
to be basic structure-building computations (Adger Forthcoming, Berwick & Stabler,
2019; Chomsky, 1949, 1951, 1956, 1959, 2021a, b, c, 2023).

Natural language syntax yields an unbounded array of hierarchically structured
expressions. We argue that many historical insights into syntax are consistent with the
FEP—providing a novel perspective under which the principles governing syntax are
not limited to language, but rather reflect domain-general processes. This is consistent
with a strainwithin theoretical linguistics that explores how syntactic computationmay
adhere to “general principles that may well fall within extra-biological natural law,
particularly considerations of minimal computation” (Chomsky, 2011, p. 263), such
that certain linguistic theories might be engaging with general properties of organic
systems (Chomsky, 2004, 2014). Here, we consider the idea that many aspects of natu-
ral language syntax may be special cases of a variational principle of least free-energy.
To this end, we examine whether a complexity measure relevant to formulations of
free-energy—namely,Kolmogorov complexity (Hutter, 2006;MacKay, 1995;Wallace
& Dowe, 1999)—relates to legal syntactic processes.

While the FEP has a substantial explanatory scope, across a large range of cognitive
systems, it can also be seen as a method or principle of least action for multi-
disciplinary research (Ramstead et al., 2021), in much the same way that the notion of
economy is typically entertained in linguistics as a programmatic notion (Chomsky,
1995). The FEP describes the optimal behavior of an organism interacting with the
environment. The FEP itself has been argued to be more of a conceptual-mathematical
model for self-organizing systems (for some, it is a “generic” model; Barandiaran &
Chemero, 2009), or a guiding framework (Colombo & Wright, 2021). Thus, when
we argue that natural language syntax “complies” with the FEP, this is not to imply
that the FEP necessarily bears any specific, direct predictions for linguistic behaviour.
Rather, it motivates the construction of conceptual arguments for how some property
of organic systems might be seen as realizing the FEP. Hence, we will mostly focus
here on presenting a series of principled conceptual relations between the FEP and
natural language syntax, with our goal being to promote more systematic empirical
research in the near future, given the space required to fully elaborate conceptual sym-
pathies between two mature scientific fields with extensive histories. Nevertheless,
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after reviewing some of these general sympathies, we will aim to defend a specific
analytic approach to the empirical assessment of syntacticmodels.Wewill suggest that
syntactic derivations minimising algorithmic complexity are licensed over those that
result in structures and derivational paths that are less algorithmically compressible.

We begin by summarising the FEP, and describe how syntactic principles are con-
sistent with it. We consider how the FEP is a variational principle of “least action”,
such as those that describe systemswith conserved quantities (Coopersmith, 2017).We
then review key observations from linguistics that speak to the structuring influence
of computational efficiency, involving “least effort” and “minimal search” restrictions
(Bošković & Lasnik, 2007; Gallego & Martin, 2018; Larson, 2015), viewing lan-
guage as a product of an individual’s mind/brain, following the standard ‘I-language’
(Chomsky, 1986, 2000) perspective in generative linguistics (i.e., ‘internal’, ‘indi-
vidual’, ‘intensional’). After modeling the complexity of postulated minimal search
procedures—versus their ungrammatical alternatives across a small but representative
number of exemplar cases—we propose a unifying principle for how the goals of the
FEP might be realised during the derivation of syntactic structures, which we term
Turing–Chomsky Compression (TCC). TCC provides a formal description of how
the basic mechanisms of syntax (i.e., the merging of lexical items into hierarchically
organized sets) directly comply with the FEP. We conclude by highlighting directions
for future work.

1 Active inference and the free-energy principle

Before we evaluate any work pertaining to linguistic behaviour, this section introduces
key elements of the FEP that motivate its application to language.

1.1 The free-energy principle

The FEP has a long history in theoretical neuroscience (see Friston, 2010 for a review).
It states that any adaptive change in the brain will minimise free-energy, either over
evolutionary time or immediate, perceptual time (Ramstead et al., 2018). Free-energy
is an information-theoretic quantity and is a function of sensory data and brain states:
in brief, it is the upper bound on the ‘surprise’—or surprisal (Tribus, 1961)—of sen-
sory data, given predictions that are based on an internal model of how those data were
generated. The difference between free-energy and surprise is the difference (specified
by the Kullback–Leibler divergence) between probabilistic representations encoded
by the brain and the true conditional distribution of the causes of sensory input. This
is evident in the following equation, which specifies variational free energy (F) as the
negative log probability of observations (õ) under a generative model (i.e., ‘surprise’)
plus the Kullback–Leibler divergence (DKL) between the approximate posterior dis-
tribution and the true posterior distribution (where Q indicates posterior beliefs, ŝ
indicates the states in the generative model, andP indicates the probability under the
internal model):

F = − ln P(õ) + DK L [Q(s̃)||P(s̃|õ)] (1)
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Unlike surprise itself, variational free energy can be evaluated (for a detailed expla-
nation, see Friston et al., 2017a). Under simplifying assumptions, free-energy can
be considered as the amount of prediction error; for a mathematical comparison, see
Friston et al. (2017b). Minimising free energy minimises surprise, and is equivalent to
maximising the evidence for the internal model of how sensory data were generated.
By minimising free-energy, the brain is essentially performing approximate Bayesian
inference. By reformulating variational free energy—in a way that is mathematically
equivalent; see Penny et al. (2004), Winn and Bishop (2005)—we see that free-energy
can be considered as a trade-off between accuracy and complexity, whereby the best
internal model is the one that accurately describes the data in the simplest manner
(where EQ indicates the expected value, and the other variables are the same as those
defined above):

F = EQ[ln Q(s̃) − ln P(õ|s̃) − ln P(s̃)]
= EQ[ln Q(s̃) − ln P(s̃|õ) − ln P(õ)]
= DK L [Q(s̃)||P(s̃|õ)]

︸ ︷︷ ︸

relative entropy

− ln P(õ)
︸ ︷︷ ︸

log evidence

= DK L [Q(s̃)||P(s̃)]
︸ ︷︷ ︸

complexi ty

− EQ[ln P(s̃|õ)]
︸ ︷︷ ︸

accuracy

− ln P(õ)] (2)

Because the Kullback–Leibler divergence can never be less than zero, the variational
free energy provides an upper bound on negative log evidence: equivalently, the neg-
ative free energy provides a lower bound on log evidence; known as an evidence
lower bound (ELBO) in machine learning (Winn & Bishop, 2005). The final equality
shows a complementary decomposition of variational free energy into accuracy and
complexity. In effect, it reflects the degree of belief updating afforded by some new
sensory data; in other words, how much some new evidence causes one to “change
one’s mind”. A good generative model—with the right kind of priors—will minimise
the need for extensive belief updating and thereby minimise complexity.

The complexity part of variational free energy will become important later, when
we will be evaluating the complexity of syntactic processes using a measure derived
both in spirit and mathematical heritage from the foundations of the FEP. To present
some initial details about this, consider how complexity also appears in treatments of
universal computation (Hutter, 2006) and in the guise ofminimummessage or descrip-
tion lengths (Wallace & Dowe, 1999). Indeed, in machine learning, variational free
energy minimisation has been cast as minimising complexity—or maximising effi-
ciency in this setting (MacKay, 1995). One sees that same theme emerge in predictive
coding—and related—formulations of free energy minimisation, where the underly-
ing theme is to compress representations (Schmidhuber, 2010), thereby maximising
their efficiency (Barlow, 1961; Linsker, 1990; Rao & Ballard, 1999). We will return
to these topics below when we begin to formalise features of natural language syntax.

Lastly, the FEP can also be considered from the perspective of a Markov blanket
(see Kirchhoff et al., 2018; Palacios et al., 2020; Parr et al., 2020 for detailed expla-
nation), which instantiates a statistical boundary between internal states and external
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states. In other words, internal (e.g., in the brain) and external (e.g., in the exter-
nal world) states are conditionally independent: they can only influence one another
through blanket states. The blanket states can be partitioned into sensory states and
active states. External states affect internal states only through sensory states, while
internal states affect external states only through active states (Murphy, 2023a). The
implicit circular causality is formally identical to the perception–action cycle (Fuster,
2004). Under previous accounts (Friston et al., 2017a, 2017b), the brain can minimise
free-energy either through perception or action. The former refers to optimising (i.e.,
using approximate Bayesian inference to invert) its probabilistic generative model
that specifies how hidden states cause sensory data; in other words, inferring the cause
of sensory consequences by minimising variational free energy. The latter refers to
initiating actions to sample data that are predicted by its model—which we turn to
next.

