On further delimiting the space of bias profiles for polar interrogatives

Hans-Martin Gärtner & Beáta Gyuris

Abstract

In Gärtner & Gyuris (2017) we defined the "bias profile" of an individual polar interrogative clause type as a non-empty choice from the power sets of evidential bias options, $(\wp(\{+^{ev},-^{ev},\%^{ev}\})-\{\emptyset\})$, and epistemic bias options, $(\wp(\{+^{ep},-^{ep},\%^{ep}\})-\{\emptyset\})$, for each of its expressive instantiations as positive polar question (PPQ), and negative polar questions with inside (IN-NPQ) and outside negation (ON-NPQ) in the sense of Ladd (1981). By simple arithmetic we predicted the existence of $(7 \times 7)^3 = 117649$ such bias profiles.

We then explored the "space" of bias profiles and demonstrated a numerical reduction to just $(4\times2)^3 = 512$ permissible types. This was based on differential choices from the sets of evidential and epistemic biases, formulated in terms of the principle of *Static Complementarity* (together with the principle of *Convexity*). In the current brief note, we will show how to considerably cut down options further by in addition imposing a bi-uniqueness constraint on the evidential bias of IN-NPQs.

1 Introduction

In Gärtner & Gyuris (2017) we formally defined the "bias profile" for a polar interrogative clause type as a particular non-empty choice from the power sets of evidential bias options ($\wp(\{+^{ev},-^{ev}, \%^{ev}\})-\{\emptyset\}$) and epistemic bias options, ($\wp(\{+^{ep},-^{ep},\%^{ep}\})-\{\emptyset\}$) for each of its expressive instantiations as positive polar question (PPQ), and negative polar questions with inside (IN-NPQ) and outside negation (ON-NPQ) in the sense of Ladd (1981). As one illustration, we chose Japanese *no*-Interrogatives, i. e., polar interrogative clauses containing the final particle *no*:

(1) Japanese *no*-Interrogative (Sudo 2013: 288)

- a. PPQ: $\langle \{+^{ev}\}, \{+^{ep}, -^{ep}, \%^{ep}\} \rangle$
- b. IN-NPQ: $\langle \{-^{ev}\}, \{+^{ep}\} \rangle$
- c. ON-NPQ: $\langle \{+^{ev}, -^{ev}, \%^{ev}\}, \{+^{ep}\} \rangle$

(1) says that uses of Japanese *no*-interrogatives expressing PPQs (?*p*) require contextual evidence supporting *p*, and they are compatible with the speaker believing *p*, believing $\neg p$, or being "agnostic" about whether *p* or $\neg p$. Uses of Japanese *no*-interrogatives expressing IN-NPQs (? $\neg p$) require contextual evidence supporting

 $\neg p$ and are only compatible with the speaker's (prior) belief/expectation that p. Finally, uses of Japanese *no*-interrogatives expressing ON-NPQs (?~p) are contextually unconstrained and they coincide with uses of IN-NPQs in requiring the speaker to believe or expect that p.

We then pointed out the striking fact that (1) is just one out of a predicted 117649 $[= (7 \times 7)^3]$ different such bias profiles and we went on to discuss constraints that would delimit this curiously large space of options. What we arrived at by extrapolation from a small sample of cases was that a combination of *Static Complementarity* and *Convexity* is the most "effective" approach in that it leaves the considerably reduced number of $(4 \times 2)^3 = 512$ bias profiles. This is graphically represented in (2) (cf. Gärtner & Gyuris 2017: 304).

Black squares correspond to options ruled out by the constraints. *Convexity* categorically disallows the choice of $\{+,-\}$, and (added) *Static Complementarity* limits instantiations of epistemic bias options to just $\{+\}$ or $\{+,-,\%\}$, and confines evidential bias options to the remaining specifications, i.e., $\{-\}$, $\{\%\}$, $\{+,\%\}$, and $\{\%,-\}$.

