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To properly understand how a Large Language Model (LLM) learns and processes language, it is essential not to
force a linguistic logic on it but to start from that model’s architecture. Based on the latter, parallels with language
learning by humans should be sought. This article introduces the first component of an LLM, the tokenizer, and
compares the various tokenization steps with language structure, as known from linguistic research, and with
language learning by humans, specifically with well-known facts from first language acquisition (L1). Such an
approach highlights unexpected similarities between machines and humans with respect to language. Given that an
LLM does not operate with words or semantics, both traditionally seen as core elements of human language and
cognition, the focus is on basic units and form-meaning mapping. The latest version of the GPT tokenizer,
o200k_base, serves as a primary source of data.

1 Introduction

Recent developments in computer science (CS) and natural language processing (NLP) such as
LLMs have significantly challenged linguistic research. Linguistics is, among other things,
theory-oriented, i.e., (co-)working within a specific theory is essential for making a career; CS is
solution-oriented, i.e., the focus is on task-solving. Thus, while in linguistics, scholars are grouped
around competing theories and a person putting forward a solution outside an official theory is
practically doomed, computer scientists are aware that every problem has more than one solution,
that alternative solutions differ in complexity and the simplest solution is the most valuable, which
thus makes efficient novel solutions (e.g., LLMs) widely welcomed. Additionally, in the past 70
years or so, linguistics has been dominated by a single theory, the so-called Chomskyan approach.
This single-centeredness of the field has further hindered advancement and discoveries.
Consequently, neither Chomskyan formal grammar nor any other linguistic theory has managed to
generate fluent language; and computer scientists could solve this very linguistic task for a record
time. This situation called for explanations and some highly influential linguists, including Noam
Chomsky, have indeed addressed the issue, but the narrative has been in a linguistic manner:
(approximately) Everything outside my theory is mistaken because it does not follow the logic of my
theory (Chomsky et al. 2023, among many others). This situation has also influenced the way LLMs
have been analyzed on the linguistic side, which has been of the type: Since my theory operates with
syntax and semantics, I test the syntactic and semantic knowledge of LLMs (Haider 20231, among
many others). The fact that ChatGPT does not work with words and grammar, which is essential for
having syntax and semantics, has been ignored. Virtually nobody has paid attention to the
architecture of LLMs and asked why those models must be perfectly competent in grammar if they
do not have any?

For various reasons (from company secrets to answers of scientific questions that nobody
has), we do not know all the secrets of LLMs. Nevertheless, there are a few things in which we can
be sure, e.g.: LLMs generate language linearly, adding one token at a time; this can be observed
directly when an LLM writes a text. Algorithms in different LLMs may vary but all models have the
same architecture that starts with a tokenizer.

In this article, I focus on ChatGPT. A GPT (Generative Pre-trained Transformer) is a type
of an LLM based on an artificial neural network (transformer architecture) and pre-trained on

1 He has meanwhile posted a new version (October 2024): lingbuzz/007285.
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large data sets of unlabeled text. Throughout the paper, I use the abbreviations GPT, ChatGPT, and
LLM interchangeably.

My goal is to turn the attention of the community to the way LLMs have been tested and
analyzed in linguistics. I claim that in order to properly understand an LLM and its linguistic
errors, it is essential not to force a linguistic logic on the model but to start from that model’s
architecture. This approach highlights unexpected similarities between LLMs and humans with
respect to language and learning. Given that an LLM does not operate with words or semantics,
which are traditionally seen as core elements of human language and cognition, the focus is on
basic units and form-meaning mismatches.

The text has the following structure: Section 2 discusses basic units with data from the latest
version of the ChatGPT tokenizer, o200k_base; Section 3 is devoted to form-meaning mapping and
related issues; Section 4 accommodates a comparison of human and machine learning, based on
well-known facts from L1; and in Section 5 conclusions are drawn.

2 Basic units

The first component of an LLM is the tokenizer. In the existing GPT models, the tokenizer is
outside the neural network (NN) and undergoes its own training and fine-tuning (Karpathy 2024).
The tokenizers of the GPT models2 can be accessed from the OpenAI website
(https://platform.openai.com/tokenizer). An alternative resource is the tokenizer playground
(https://gptforwork.com/tools/tokenizer), which also provides lists of tokens. I use the playground
throughout the paper.