1.2 Active inference

The enactive component of active inference rests on the assumption that action is
biased to realize preferred outcomes.Beliefs aboutwhich actions are best to pursue rely
on predictions about future outcomes, and the probability of pursuing any particular
outcome is given by the expected free energy of that action. Expected free energy (G)
can be expressed as the combination of extrinsic and epistemic value (Friston et al.,
2017b), where π is a series of actions (i.e., the policy) being pursued, τ is the current
time point, and the other variables are the same as those defined above:

G(π) =
∑

t

G(π, τ )

G(π, τ ) =EQ[ln Q(s̃|π) − ln Q(s̃τ |oτ , π) − ln P(õτ )]
= EQ[ln Q(s̃|π) − ln Q(s̃τ |oτ , π)]

︸ ︷︷ ︸

(negative) mutual inf ormation

− EQ[ln P(õτ )]
︸ ︷︷ ︸

expected log evidence

= EQ[ln Q(oτ |π) − ln Q(oτ |s̃τ , π)]
︸ ︷︷ ︸

(negative) epistemic value

− EQ[ln P(õτ )]
︸ ︷︷ ︸

extrinsic value

(3)

Extrinsic value is the expected evidence for the internalmodel under a particular course
of action, whereas epistemic value is the expected information gain; in other words,
the extent a series of actions reduces uncertainty.

Notice that the expected versions of Kullback–Leibler divergence and log evidence
in the free energy A2) now become intrinsic and extrinsic value respectively (Eq. 3).
As such, selecting an action to minimise expected free energy reduces expected sur-
prise (i.e., uncertainty) in virtue of maximising the information gain while—at the
same time—maximising the expected log evidence; namely, actively self-evidencing
(Hohwy, 2016, 2020). When applied to a variety of topics in cognitive neuroscience,
active inference has been shown to predict human behaviour and neuronal responses;
e.g., Brown et al. (2013), Friston et al., (2017a, 2017b), Friston (2019), Smith et al.
(2019).
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As will soon become clear, we will be using these observations concerning com-
plexity to motivate a specific application of these ideas to natural language syntax,
utilizing ameasurement of algorithmic complexity that shares amathematical heritage
with the FEP, as outlined here.

1.3 Belief updating

Belief updating refers to a process by which free energy is minimised. By specifying a
process theory that explains neuronal responses during perception and action, neuronal
dynamics have previously been cast as a gradient flow on free energy (known as
variational free energy in physics, introduced in Feynman, 1972; see Hinton & Zemel,
1994); we refer the reader to Friston et al. (2017b) for a treatment of neuronal message
passing and belief propagation. That is to say, any neural process can be formulated as a
minimisation of the same quantity used in approximate Bayesian inference (Andrews,
2021;Hohwy, 2016).Weprovide an example of the computational architecture implied
by this formulation of belief updating in the brain (Fig. 1). This illustrative example
is based upon a discrete state space generative model, where the equations describe
the solutions to Bayesian belief updating of expectations pertaining to hidden states,
policies, policy precision and parameters.

In short, the brain seeks tominimise free energy,which ismathematically equivalent
tomaximisingmodel evidence. This view of neuronal responses can be conceivedwith
respect to Hamilton’s principle of least action, whereby action is the path integral of
free energy.

1.4 Previous applications

Applying active inference to language relies on finding the right sort of generative
model, and many different structures and forms of generative models are possible.
Most relevant to the current application, deep temporal models accommodate a nesting
of states that unfold at different temporal scales. Since language output is inherently
temporal, this leads to the question of how to map hierarchical structures onto serial
outputs (Epstein et al., 1998), and models that are deep in time allow us to deconstruct
associated nested structures.

Recently, a deep temporal model for communication was developed based on a sim-
ulated conversation between two synthetic subjects, showing that certain behavioural
and neurophysiological correlates of communication arise under variational message
passing (Friston et al., 2020). The model incorporates various levels that operate at
different temporal scales. At the lowest level, it specifies mappings among syntactic
units that, when combined with particular semantic beliefs, predict individual words.
At a higher level (i.e., longer temporal scales), the model contains beliefs about the
context it is in, which specifies the syntactic structure at the level below. This model
is congruent with core assumptions from linguistics concerning the generative nature
of language. Specifically, elementary syntactic units provide belief structures that are
used to reduce uncertainty about the world, through rapid and reflexive categorization
of events, objects and their relations. Then, sentential representations can be thought of
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Fig. 1 Schematic overview of belief updates for active inference under discrete Markovian models. The
left panel lists the belief updating equations, associating various updates with action, perception, policy
selection, precision and learning.The left panel assigns the variables (sufficient statistics or expectations) that
are updated to various brain areas. This attribution serves to illustrate a rough functional anatomy—implied
by the form of the belief updates. In this simplified scheme, we have assigned observed outcomes to visual
representations in the occipital cortex and updates to hidden states to the hippocampal formation. The
evaluation of policies, in terms of their (expected) free energy, has been placed in the ventral prefrontal
cortex. Expectations about policies per se and the precision of these beliefs have been attributed to striatal and
ventral tegmental areas to indicate a putative role for dopamine in encoding precision. Finally, beliefs about
policies are used to create Bayesian model averages over future states, which are fulfilled by action. The
red arrows denote message passing. In brief, the parameters of the generative model correspond to matrices
or arrays encoding the likelihood A, prior state transitions B, and initial hidden states D. F corresponds
to the free energy of each policy and G corresponds to the expected free energy, which is weighted by a
precision or softmax parameter γ that is usually attributed to dopaminergic neurotransmission. See Friston
et al. (2017a) for further explanation of the equations and variables

as structures designed (partially) to consolidate and appropriately frame experiences,
and to contextualise and anticipate future experiences. The range of parseable syn-
tactic structures available to comprehenders provides alternate hypotheses that afford
parsimonious explanations for sensory data and, as such, preclude overfitting. If the
complexities of linguistic stimuli can be efficiently mapped to a small series of regular
syntactic formats, this contributes to the brain’s goal of restricting itself to a limited
number of states. Essentially, the active inferencemodels for linguistic communication
previously developed can generally capture interactional dynamics between agents.
We take as our point of departure here the question of what needs to happen within a
single agent’s language system. Meanwhile, the psycholinguistic validity and polyno-
mial parseability of minimalist ‘bare phrase structure’ grammars have recently been
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demonstrated (Torr et al., 2019), but little else has been said of how to motivate the
fundamentals of syntactic theory from extra-linguistic computational constraints.

Before moving forward, we stress here that we will be working within the frame-
work of theoretical linguistics (which deals with derivational stages of word-by-word,
element-wise operations that underlie sentences), and not a framework such as cor-
pus linguistics (which deals with the output of the generative/derivational process).
Questions we raise here therefore cannot be addressed by consulting large corpora,
but instead require investigation of incremental computational steps that ultimately
appear to be responsible for the complex forms of human language behavior studied
by sociolinguists, corpus linguists and historical linguists. Relatedly, embracing the
traditional distinction between competence and performance, our focus will be on the
former (the mental formatting and generation of linguistic structure), and not on the
range of complex cognitive processes that enter into the use of language in a specific
context.

2 Computational principles and syntactic hierarchies

2.1 A system of discrete infinity

How can the FEP contribute to our understanding of syntactic computation? Most
immediately, it provides fundamental constraints on the physical realisation of a com-
putational system. Consider first the three principles in classical recursive function
theorywhich allow functions to compose (Kleene, 1952): substitution; primitive recur-
sion; and minimisation. These are all designed in a way that one might think of as
computationally efficient: they reuse the output of earlier computations. Substitution
replaces the argument of a function with another function (possibly the original one);
primitive recursion defines a new function on the basis of a recursive call to itself,
bottoming out in a previously defined function (Lobina, 2017); minimisation (also
termed ‘bounded search’) produces the output of a function with the smallest num-
ber of steps (see also Piantadosi, 2021, for whom human thought is essentially like
Church encoding). More broadly, we note that free energy minimization—by con-
struction—entails Bayesian inference, which in turn is a computational process, and
so the FEP entails computationalism (Korbak, 2021) and at least a type of (basic) com-
putational architecture for language we assume here (but see Kirchhoff & Robertson,
2018). Examining some core principles of recursion, natural language clearly exhibits
minimisation, while binary branching of structures (Radford, 2016) limits redundant
computation, reducing the range of possible computations. Even limitations on short-
termmemory have been hypothesized to contribute to the efficiency of memory search
(MacGregor, 1987).