2 *ev(IN-NPQ)* ⇔ {-}

In the current brief addendum, we would like to introduce another constraint that is almost perfectly true of our sample: The evidential bias of polar interrogatives expressing IN-NPQs is limited to $\{-\}$, as for example in (1b), and, at the same time, $\{-\}$ only occurs with exactly those forms. We abbreviate this constraint as $ev(IN-NPQ) \Leftrightarrow \{-\}$ and illustrate it in (3).

(3)		{+}	{-}	{%}	{+,%}	{+,-}	{%,-}	{+,%,-}
		<i></i>			····	20 - 20 		
PPQ	ev				e	· ·		
	ep							
			A			30 A.		-
IN-NPQ	ev							
	ep							
ON-NPQ	ev				- -			
	ep							_

All by itself (3) is of average effectiveness, as it cuts options down to $6^5(\times 1) =$ 7776. However, once we combine (3) and (2), we are getting quite close to a space whose size fits realistic typological coverage. This is shown in (4).

Numerically, the result of jointly imposing *Static Complementarity*, *Convexity*, and $ev(IN-NPQ) \Leftrightarrow \{-\}$ is $3^2 \times 2^3(\times 1) = 72$.

The idea that something like $ev(IN-NPQ) \Leftrightarrow \{-\}$ has to be assumed to account for question bias can build on earlier literature. Thus, both Büring & Gunlogson (2000: 10) and Reese (2007: 90) formulate a counterpart of ("left-to-right") $ev(IN-NPQ) \Rightarrow \{-\}$.

Note finally, that for the one exception to $ev(IN-NPQ) \Leftrightarrow \{-\}$ arising with Japanese *desho*-Interrogatives, a reanalysis as declaratives plus question tags corresponding to *right*? or *correct*? can independently be plausibilized (cf. Gärtner & Gyuris 2017: 3.1.1).

3 Conclusion

In this brief addendum to the paper by Gärtner & Gyuris (2017), we have shown how imposing a bi-uniqueness constraint on the evidential bias of polar interrogatives expressing negative polar questions with inside negation (IN-NPQs) leads to another substantial reduction of the "space" of bias profile. More concretely, combining $ev(IN-NPQ) \Leftrightarrow \{-\}$ with the previously most "effective" constraints *Static Complementarity* and *Convexity* leads from 512 to just 72 options predicted. It goes without saying that non-trivial formal, semantico-pragmatic, and typological studies remain to be carried out (cf., for example, Gärtner & Gyuris 2022).

Acknowledgment: For comments and questions, we are grateful to Radek Šimík and the audience of the Que-Slav meeting in Prague (January 2023). Common disclaimers apply.

References

- Büring, Daniel & Christine Gunlogson (2000): Aren't positive and negative polar questions the same? Unpublished manuscript, UCLA & UCSC.
- Gärtner, Hans-Martin & Beáta Gyuris (2017): On delimiting the space of bias profiles for polar interrogatives. In: *Linguistische Berichte* 251, 293–316.
- (2022): On the absence of propositional negation from Hungarian polar *e*-interrogatives. In: Studia Linguistica 76, 661–683.
- Ladd, D. Robert (1981): A first look at the semantics and pragmatics of negative questions and tag questions. In: CLS 17, 164–171.
- Reese, Brian (2007): Bias in questions. Ph.D. Dissertation, University of Texas at Austin.
- Sudo, Yasutada (2013): Biased polar questions in English and Japanese. In: Daniel Gutzmann & Hans-Martin G\u00e4rtner (eds.), Beyond expressives: Explorations in use-conditional meaning. Leiden: Brill, 277–297.

Budapest

Hans-Martin Gärtner & Beáta Gyuris

Hungarian Research Centre for Linguistics, Benczúr u. 33., 1068 Budapest VI. Hungary. E-Mail: hans-martin.gaertner@nytud.hu, gyuris.beata@nytud.hu