ChatGPT’s tokenization algorithm is Tiktoken (https://github.com/openai/tiktoken) and
involves Byte-Pair Encoding (Sennrich 2016), see Section 2.1 through Section 2.3. Tokenization
makes possible the representation of a large amount of text with a small set of units (tokens) and
includes the following steps (based on Manova 2023, 2024a):

2.1 Extraction of basic characters (initialization of the vocabulary)
Basic characters are the unique characters that serve for token building. For example, given the
corpus of words in (1), the basic characters are those in (2):

(1) Initial corpus: “ab”, “bc”, “bcd”, “cde”

(2) Basic characters: {"a", "b", "c", "d", "e"}

Establishing a set of basic characters is an easy task if the corpus is small but a challenging one if
the corpus is very large (as is the case with an LLM). An optimal set of basic characters is
important because missing characters hinder understanding and generation, due to
out-of-vocabulary items, i.e. some items become unidentifiable.

Overall, this tokenization step is the parallel of having an alphabet in a human language.

2.2 Token building
Tokens can be subword units and whole words and are established in terms of the most frequent
combinations of pairs of neighbor characters. In our case, based on the corpus in (1), the most
frequent combination is that of “bc”; thus “bc” will be merged and further treated as a single
2 Allmar (2023) introduces tokenizers used in different LLMs, also outside the GPT series.

2

https://platform.openai.com/tokenizer
https://gptforwork.com/tools/tokenizer
https://github.com/openai/tiktoken


character. The combination “cd” does not count as the most frequent because it occupies
different positions: the beginning of “cde” but the end of “bcd”, and since the algorithm is
positional, two different “cd” are recognized. The algorithm merges two characters at a step
until a desired vocabulary size is reached. Therefore, ChatGPT 4 has a 100K vocabulary, while
ChatGPT4o has a 200K vocabulary. Some of the tokens are subword units, others are whole
words; of the subword units some coincide with morphemes, others do not.

Overall, this step is the parallel of establishing morphemes and highly frequent (short)
words in a human language, and listing them in the mental lexicon; the vocabulary size can be
seen as a frequency threshold for lexicon inclusion.

2.3 Assignment of token IDs
At this step, tokens are turned into numbers, token IDs, which enter the NN, i.e., the NN never sees
language but only token IDs. When the NN is ready with the solution of a task, the result is decoded
from IDs to text.

Let me illustrate this step with the text in (3). (This text is used for various purposes
throughout the paper).

(3) Recently much attention has been paid to whether large language models (LLMs) can serve as
theories of language (Piantadosi 2023 and replies to other scholars in it). Unfortunately, the
discussion has been kept at an abstract level and virtually nothing has been said about how LLMs
work technically and what their internal organization means for linguistic theory (LT). My
research fills this gap. Since algorithms in different LLMs may differ, I focus on ChatGPT.
ChatGPT has a vocabulary of 100k tokens. Tokenization makes possible the representation of a
large amount of text with a small set of subword units (tokens). Most of the tokens coincide with
linguistic units and are letters (phonemes), morphemes or words. ChatGPT seems to relate to
major claims of major linguistic theories, as well as to major findings of research in
psycholinguistics. The most significant difference between LT and ChatGPT consists in the fact
that LT is level-based, in the sense that phonology manipulates phonemes, morphology
manipulates morphemes and syntax combines words (and morphemes in Distributed
Morphology). The order of phonology, morphology and syntax in the architecture of the grammar
is theory-dependent: Phonology and morphology may precede or follow syntax. By contrast,
ChatGPT works with linear sequences of tokens and phonology, morphology and syntax take
place simultaneously. In other words, ChatGPT elevates phonology and morphology to the level
of syntax. *Note*: More on ChatGPT in lingbuzz/008135, "A reply to Moro et alia’s claim that
“LLMs can produce ‘impossible’ languages".

Manova (2024c), Abstract, lingbuzz/008123

Figure 1 gives the text tokenization of the beginning of (3), every token is in a different color.
Figure 2 contains the token IDs of the text from Figure 1.
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Figure 1: Text tokenization

Figure 2: Token IDs

Figure 1 through Figure 4, and Figure 11, are screenshots of the tokenizer playground; the
tokenization method is ChatGPT-4o, o200k_base, see Figure 3.

Figure 3: Tokenization method
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The tokenizer playground also displays the numbers of tokens, words, and characters in the analyzed
text (the whole text in (3)), see Figure 4.

Figure 4: Numbers of tokens, words, and character in the text in (3)

Thus, although the first impression could be that almost all tokens are words, as Figure 4 shows
tokens and words differ and the former are a larger number than the latter.

All in all, this tokenization step could be seen as optimizations in the mental lexicon (as a
matter of fact, linguists do not know in what format language information is stored in the mental
lexicon).

In the limited space of this article, I cannot explain tokenization in detail, but the curious
reader can find additional information in Manova (2024a), from a linguistic point of view, and in
Karpathy (2024), from a CS point of view.