Syntax involves the construction of binary-branching hierarchically organized sets
via the operation MERGE, taking objects from the lexicon or objects already part
of the workspace (Marcolli et al., 2023). For example, given the set {X, Y}, we
can either select a new lexical object and MERGE it, to form {Z, {X, Y}}, or we
can select an existing object and MERGE it to the same workspace, to form {X,
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{X, Y}}.1 MERGE serves a similar role to an elementary function, as in the theory
of computability (e.g., the zero function, the identity function), in that it is meant
to be non-decomposable. Putting many subsidiary technical details aside, these sets
are then ‘labeled’ and given a syntactic identity, or a ‘head’ (Frampton & Gutmann,
1999; Leivada et al., 2023; Murphy et al., 2022, 2023; Murphy, 2015a, b, c, 2023a;
Woolnough et al., 2023), based on which element is most structurally prominent and
easiest to search for (i.e., Z in the structure {Z, {X, Y}}).2 Labeling takes place when
conceptual systems access the structures generated by syntax. This occurs at distinct
derivational punctuations based on the configuration and subcategorization demands
of the lexical items involved (e.g., in many instances subjects seem to be featurally
richer than objects, and provide the relevant feature for the label; Longobardi, 2008).
For example, in the case of head-complement structures this is done immediately after
MERGE (Bošković, 2016). MERGE can also derive some set-theoretic properties of
linguistic relations, such as membership, dominate and term-of , as well as the derived
relation of c-command (= sister of) which is relevant for interpreting hierarchical
relations between linguistic elements (Haegeman, 1994). These also appear to be the
simplest possible formal relations entertained, potentially indexing a feature of organic
computation that adheres closely to criteria of simplicity (Chomsky, 2022).

One might also think of MERGE as physical information coarse-graining (i.e., the
removal of superfluous degrees of freedom in order to describe a given physical system
at a different scale), with the core process of syntax being information renormalization
according to different timescales. For instance,MERGE can be framed as a probability
tensor implementing coarse-graining, akin to a probabilistic context-free grammar
(Gallego & Orús, 2022). The model proposed in Gallego and Orús (2022, p. 20)
assumes that language is “the cheapest non-trivial computational system”, exhibiting
a high degree of efficiency with respect to its MERGE-based coarse-graining. More
recently, MERGE has been described mathematically in terms of Hopf algebras, with
a formalism similar to the one arising in the physics of renormalization (Marcolli
et al., 2023), and the persistent homology method of topological data analysis and
dimensional analysis techniques has been used to study syntactic parameters (Port
et al., 2022). Hence, both the computational and mathematical foundations of syntax
can be cast in ways that directly accord with the demands of the FEP and active
inference.

Natural language syntax exhibits discrete units which lead to a discreteness-
continuity duality (the boundary between syntactic categories can be non-distinct).3

1 There are recent debates concerning whether merging new lexical objects is more computationally
demanding (since it requires searching the lexicon) than merging lexical objects that are already in the
workspace. This may motivate a Move-over-Merge bias (reversing the Merge-over-Move assumption from
the early minimalism of the 1990s), however we leave this issue to one side.
2 There is increasing evidence that only elements in the workspace that have been labeled can be subject
to movement (Bošković 2021).
3 In active inference, the use of discrete—as opposed to continuous—states in generative models is an
enormously potent way of minimising complexity. For example, if it is sufficient to carve the world (i.e.,
the causes of my sensations) into a small number of hidden states, one can minimise the complexity of
belief updating by not redundantly representing all the fine-grained structure within any one state. Similarly,
factorisation plays a key role in structuring our hypotheses or expectations that provide the best explanation
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Syntax is driven by closeness of computation (syntactic objects X and Y form a dis-
tinct syntactic object, {X, Y}). Its objects are bounded (a fixed list, e.g., N, V, Adj,
Adv, P, C, T, n, v, Asp, Cl, Neg, Q, Det) and their hierarchical ordering is based
on a specific functional sequence such as C-T-v-V (e.g., C is always higher than V;
Starke, 2004) which imposes direct restrictions on combinatorics (Adger & Svenon-
ius, 2011). These objects can be combined in workspaces, phases or cycles (Frampton
& Gutmann, 1999), which can be extended to form non-local dependencies. As we
will discuss, these properties are guided by principles of minimal search (an optimal
tree-search procedure, informed by notions from computer science; Aycock, 2020;
Ke, 2019; Roberts, 2019) and least effort (Larson, 2015), akin to FEP formulations,
fulfilling the imperatives of active inference to construct meaningful representations
as efficiently as possible (Bouizegarene et al., 2020), directly contributing to surprise
minimisation.

2.2 Compositionality

Recently, certain efficiency principles at the conceptual interface (where syntax inter-
faces with general conceptualization) have been proposed (Pietroski, 2018), such
that the ‘instructions’ that language provides for the brain to build specific mean-
ings are interpreted with notable simplicity. Leaving more technical details aside, this
is ultimately achieved (in Pietroski’s recent model) through M-join (e.g., F(_) + G(_)
→ FˆG(_), which combines monadic concepts, like red + boat) and D-join (e.g.,
D(_,_)+M(_)→ E[D(_,_)ˆM(_)], which merges dyadic concepts with monadic con-
cepts, deriving the meaning of X verb(ed) Y ). Hence, natural language permits limited
dyadicity as a very minimal departure from the most elementary monadic combi-
natorial system. Human language is marginally more expressive (in its conceptual
interpretations) than a first-order language (i.e., one set, and one embedding), but the
interpretation system is the least complex needed to express dyadicity and permit
relations between sets. As with models of syntax invoking a simple process of binary
set-formation to derive recursion, by restricting the number of computational proce-
dures able to generate semantic structures, this model restricts in highly predictable
ways the possible range of outputs.

Consider also how, in neo-Davidsonian event semantics, conjunction is limited to
predicates of certain semantic types (Pietroski, 2005; Schein, 1993). Certain semantic
rules of composition, in (1b), have been claimed to arise directly from more elemen-
tary syntactic computations (Pietroski, 2018) which adhere to principles of efficient
computation.

(1) a. Dutch shot Micah quickly.
b. Ee[Agent(e, Dutch) & Theme(e, Micah) & shot(e) & quickly(e)]

In this connection, it has further been observed that language acts as an artificial
context which helps “constrain what representations are recruited and what impact
they have on reasoning and inference” (Lupyan & Clark, 2015, p. 283). Words them-
selves are “highly flexible (and metabolically cheap) sources of priors throughout the

Footnote 3 continued
for sensations. Perhaps the clearest example here is the carving of a sensory world into what and where
(Ungerleider & Haxby 1994).

123



Synthese          (2024) 203:154 Page 11 of 35   154 

neural hierarchy” (Ibid) (for discussion of simplicity in semantic computation, see Al-
Mutairi, 2014; Bošković & Messick, 2017; Collins, 2020; Gallego & Martin, 2018;
González Escribano, 2005; Hauser et al., 2002; Hornstein & Pietroski, 2009). Overall,
the entirety of the core language system (compositional syntax-semantics) appears to
be shot through with criteria of efficiency that would inform any nascent generative
model of linguistic syntax.

3 A Kolmogorov complexity estimate for narrow syntax

3.1 Economy

The notion of simplicity has been a methodological value which has guided linguis-
tic inquiry for decades (Terzian & Corbalan 2021). Chomsky (2021b, p. 13) notes
that “measuring simplicity is an essential task and is no simple matter”. We aim in
this section to elaborate a measure of syntactic complexity that connects directly to
the principles that underwrite the FEP. We will not be concerned with typological,
phonological or acquisitional notions of complexity, which form the bulk of current
literature. Instead, we are interested in underlying representational issues that pertain
to syntax-semantics. Even the most recent explorations of simplicity in language, such
as the volume on simplicity in grammar learning in Katzir et al. (2021), focus on mod-
elling minimum description length in phonology andmorphology, or morphosyntactic
complexity across distinct languages (Ehret et al., 2023), but not processes pertaining
to the internal derivation of syntactic objects. Much of this work fruitfully explores
complexity and simplicity across languages (Ehret et al., 2023), using measures such
as second language acquisition difficulty and situational diversity (counting the range
of communicative contexts a language can be used in), as opposed to the computational
architecture of the language faculty itself. Even if we consider possible complexity
metrics for ‘syntax’ as a global system, such as degree of subordination (how hierar-
chically deep a structure can be; e.g., McCarty et al., 2023), this only gets us part of
the way; something much more generic and encompassing is needed.

A number of economy principles have been proposed in theoretical linguistics:
the No Tampering Condition (Chomsky, 2008), Minimal Link Condition (Chomsky,
1995), Minimal Yield (Chomsky, 2021c), Extension Condition (Chomsky, 1995), Last
Resort (Chomsky, 1995), Relativised Minimality (Rizzi, 1990, 2001), Inclusiveness
Condition (Chomsky, 1995), Precedence Resolution Principle (Epstein et al., 1998),
Scope Economy (Fox, 2000), Phase Impenetrability Condition (Chomsky, 2004), Full
Interpretation (Freidin & Lasnik, 2011; Lohndal & Uriagereka, 2016), Global Econ-
omy Condition (Sternefeld, 1997), Feature Economy (van Gelderen, 2011), Accord
Maximization Principle (Schütze, 1997), Input Generalisation (Holmberg & Roberts,
2014),MaximiseMinimalMeans (Biberauer, 2019a), Resource Restriction (Chomsky
et al., 2019), and Equal Embedding (Murphy & Shim, 2020) (for further discussion,
see Frampton & Gutmann, 1999; Fukui, 1996; Titov, 2020).

Although economy principles have long figured in models of phonology, mor-
phology and the lexicon (e.g., the Elsewhere condition, underspecification), it is only
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relatively recently that theories of syntax have embraced economy not just as a heuris-
tic guiding research, but more concretely as a constitutive principle of language design
(Leivada &Murphy, 2021; Murphy, 2012, 2020a; Reuland, 2011; Sundaresan, 2020).
These have been framed within a linguistic context, often invoking domain-specific
notions (Wilder et al., 1997), despite a core part of the intended project of modern
theoretical linguistics being to embed linguistic theory within principles general to
cognition. Motivating language-specific computational generalizations by direct ref-
erence to the FEPmay broaden the explanatory scope for the existence and prevalence
of particular syntactic phenomena. Since linguists lack a general theory of compu-
tational efficiency for language (e.g., Gallego & Chomsky, 2020: “To be sure, we
do not have a general theory of computational efficiency”), additional support with
respect to grounding these concerns within a well-motivated framework for general
organic behaviour will likely prove productive. Linguists have long speculated about
how to model simplicity, but surprisingly few have done so rigorously. For example,
Pearl (2022) speculates that “perhaps the knowledge of the tight relationship between
syntax and meaning is some kind of simplicity bias that assumes maximal similarity
between representational systems, unless shown otherwise”. There are many promis-
ing paths to take here: minimising energy expenditure during language processing
(Rahman & Kaykobad, 2005), shortening description length (Schmidhuber, 2015),
reducing Kolmogorov complexity (Ming & Vitányi, 2008; Wallace & Dowe, 1999),
and the degree of requisite belief updating. Relatedly, we might consult the princi-
ples of minimum redundancy and maximum efficiency in perception (Barlow, 1961,
1974, 2001; Wipf & Rao, 2007). We will provide a concrete exploration of one of
these notions below (Kolmogorov complexity) in order to defend what we will term
Turing–Chomsky Compression, with the immediate disclaimer that we acknowledge
that other measures may in fact ultimately be more useful and well-motivated with
respect to building FEP-syntax sympathies, and that we consider our survey to be
purely preliminary.

A core fact about many natural language expressions is that they involve arrange-
ments of nested constituents that enter into relations and dependencies of various kinds.
How are syntactic operations compressed into determinate, unambiguous instructions
to conceptual systems, and are there any general laws of organic design that can be
inferred from the FEP that appear to constrain this process (and which successfully
predict which objects cannot be constructed)?

Consider how under the No Tampering Condition the merging of two syntactic
objects, X and Y, leaves X and Y unchanged. The set {X, Y} created by MERGE
(Chomsky et al., 2019) cannot be broken and no new features can be added.4 The
original structure in (2a) can be modified by the merging of a new element, λ, to
form (2b), adhering to the No Tampering Condition, while (2c) violates this condition

4 MERGE has been defined as an operation on a workspace and its objects, formalized as fol-
lows (WS = workspace; P/Q = workspace objects such as linguistic features; X = additional ele-
ments):MERGE(P,Q,WS) = WS’ = {{P,Q},X1,…,Xn}.Other linguistic frameworks assume some similar,
basic structure-building operation, e.g., Forward–Backward Application in Combinatory Categorial Gram-
mar (Steedman 2000), Substitution in Tree-Adjoining Grammar (Joshi & Schabes 1997). We put aside
here some controversies about the relation between a MERGE-based syntax and set theory (see Adger
Forthcoming, Gärtner 2021).
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since the original structure (2a) is modified (Lohndal & Uriagereka, 2016); hence why
adjuncts that merge ‘downstairs’ do not alter the structure of the object they adjoin to
(adjuncts are not labeled; Bošković, 2015) (subscripts denote syntactic heads/labels,
standard script denotes lexical items, where (2a) could represent a structure like ‘the
red boat’).5

(2) a. [α [β [γ [δ ε]]]]
b. [α λ [α [β [γ [δ ε]]]]]
c. [α [β [γ [δ [ε ε λ]]]]]

Further, it is more economical to expand a structure, as in (2b), than to backtrack and
modify a structure that has already been built, as in (2c) (Lasnik & Lohndal, 2013).
How can we more formally demonstrate these claims? We turn here to Kolmogorov
complexity.

3.2 Compression

Kolmogorov complexity is a measure of the length of the shortest program that can
reproduce a given pattern (Kolmogorov, 1965; Li &Vitányi, 2019).While measures of
minimum description length and Kolmogorov complexity have been typically applied
to linear, ‘externalized’ sequences, they can also be fruitfully applied to grammatical
relations, permitting measurement of the inherent information content of an individual
object or operation (Biberauer, 2019b, Grünwald 1996, 2007, Newmeyer & Preston,
2014). Sequence complexity is identified with richness of content (Mitchell, 2009),
such that any given signal or sequence is regarded as complex if it is not possible to pro-
vide a compressed representation of it.While complexity differences across languages
can be measured, for example, as a function of featural specifications on functional
elements (Longobardi, 2017), here we are interested in the complexity of I-language
derivations. Previous efforts have already connected the theory of program size to
psychology by implementing a concrete language of thought with Turing-computable
Kolmogorov complexity (Romano et al., 2013), which satisfied the requirements of
(i) being simple enough so that the complexity of any binary sequence can be mea-
sured, and (ii) utilizing cognitively plausible operations like printing and repeating.
In contrast, we aim to relate similar measures to syntactic economy criteria.

The concept of syntactic complexity remains underexplored in the literature relative
to other measures of linguistic complexity (Shieber, 1985; Trudgill, 2011). While
syntacticians have proposed economy principles, these all effectively boil down to
efficient tree-search—without formalizing these intuitions or attempting to broach this
topic with neighboring fields that might be able to provide highly valuable analytic
tools. It is our contention that mathematical tools emerging from concerns of the FEP
can help couch these verbal generalizations into a concrete model.

Syntactic complexity can be operationalized across a number of dimensions,
such as online processing/parsing complexity (Hawkins, 2004), tree-search and
node counts (Szmrecsányi, 2004), number of MERGE applications (Samo, 2021),

5 Adjacent to minimalist syntax, Optimality Theory assumes that gratuitous adjunction to a maximal
projection violates an economy condition (SpecLeft) (Broekhuis & Vogel 2009; Grimshaw 2001). For
syntactic economy conditions in Lexical Functional Grammar, see Dalrymple et al. (2015).
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cyclic/derivational complexity (Trotzke & Zwart, 2014), internal representational
complexity as opposed to derivational size (van Gelderen, 2011, 2021), entropy reduc-
tion (Hale, 2016), or stages of second-language development (Walkden & Breitbarth,
2019). Syntactic complexity can be framed as grammar-based (derivational), or user-
based (parsing) (Newmeyer & Preston, 2014); here, will be elaborating on the former
type. Crucially, sentence length does not always scale with syntactic complexity (Szm-
recsányi, 2004), and instead an examination of the underlying operations is required.
Although syntactic complexity is often thought of in derivational terms, removed and
independent from surface realization, Kolmogorov complexity is relatively theory-
neutral and can be applied indiscriminately to mental objects with any number of
internal sequences, patterns, irregularities, and surface redundancies (Miestamo et al.,
2008).

Why do we choose to focus here on such a generic, theory-neutral measure as
opposed to a more domain-specific one? We stress that Kolmogorov complexity (and
the related notion of minimal message length) relates directly to frameworks emerg-
ing from the FEP (Friston, 2019; Hinton & Zemel, 1994; Korbak, 2021), with the
prediction for natural language syntax of reducing the complexity of hierarchical
syntactic structures that are interpreted at conceptual interfaces being sympathetic
to a corollary of the FEP that every computation comes with a concrete energetic
cost (Jarzynski, 1997; Sengupta & Stemmler, 2014). As shown above (Eq. 2), varia-
tional free energy can be formulated as a trade-off between accuracy and complexity,
whereby minimising complexity minimises variational free energy. Considering the
topic of universal computation, as in Solomonoff induction (Solomonoff, 1964) (which
is directly grounded in the minimization of Kolmogorov complexity), many formula-
tions of variational free energy minimization explicitly invoke algorithmic complexity
and the type of mathematical formulations underlying universal computation. Relat-
ing this more directly to our present concerns, the theme of message length reduction
has been fruitfully applied to analyses of grammar acquisition in children. Rasin et al.
(2021) show that minimum description length (closely related to Bayesian grammar
induction) can provide the child with a criterion for comparing hypotheses about
grammatical structures that may match basic intuitions across a number of cases.
The restrictiveness generated by these complexity measures supplements the more
general simplicity criterion of theoretical syntax; much as how the ‘subset principle’
(restrictiveness) supplemented the original evaluation metric (simplicity) (Berwick,
1985). Lambert et al. (2021) demonstrated that the computational simplicity of learn-
ing mechanisms appears to have a major impact on the types of patterns found in
natural language, including for syntactic trees, and so it seems to us well motivated
to turn to the issue of the underlying processes that guide the generation of these
structures.