Having introduced tokenization, let me return to my claim that when testing a model, we
should not force a linguistic logic on it but start from that model’s architecture.

ChatGPT can produce human-like language, words are basic units in human languages
(maybe, except in polysynthetic languages), and one intuitively expects words to be basic units
in ChatGPT, too. However, as we have seen so far, the GPT’s architecture is not word-based.
Thus, if I am right that we can properly assess a model only through its architecture, a
token-based model such as ChatGPT should not be good at doing things with words. In what
follows, I illustrate that this is indeed the case. The prompt and the ChatGPT’s answer are in
Figure 5. Throughout the paper I use the free version of ChatGPT (temporary chat), specifically
ChatGPT-4o.
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Figure 5: ChatGPT counting the word ‘phonology’ in the text in (3)

Finding and counting words in a text is a trivial task and many tools have this as an integral part.
I used such a tool in Figure 6. The word ‘phonology’ occurs five times, six times according to
ChaGPT.

Figure 6: Occurrences of “phonology” (“Find in page” function)

Since it is possible that the erroneous counting was by chance, I asked ChatGPT to count the
appearance of another word. After a very brief conversation with the model, Figure (7), I asked
how many times the word ‘token’ occurs in the same text, Figure (8). Obviously, after our
conversation, ChatGPT became “extra careful” (in its words) and changed the counting strategy.
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Figure 7: A conversation with ChatGPT why it cannot count repeated words properly

Figure 8: ChatGPT counting the number of occurrences of “token”

Counting “token” with the “Find in page” function: “token” occurs five times, six according to
ChatGPT.

Figure 9: Occurrences of “token” (“Find in page” function)

To understand what is going on, imagine a speaker of a language who has not been taught
how to recognize words. They could have some intuition, but would such a person be able to
count repeated words correctly? Likewise for ChatGPT, it needs to be taught how to count
words, i.e. it needs a clear definition of ‘word’, one formulated in a language that the model
understands: r'\b\w+\b'. This is a regular Python expression used to match words in a string.

I have asked all ChatGPT versions so far to count repeated words and they all have had
an issue with the task. At some point, one of the models suggested the Python program in Figure
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10 as a helping strategy. The program counts all repeated words in a text. The code was run
outside of ChatGPT. The output is in (4).

Explanation of the code in Figure 10:
● # indicates a comment.
● r' denotes a raw string, which means that the backslashes (`\`) are treated as literal

characters and not as escape characters.
● \b denotes a word boundary, a position where a word character is not followed / preceded

by another word character.
● \w matches any word character.
● + means one or more preceding elements, i.e. \w+ matches sequences of one or more

word characters.

Figure 10: Python code to count repeated words in a text

(4) Output of the code in Figure 10, the tokens counted in Figures 5, 6 and Figures 8, 9 are in
bold:
{'has': 4, 'been': 3, 'to': 7, 'large': 2, 'language': 2, 'llms': 4, 'can': 2, 'as': 3, 'theories': 2, 'of':
12, 'and': 12, 'other': 2, 'in': 9, 'the': 10, 'level': 3, 'linguistic': 3, 'theory': 2, 'lt': 3, 'research':
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2, 'may': 2, 'on': 2, 'chatgpt': 7, 'a': 4, 'tokens': 4, 'with': 3, 'units': 2, 'most': 2, 'phonemes':
2, 'morphemes': 3, 'or': 2, 'words': 3, 'major': 3, 'that': 3, 'is': 2, 'phonology': 5,
'manipulates': 2, 'morphology': 6, 'syntax': 5}

As can be seen from (4), the counts for “tokens” and “phonology” are now correct (“token” does
not occur in the text).

For the sake of completeness, when I asked ChatGPT to count the number of tokens in
the same text, I was referred, with a hyperlink, to OpenAI’s Tokenizer. ChatGPT explained that it
did not have direct access to the Tokenizer (recall that the tokenizer is outside the NN).

Overall, with respect to word counting ChatGPT seems to behave like a human being: it
may make mistakes, but if the model is taught how to complete the task, i.e. if ‘word’ is clearly
defined, the counting is correct.

Now, why are there different tokenization methods? The answer is very simple: Because
ChatGPT is expected to solve not only linguistic tasks and different tasks require access to
different types of information. Therefore, ChatGPT-4o has a vocabulary of 200K tokens (cf.
ChatGPT 3.5 with 100K tokens). The vocabulary has been enriched with information necessary,
e.g., for coding. How can we check this? A program is often aligned in a specific way (see
Figure 10), and in the latest version of the tokenizer, we do find a large number of tokens
consisting only of free spaces (Alammar 2023, Alammar and Grootendorst 2024), see Figure 11.