Other recent work has successfully used minimum description length in a domain
much closer to our own concerns. Focusing on semantic properties of quantifiers (e.g.,
‘some’, ‘most’) and noting that natural language quantifiers adhere to the properties
of monotonicity, quantity and conservativity (Barwise & Cooper, 1981), van de Pol
et al. (2021) generated a large collection of over 24,000 logically possible quantifiers
and measured their complexity and whether they adhered to the three universal prop-
erties. They found that quantifiers that satisfied universal semantic properties were
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less complex and also exhibited a shorter minimal description length compared to
quantifiers that did not satisfy the universals, pointing in intriguing directions towards
efficiency biases in natural language semantics that appear to restrict the development
of lexical meaning. Quantifiers that adhere to semantic universals are simpler than
logically possible competitors that do not.

To briefly formalize our discussion of compression and complexity, given a Turing
machine M, a program p and a string x, we can say that the Kolmogorov complexity
of x relative to M is defined by the length of x. Formally, this can be expressed as
follows (Eq. 4), where |p| denotes the length of p and M is any given Turing machine:

KM (x)
def= min{|p| : M(p) = x} ∪ {∞} (4)

This represents the length of the shortest program that prints the string x and then
halts. Yet, as implied by Gödel’s incompleteness theorem or Turing’s halting theorem,
we cannot compute the Kolmogorov complexity of an arbitrary string, given that it
is impossible to test all possible algorithms smaller than the size of the string to be
compressed, and given that we cannot know that the Turingmachine will halt (Chaitin,
1995). We therefore used an estimate of approximate Kolmogorov complexity (given
its fundamental non-computability) based on the Lempel–Ziv compression algorithm,
which we applied to the labeling/search algorithm needed to derive each syntactic
node in (2) and their subordinated terminal elements, investigating how ‘diverse’ the
patterns are that are present in any given representation of a syntactic tree-search. In
the service of replicability and for completeness, we used a current generative gram-
mar labeling/search algorithm that checks tree-structure heads and terminal elements
(Chomsky, 2013; Ke, 2019; Murphy & Shim, 2020) (see also f.n. 11). In this respect,
Kolmogorov complexity is a more fine-grained measure of complexity than previous
measures in theoretical syntax (e.g., node count across a c-commanded probe-goal
path). While we acknowledge here and elsewhere (below) that our choice of algorith-
mic complexity ismotivated by a similarity in spirit andmathematical heritage, we feel
that this approach—given the relative novelty of connecting the FEP with theoretical
linguistics—is suitably noncommittal with respect to which algorithmic complexity
measure is ultimately going to show the most direct sympathy with syntactic deriva-
tional architecture, and below we will discuss some other possible measures.

Searching the structure from top to bottom, identifying each branching node and its
elements (e.g., inputting [α λ α β γ δ ε]), we used a Lempel–Ziv implementation (Faul,
2021) of the classical Kolmogorov complexity algorithm (Kaspar & Schuster, 1987;
Lempel & Ziv, 1976) to measure the number of unique sub-patterns when scanning
the string of compiled nodes.6 This Lempel–Ziv algorithm computes a Kolmogorov
complexity estimate derived from a limited programming language that permits only
copy and insertion in strings (Kaspar & Schuster, 1987).7 The algorithm scans an
n-digit sequence, S = s1 · s2 · …sn, from left to right, and adds a new element to

6 We therefore assume that labeling/search occurs top-to-bottom, and not bottom-up, due to the former
yielding a more minimal search path with no ‘backtracking’, hence more in line with economy considera-
tions.
7 Kaspar and Schuster (1987) discovered that a readily calculable measure of Lempel–Ziv algorithmic
complexity can, for simple cellular automata, separate pattern formation from the mere reduction of source
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its memory each time it encounters a substring of consecutive digits not previously
encountered. Our measure of Kolmogorov complexity takes as input a digital string
and outputs a normalised measure of complexity (Urwin et al., 2017).

To connect these ideas with the FEP, we note that minimising free energy corre-
sponds to minimising complexity, while maximising the accuracy afforded by internal
representations8 r ∈ R, of hidden states s ∈ S, given outcomes o ∈ O (Eq. 2). In short,
belief updating or making sense of any data implies the minimisation of complexity:

DK L [Q(s)‖P(s)]≈ DK L [P(s|o)‖P(s)] (5)

When choosing how to sample data, the expected complexity becomes the intrinsic
value or expected information gain (in expected free energy):

E[ln P(s|o, π) − ln P(s|π)]= I (S, O|π) = EP(o|π)[DK L [P(s|o, π)‖P(s|π)]]
(6)

This is just the mutual information between (unobservable) hidden states generating
(observable) outcomes, under a particular choice or policy.

Importantly, variational free energy and formulations of artificial general intelli-
gence pertaining to universal computation both share a mathematical legacy. This is
rooted in the relationship between the complexity term in variational free energy and
algorithmic complexity (Hinton & Zemel, 1994; Wallace & Dowe, 1999), described
in terms of information length and total variation distance. As such, relating syntactic
operations to algorithmic compression maximisation feeds directly into assumptions
from the FEP (Schmidhuber, 2010).

Lempel–Ziv complexity is a measure of algorithmic complexity which, under the
law of large numbers, plays the same role as the complexity part of logmodel evidence
or marginal likelihood. Interestingly, minimising algorithmic complexity underwrites
universal computation, speaking to a deep link between compression, efficiency and
optimality in message passing and information processing. This is why we suggest
here that although we are using Lempel–Ziv complexity, we suspect that many other,
potentially more suitable measures of compressibility might be used in future to relate
the FEP to syntax.

With this background, we now return to the structures in (2b) (licensed) and (2c)
(unlicensed). Inputting the labeled nodes (subscript elements) and terminal elements
(regular script) across both structures into the Lempel–Ziv compression algorithm
(Faul, 2021) left-to-right, the licensed representation in (2b) exhibits a normalized
Kolmogorov complexity of 1.88, while the unlicensed representation in (2c) exhibits
a complexity of 1.99. Crucially, while both (2b) and (2c) exhibit the same node-count
complexity and depth (i.e., bracket count), they can be operationally distinguished
by their Kolmogorov complexity, in compliance with what the FEP would demand.

Footnote 7 continued
entropy, with different types of automata being able to be distinguished. We also note that Lempel–Ziv
complexity does not simply measure the number of elements in a sequence, but also factors in pattern
irregularities. As such, it is not the case that, by definition, a syntactic process with n steps will be trivially
more Lempel–Ziv complex than a syntactic process with n-1 steps.
8 That parameterise posterior beliefs Q(s) � Qr (s).
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The increased compression rate for (2b) indicates lower information content, hence
lower Kolmogorov complexity (Juola, 2008), and so the representation adheres to the
priority to minimise computational load.

3.3 Relativisedminimality

A further observation pertaining to economy in the literature concerns Relativised
Minimality (Rizzi, 1990, 1991): Given a configuration, [X … Z … Y], “a local rela-
tion cannot connect X and Y if Z intervenes, and Z fully matches the specification of
X and Y in terms of the relevant features” (Starke, 2001). In other words, if X and Y
attempt to establish a syntactic relation, but some element, Z, can provide a superset
of X’s particular features (i.e., X’s features plus additional features), this blocks such
a relation. In (3a), which game provides a superset of the features hosted by how,
resulting in unacceptability. The equivalent does not obtain in (3b), and so a relation-
ship between both copies of which game can be established (strikethroughs denote
originally merged positions).

(3) a. *[[How[+Q]] [C[+Q] [do you wonder [[which game[+Q, +N]] [C[+Q] [PRO to
play how[+Q]]]]]]].

b. [[Which game[+Q,+N]] [C[+Q] [do you wonder [[how+Q] [C+Q [PRO to play
which game[+Q,+N]]]]]]]

Relativised Minimality emerges directly from minimal search (Aycock, 2020): Con-
sider how when searching for matching features in (3b) the search procedure would
skip how but find the original copy of which game.

We note that the notion of movement ‘distance’ here is relativised to the specific
units across the path. In order to reach a more fundamental analysis we may need
some means of understanding what distance actually reduces to. These avenues of
current research may lend themselves quite readily to explorations directed by notions
of complexity and compression. We speculate here that this may relate to the com-
pressibility of movement paths, and more systematic investigations will be needed to
address this.

3.4 Resource restriction

The principle of Resource Restriction (or ‘Restrict Computational Resources’, RCR;
Chomsky, 2019; Chomsky et al., 2019) states that when the combinatorial operation
MERGE maps workspace n to workspace n + 1, the number of computationally
accessible elements (syntactic objects) can only increase by one (Huybregts, 2019;
Komachi et al., 2019). This can account for a peculiar property of natural language
recursion that separates it from other forms of recursion (e.g., propositional calculus,
proof theory): natural language MERGE involves a recursive mapping of workspaces
that removes previously manipulated objects (Chomsky, 2021c). Hence, Resource
Restriction renders natural language derivations strictly Markovian: The present stage
is independent of what was generated earlier, unlike standard recursion.MERGE itself
exhibits the formal characteristics of a finite-state rewrite rule (Trotzke&Zwart, 2014,
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p. 145), exhibiting minimal computational complexity, with MERGE being distinct
from the ultimate grammatical constructions later derived from its cyclic application.
Even though this is in line with traditional assumptions from generative grammar that
there is something unique to human syntax (which we concur with), we wish to stress
that the formalization of this property of recursion does not necessitate complete
isolation from domain-general approaches in the cognitive sciences; i.e., there are
means to ground and explain this property through models emerging from the FEP.

A topic of recent discussion concerns how we can define the ‘size’ of a workspace.
Fong et al. (2019) suggest that the size of a syntacticworkspace should be considered to
be the number of accessible terms plus the number of syntactic objects. This proposal to
constrain syntactic combinatorics can account for why the applications of certain types
of MERGE are ungrammatical (Fong et al., 2019), providing a genuine explanation
for language design. We again return to the theme of every computational procedure
delivering a concrete cost, as under the FEP.

Principles such as Resource Restriction and other economy considerations are
essential once we consider that a workspace with two elements with a simpleMERGE
operation can generate excessive levels of combinatoriality. Within 8 MERGE steps
from two elements, around 8 million distinct sets can be formed (Fong & Ginsburg,
2018). Older definitions of basic syntactic computations did not “worry about the fact
that it’s an organic creature carrying out the activities”, as Chomsky (2020) notes.
Many aspects of these theories exhibited, to borrow a phrase from Quine (1995, p. 5),
an “excess of notation over subject matter”. Even many current models of syntax have
ignored questions of cognitive, implementational plausibility (e.g., Chomsky, 2013;
Citko & Gračanin-Yuksek, 2021; Collins, 2017, Epstein et al., 2021). Computational
tractability (van Rooj & Baggio, 2021) is a powerful constraint in this respect (e.g.,
implementable in polynomial time), and given that minimizing the model complex-
ity term (in formulations of free energy) entails reducing computational cost, this
efficiency constraint is also implicitly present in the FEP.

3.5 Interim conclusion

We have considered how the FEP can in principle provide a novel explanation for
the prevalence of efficiency-encoded syntactic structures. To further stress this point,
consider Dasgupta and Gershman’s (2021) assessment that mental arithmetic, mental
imagery, planning, and probabilistic inference all share a common resource: memory
that enables efficient computation. Other domains exhibiting computational efficiency
include concept learning (Feldman, 2003), causal reasoning (Lombrozo, 2016) and
sensorimotor learning (Genewein & Braun, 2014). As Piantadosi (2021) reviews,
human learners prefer to induce hypotheses that have a shorter description length in
logic (Goodman et al., 2008), with simplicity preferences possibly being “a governing
principle of cognitive systems” (Piantadosi, 2021, p. 15; see Chater & Vitányi, 2003).
Although our arguments have been almost exclusively conceptual, we believe that
more extensive computational modelling should seek to compare the dynamics of
MERGE-based workspaces via compressibility constraints.
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We will now turn to the most commonly explored syntactic processes claimed to
arise from economy considerations: syntactic movement and minimal search. Further
examples will be used to motivate what we term the principle of Turing–Chomsky
Compression, through which stages of syntactic derivations are evaluated based on
the algorithmic compressibility of some feature of the computation, such as the move-
ment path of an object, or the procedure of nodal labeling/search—which can be
unified based on how they manipulate the syntactic workspace. Turing–Chomsky
Compression provides a concrete architectural principle for language design, which is
crucially sympathetic to a number of compressibility criteria beyond the types enter-
tained here; we therefore conclude with a number of promising directions to refine
this new approach to syntax.

4 Minimising free-energy, maximising interpretability

As has long been recognised, the syntactic categories of words are not tagged acousti-
cally, and yet sentential meaning is inferred from syntactic categorization (Adger,
2019). Sentences are often ambiguous between distinct syntactic structures. For
instance, below we can interpret Jim Carrey as starring in the movie (4a), or sitting
next to us (4b).

(4) a. [tp [npWe] [vpwatched [npa [nmovie [ppwith [npJim Carrey]]]]]].
b. [tp [npWe] [vp[vpwatched [npa movie]] [ppwith [npJim Carrey]]]].

Linear distance (i.e., the number of intervening elements between dependents in a
sentence) can be contrasted with structural distance (the number of hierarchical nodes
intervening), and only the latter is a significant predictor of reading times in an eye-
tracking corpus (Baumann, 2014). Violations of hierarchical sentence rules results in
slower reading times (Kush et al., 2015), and expectations of word category based on
hierarchical grammars also predicts reading times (Boston et al., 2011).

The apparent use of hierarchical structure to limit interpretation adheres to a core
tenet of the FEP, whereby interpretive processes that yield the lowest possible amount
of complexity (and thereby computational cost) can mostly (perhaps entirely; Hinzen,
2006) be derived directly from what the syntactic component produces. This notion
is closely related to the imperatives for structure learning (Tervo et al., 2016)—or
Bayesian model reduction—in optimising the structural (syntax) of generative models
based purely on complexity (pertaining tomodel parameters); see Friston et al. (2017b)
for an example simulating active inference and insight in rule learning.

While sensorimotor systems naturally impose linear order, linguistic expressions
are complex n-dimensional objects with hierarchical relations (Gärtner & Sauerland,
2007; Grohmann, 2007; Kosta et al., 2014; Murphy & Benítez-Burraco, 2018; Mur-
phy, 2020b, 2024). The following sections provide concrete demonstrations of these
design principles in action in order to motivate an architectural framework for lan-
guage emerging from the FEP. We also provide suggestions for how to explore further
sympathies between the FEP and minimalist syntax.
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4.1 Structural distance

Consider the sentence in (5).

(5) Routinely, poems that rhyme evaporate.

In (5), ‘routinely’ exclusively modifies ‘evaporate’. The matrix predicate ‘evaporate’
is closer in terms of structural distance to ‘routinely’ than to ‘rhyme’, since the rela-
tive clause embeds ‘rhyme’ more deeply (minimal search is partly “defined by least
embedding”; Chomsky, 2004, p. 109).9 Language computes over structural distance,
not linear distance (Berwick et al., 2011, 2013; Friederici et al., 2017; Martin et al.,
2020).

This can also be shown with simple interrogative structures. Consider the sentence
in (6a) and its syntactic representation in (6b), where the verb in the relative clause
(‘rhyme’) is more deeply embedded than ‘evaporate’.

(6) a. Do poems that rhyme evaporate?
b. [CP[C Do][TP[DP[DP poems][CP[C that][TP rhyme]]][T’[T][V evapo-

rate]]]].

We can compute the complexity of both nodal search and Kolmogorov complex-
ity, contrasting the grammatical association between ‘Do’ and ‘evaporate’, and the
ungrammatical association between ‘Do’ and ‘rhyme’. When the [+ q] feature on
C searches for a goal, it needs to search down three node steps (from CP to V) to
get to the grammatical option, but needs to search down four node steps (from CP to
embedded TP) to construct the ungrammatical option. Since we are concerned with
analyzing a small but representative number of syntactic derivational processes, this
analysis differs from the approach to the structures in (2), which do not involve any
labeling procedure. This time, we enumerated the search steps across nodes, replacing
specific nodal categories with symbols interpretable to the Lempel–Ziv compression
algorithm (Faul, 2021), since this is what the syntactic search algorithm is claimed to
monitor. The Lempel–Ziv complexity of the sequence of steps enumerated from the
C-V labeling/search algorithm is 1.72. For the embedded C-TP search, it increases to
2.01.

While one might invoke purely semantic constraints on polar interrogatives and
other formsof question-formation (Bouchard, 2021) to derive the kinds of acceptability
contrasts we have discussed, we see no way to ground these observations in concerns
of computability and complexity, and no way to quantify or formalize these notions.

9 We refer the reader to Ke (2019, p. 44) and Aycock (2020, pp. 3–6) for a detailed discussion of minimal
search, which can be formally defined below, from Aycock (2020), adopting an Iterative Deepening Depth-
First Search approach (Korf 1985); where MS = minimal search, SA = search algorithm, SD = search
domain (where SA operates), ST = search target:

(1) MS = 〈SA, SD, ST〉
(2) SA:

a. Given ST and SD, match against every head member of SD to find ST [initial depth-limit of SD = 1;
search depth-first].b. If ST is found, return the head(s) bearing ST and go to d. Otherwise, go to c.c. Increase
the depth-limit of SD by 1 level; return to a.d. Terminate Search.
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4.2 Ignoring other people: question formation via economy

As recent literature has explored, whenever there is a conflict between principles of
computational efficiency and principles of communicative clarity, the former seems
to be prioritized (Asoulin, 2016; Murphy, 2020a). For instance, consider (7).

(7) You persuaded Saul to sell his car.

The individual (‘Saul’) and the object (‘car’) can be questioned, but questioning the
more deeply embedded object forces the speaker to produce a more complex circum-
locution (‘[]’ denotes the originally merged position of the wh-expression).

(8) a. *[What] did you persuade who to sell []?
b. [Who] did you persuade [] to sell what?

The structures in (8) involve the same words and interpretations, yet the more com-
putationally costly process of searching for—and then moving—the more deeply
embedded element cannot be licensed, despite the potential benefits of communica-
tive flexibility. Interestingly, one cannot feasibly posit parsing-related factors to derive
some independent complexitymeasure to explain this contrast (e.g., Newmeyer, 2007),
given the same number of words and same semantic interpretations (i.e., give me the
Agent and Object of the event). Experimental work has supported the prevalence of
these grammaticality intuitions (Clifton et al., 2006).10

The syntactic structures for both (8a) and (8b) are represented in (9) (where < DP
> represents the movement path). With respect to tree-search depth, (9a) involves
searching down 11 nodes, while (9b) involves searching down 9 nodes. To expand
our survey of syntactic processes beyond labeling/search paths, we focused here on
the postulated path of syntactic object movement across the structure. The movement
path was represented with each site being attributed a symbol fed to the compression
algorithm, in keeping with a more general approach to annotating movement paths
(Adger, 2003). Enumerating the movement path from the initially merged root, to
intermediate landing sites, to the terminal landing site in Spec-CP, the Lempel–Ziv
complexity of movement for (9a) is 2.15. For (9b), path complexity is 1.5.

(9) a. [CP [DP what] [C’ [C did] [TP [DP you] [T’ [T [pres] [VP [<DP>] [V’ [V persuade]
[CP [C’ [C Ø] [TP [<DP>] [T’ [T] [VP [DP who] [PP [P to] [VP [V’ [V sell]
[<DP>]]]]]]]]]]]]]]]].

b. [CP [DP who] [C’ [C did] [TP [DP you] [T’ [T [pres] [VP [<DP>] [V’ [V
persuade] [CP [C’ [C Ø] [TP [<DP>] [T’ [T ] [VP [<DP>] [PP [P to] [VP [V’
[V sell] [DP what]]]]]]]]]]]]]]]]

A further empirical reason to assume that this economy condition is a general prop-
erty of language comes from the following data of Bulgarian multiple wh-fronting
(Bošković & Messick, 2017; see also Dayal, 2017). The wh-phrase highest prior to
movement (the subject in (10) and the indirect object in (11)) needs to be first in the

10 Wealso highlight here the generalisation, discussed extensively in Jackendoff andWittenberg (2014), that
simpler syntactic structures typically lead to a greater reliance on pragmatics for successful communication,
whereas larger sentences lead to more of an interpretive burden being placed on syntactic principles instead
of conversational context.
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linear order of the sentence, such that the structurally highest wh-phrase moves first,
and the second wh-phrase either right-adjoins to the first wh-phrase, or moves to a
structurally lower Spec-CP position.

(10) a. *Koj e vidjal kogo?
who is seen whom

b. Koj kogo e vidjal?
“Who saw whom?”

(11) a. Kogo kakvo e pital Ivan?
whom what is asked Ivan
“Whom did Ivan ask what?”

b. *Kakvo kogo e pital Ivan?

Thus far, this suffices to show that the wh-element easiest to search for is selected
for movement. However, does syntactic economy simply rule out all but one option?
Crucially, Bošković andMessick (2017) show thatwhenmultiple options of equal tree-
geometric complexity are available, they are both licensed as grammatical. Consider
constructionswith threewh-phrases.Wecan assume thatwhicheverwh-elementmoves
to the structurally highest position (Spec-CP) satisfies the featural requirement of
interrogativeC to have a filled Spec-CPposition.After this structurally highest element
moves to Spec-CP, we can further assume that the remaining wh-elements then move
to Spec-CP to satisfy their own featural ‘Focus’-based requirements. At this point,
whichever order the remaining wh-elements move in, the requirements are satisfied
through movements of identical length (i.e., both cross the same number of nodes,
and hence generate the same sequence of derivational steps, and therefore the same
Lempel–Ziv complexity). As such, this predicts that the remaining two wh-elements
can move in any order after the initial wh-movement of the subject. This prediction
is borne out: the subject (‘koj’) is moved first in both constructions below, but then
either of the remaining wh-elements can move in any order.

(12) a. Koj kogo kakvo e pital?
who whom what is asked
“Who asked whom what?”

b. Koj kakvo kogo e pital?

4.3 Labeling

As a more stringent test, can Lempel–Ziv complexity shed light on cases in which the
ungrammatical derivation has less structural tree-geometric complexity than the gram-
matical derivation?Consider the following case fromMurphy and Shim (2020, p. 204).
Putting ancillary technical details aside (see Mizuguchi, 2019), (13a) is claimed to be
ungrammatical because one final necessary operation on the syntactic workspace has
not been carried out; namely, merging ‘the students’ to the structure marked by γ.
For expository purposes, we provide a schematic representation to demonstrate the
relevant movement path (the path of ‘the student’ is marked by t).

(13) a. *[γ Seems to be likely [α the student [to [t understand the theory]]]].
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b. [δ The student [γ seems to be likely [α t [to [t understand the theory]]]]]

The explanations fromwithin syntactic theory as to why (13b) is grammatical concern
successful feature valuation and the minimal search of copies via the labeling algo-
rithm. However, this process might also be linked to more efficient compression rates
of syntactic labels at the interpretive systems.We can enumerate each labeled node left-
to-right marking the phrase boundaries separating each embedded object that pertain
to the grammaticality contrast (e.g., V-D-P-V). Computing the Lempel–Ziv complex-
ity of each successive phrase label in these structures, (13a) exhibits a complexity
of 1.86, while (13b) exhibits a complexity of 1.66, despite (13b) being a more com-
plex structure from the perspectives of node count and element count. As such, both
minimal search of syntactic labels and algorithmic compression rates may be play-
ing separate but interacting roles in determining how the interpretive systems access
objects generated by syntax.

4.4 Turing–Chomsky Compression

The brief number of cases we have derived syntactic economy principles from, using a
Lempel–Ziv estimate ofKolmogorov complexity, canbeused tomotivate the following
language design principle that directly relates the FEP to syntactic structure building:

Turing–Chomsky Compression An operation (M) on an accessible object (O1)
in a syntactic workspace (Wp) minimizes variational free energy if structures
from the resulting workspace (Wq) are compressed to a lower Kolmogorov com-
plexity than if M had accessed O2 in Wp.

This is principally named after specifications over what (Chomsky) is compressed and
how (Turing) such compression can be achieved (Chomsky, 2021c; Turing, 1950).
The interaction between Turing–Chomsky Compression (TCC) and more domain-
specific subcategorization requirements emerging from lexico-semantic features, and
formal syntactic features, is a promising topic for future research. This will require a
more accelerated survey of cognitive models of semantics that emerge from the FEP,
including a more extensive and formal assessment of how to generate specific active
components (under active inference) for lexico-semantic processing, with this stage
coming into greater relevance after the initial generation of an abstract hierarchical
structure that feeds, for example, event semantics. For now, we have shown across
a small but representative number of syntactic processes that derivations minimising
algorithmic complexity are licensed over those that result in structures and derivational
paths that are less compressible.

We stress here that TCC is a concrete architectural proposal for language design, and
is the type of principled settlement that could be established between mathematical
models of compressibility that share a lineage with the FEP on the one hand, and
models of minimalist syntax on the other. With this in mind, we now discuss some
prospects for future research that could address these issues more systematically.

123



  154 Page 24 of 35 Synthese          (2024) 203:154 

5 Future work

Language and thought, in anything remotely like the human sense, might indeed
turn out to be a brief and rare spark in the universe, one that we may soon
extinguish. We are seeking to understand what may be a true marvel of the
cosmos.

Chomsky (2021c, p. 4)

We have arrived at a number of suggestive explanations for how language imple-
ments the construction of hierarchical syntactic objects: tominimise the computational
burden of reading syntactic instructions at conceptual systems; to minimise uncer-
tainty about the causes of sensory data; and to adhere to a least effort natural law (i.e.,
variational principle of least action) when composing sets of linguistic features for
interpretation, planning and prediction. We have shown that measuring a Kolmogorov
complexity estimate of syntactic representations and movement paths can align with
acceptability judgments. This was used to motivate a possible principle of language
design that could emerge from this research direction, Turing–Chomsky Compression
(TCC). Our use of Lempel–Ziv complexity presents a more explicit measure than
previous accounts. For instance, consider Sternefeld’s (1997) Global Economy Con-
dition, which states that, given two derivations of a syntactic structure (D1, D2), D1 is
preferred if D1 fares better than D2 with respect to some metrical measureM (namely,
number of derivational steps). This basic ‘step counting’ measure (as with tree-search
depth) seems to be in line with grammaticality predictions emerging from the more
general complexity measure provided by Lempel–Ziv complexity. Yet, algorithmic
complexity also benefits from being applicable across a range of other domains in
syntax where nodal count does not differ between competing structures, and is also
related to formulations of variational free energy minimization. Ultimately, this has
the advantage of generating quantitative predictions for syntactic computation based
on general principles that apply more broadly.

Following neighbouring research in the active inference framework (DaCosta et al.,
2021), one could feasibly view our research programme as comparing the information
length of belief updating between distinct syntactic derivations and theories. We view
our proposals as being, in principle, concordant with the view that neural representa-
tions in organic agents evolve by approximating steepest descent in information space
towards the point of optimal inference (Da Costa et al., 2021). Future work could
explore the utility of minimum description length (van de Pol et al., 2021) and Gell-
Mann/Lloyd ‘effective complexity’. In contrast to Kolmogorov complexity, which
measures the description length of a whole object, effective complexity measures the
description length of regularities (structured patterns) within an object (Gell-Mann &
Lloyd, 1996), which may speak to properties of cyclic, phasal computation in natural
language.

Recent work has provided evidence for a mental compression algorithm in humans
(termed the Language of Thought chunking algorithm) responsible for parsing very
basic, binary sequences, providing evidence that human sequence coding involves
a form of internal compression using language-like nested structures (Planton et al.,
2021). Dehaene et al. (2022) extend this project to auditory sequences and geometrical
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shapes. We have effectively extended these ideas further into the domain of natural
language syntax, suggesting some common capacity for symbolic recursion across
cognitive systems being constrained by compressibility.

Some linguists might object to our complexity measure in the following way: Why
should syntax be organized so as to produce structures that minimise Kolmogorov
complexity, and why should the semantic component of language aim to read off
structures that are of a corresponding level of complexity? We note here that the core
‘phase’/non-phase pattern of syntactic derivations (e.g., {C {T v {V D/n {N}}}};
Richards, 2011, Uriagereka, 2012) optimizes compression rate (effectively, 010101),
and since phase construction constitutes the major determining period when syntactic
workspaces are accessed by the conceptual systems, we see our proposal as aligning
closely with existing—if only implicit—assumptions.

Plainly, there aremany issueswith the frameworkwe have outlined here that need to
be further unpacked and clarified. Our proposals concerning compression of structures
accessed from the syntactic workspace via TCC have been discussed in the context of a
cursory overview of the mathematical lineage shared between formulations pertaining
to the FEP and theories of universal computation. This suited our current expository
purposes, with our proposals being buttressed by conceptual overviews of the FEP and
syntactic economy, but future work shouldmore carefully alignmodels emerging from
the FEP with TCC. Although we made our assumptions about syntactic complexity
based on whether or not our measure can be formally grounded within the FEP, we
note that we have effectively equated complexity with compressibility. As such, we
acknowledge that there may be a number of other fruitful directions to measure com-
plexity in ways that are sympathetic to the FEP (e.g., the “complexity equals change”
framework; Aksentijevic & Gibson, 2012).

Lastly, we acknowledge that our choice of complexity metric (Lempel–Ziv com-
plexity) could well be argued to be sub-optimal, or even inappropriate for our focus on
derivational syntax, and we hope to explore different varieties of compression algo-
rithms that share a mathematical lineage with the FEP moving forward. This does
not detract from our main conceptual arguments, which have constituted the bulk of
our discussion, and nor does it preclude TCC being subject to further modification
pending an expansion of compression algorithms tested, but we wish to note here that
Lempel–Ziv is an optimally appropriate estimator for Kolmogorov complexity given
long sequences produced by an independent and identically distributed (‘iid’) source;
when Lempel–Ziv is applied to very short sequences, it becomes more sensitive to the
structure of the compression algorithm. Concurrently, our sequences used to compute
Lempel–Ziv complexity are produced by a non-iid (Markovian) source, and so would
become increasingly redundant as string length increases. Hence, it may be the case
that our choice of compression algorithm is non-optimal for both very short and longer
sequences, and future work should seek to contrast multiple minimal description and
compression algorithms jointly, potentially modifying the architecture of TCC.
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6 Conclusions

We have reviewed how the FEP is an expression of the principle of least action,
which is additionally a principle implemented in models of theoretical syntax. An
intuition from 70 years ago—that the extent to which a model of grammar is simple
seems to determine its explanatory power—echoes in the modern framing of syn-
tactic computation as a system of economy: “[T]he motives behind the demand for
economy are in many ways the same as those behind the demand that there be a
system at all” (Chomsky, 1951; see also Goodman, 1951). Generative linguistics has
long appealed to economy considerations (e.g., the evaluation metric in Chomsky &
Halle, 1968). Meanwhile, the FEP has produced formal, simulation-supported models
of complex cognitive mechanisms such as action, perception, learning, attention and
communication, while theories of syntax embracing computational efficiency have
led to empirically successful outcomes, explaining grammaticality intuitions (Adger,
2003; Martin et al., 2020; Sprouse, 2011; Sprouse & Almeida, 2017), certain poverty
of stimulus issues (Berwick et al., 2011; Crain et al., 2017; Culbertson et al., 2012;
Wexler, 2003; Yang et al., 2017) and the pervasive organizational role that hierarchy
has in language (Friederici et al., 2017; Grimaldi, 2012; McCarty et al., 2023) and the
seemingly unique proclivity humans have to parse sequences into tree-structures.

We find seeds for these ideas in the foundational principles of universal computa-
tion, where, as we have noted, free energy is often discussed in terms of minimum
description or message lengths (MacKay, 2003; Schmidhuber, 2010). Relatedly, find-
ings fromdependency lengthminimization (DLM) research suggest that, during online
parsing, comprehenders seek to minimize the total length of dependencies in a given
structure since this reduces working memory load (Gibson et al., 2019).

A core objective of current theories of syntax is to explain why language design
is the way it is (Adger, 2019; Narita, 2014), and we have suggested that the FEP can
contribute to this goal. The more efficiently a language user can internally construct
meaningful, hierarchically organized syntactic structures, the more readily they can
use these structures to contribute to the planning and organization of action, reflection
and consolidation of experience, exogenous and endogenous monitoring, imagination
of possible states, adaptive environmental sampling, and the consideration of personal
responsibilities. We used a brief number of examples to demonstrate proof of concept
for how compression algorithms, such as a Kolmogorov complexity estimate, can
provide principled insight into efficiency concerns alongsidemore traditional economy
criteria such as node count and tree-search depth.

Moving beyond, we note that ourmeasures of Kolmogorov complexity in the opera-
tions of natural language syntax are exploiting a highly general, theory-neutralmeasure
of complexity, and that these and other related measures serve to index some underly-
ing, independent process of organic computation, which remains elusive in its formal
character and neural basis.

More broadly, what the FEP can offer theoretical linguistics is proof of principle:
a foundational grounding and means of additional motivation for investigating lan-
guage in terms of efficient computation. The FEP is fundamentally a normative model
(Allen 2018) which can aid the generation of implementational models and can place
constraints on feasibility. Further simulation and modeling work is required to push
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these ideas further for natural language and its various sub-systems, and we envisage
that this type of future work will provide fruitful insights into natural language syntax.
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