Figure 11: Some of the tokens in o200k_base associated with free space of different lengths,
https://gptforwork.com/tools/tokenizer
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3 Form-meaning mapping

Form-meaning mapping, especially the mismatches, are a central issue in linguistics. The
problem is particularly prominent in morphology and syntax, and there is much research on the
topic. Morphology in particular can be seen as a field of form-meaning mismatches: syncretism,
zero suffix, allomorphy, suppletion, to mention just a few phenomena. However, all such
form-meaning mismatches seem to arise artificially, as a side effect of the way morphological
analyses are carried out: morphology analyzes sets of single words, and an additional word is
usually enough to resolve the mismatch. For example, zero suffix: play is ambiguous between a
noun and a verb, but I play and interesting play are both easy to classify: the first play is a verb,
the second is a noun. In syntax, form-meaning issues are often illustrated with long-distance
phenomena; and unlike in morphology, an example of the problem, as a rule, involves form
longer than a word (but shorter than a sentence). Both morphological and syntactic mismatches
do not exist for an LLM. This fact has a very simple explanation: tokens are not associated with
meaning. Now a logical question arises: If, for an LLM, language is a long sequence of tokens
that have form but no meaning, how does that LLM manage to generate a human-like language?
An LLM solves this problem in an elegant way: Language is understood and generated in terms
of long sequences of tokens, at least as long as a sentence. Here I mean the length of prompts and
and the length of answers in the ChatGPT context window. In a text of a sentence length or
longer, all ambiguities are resolved, i.e., the correspondence between meaning and form is
one-to-one. Thus for such sequences, it doesn’t matter whether language is modeled as form or as
meaning. LLMs work with the formal side because form appears more constrained and easier to
quantify in comparison to meaning. In other words, ChatGPT processes only sequences of tokens
with isomorphic mapping of meaning and form. Additionally, a computer does not really need to
understand language in order to process it (cf. Manova et al. 2020), plus recall that the NN of a
LLM does not see language but only token IDs. Here a comparison with computer vision should
be made: the computer identifies images in terms of patterns of pixels, it doesn’t see pictures. In
the limited space of this article, I cannot go into details but a comparison with computer vision
can be very helpful for understanding LLM’s language processing.

To the best of my knowledge, the fact that tokens are not associated with meaning has not
been addressed in linguistic research so far. For a linguist, language in terms of forms without
meaning is simply impossible. Nevertheless, in a recent article in Nature, cognitive scientists
with a linguistic background (Fedorenko et al. 2024, Fedorenko in Stix’s 2024 interview), claim
that language is separate from thought. They assume that language unites meaning and form but
that these two are independent from thought. Unfortunately, they do not specify what type of a
substance is meaning (e.g., meanings of abstract words or sentences expressing philosophical
thoughts)? Fedorenko in Stix (2024) also claims that words are not necessary for thinking, cf.
LLMs’ tokens. Given the fact that LLMs, without words and semantics, successfully generate
human-like language, it seems to me that they provide evidence for meaning overarching
thought, the latter in the sense of Fedorenko. This is a complex topic that needs profound
investigation, yet it is unquestionable that language form and language meaning (or thought)
exist separately. Based on facts from L1, I return to this issue in the next section.

10



4 Language learning by humans and machines

So far, I have focused on the first component of the GPT’s architecture, the tokenizer, and the
GPT’s vocabulary (roughly, the GPT’s mental lexicon). I demonstrated that each tokenization
step has a parallel in human language structure and that an LLM’s vocabulary contains a set of
characters (roughly, letters) used for building of subword units (roughly, morphemes and (short)
highly frequent words), and some non-linguistic forms such as, e.g., free spaces. This section
tackles how all this relates to language learning by humans. This question is of particular
importance because a GPT model does not work with words and its basic units, the tokens, are
semantically empty.

Language learning is illustrated with L1, for two reasons: (i) the tokenizer is the first
component of an LLM and thus appears the logical parallel of the early stages of L1; and (ii) L1
has been extensively researched and learning stages identified, the latter are referred to in almost
all L1 studies. “As children learn to talk, they go through a series of stages” (Clark 2024: 14-15),
the initial ones being babbling and the one-word stage, followed by a two-word stage, and so on.
This division into stages reminds what is going on during tokenization: the initialization of the
vocabulary seems to be the parallel of the babbling stage, the establishing of tokens and most
frequent (short) words seems to correspond to the one-word stage. Everything learned (at the
tokenization level / the early stages of L1) enters the LLM’s vocabulary / the child’s mental
lexicon, respectively; the GPT’s NN and the human brain (a biological NN) then start operating
with what is in the vocabulary / the mental lexicon to produce sequences of words, crucially by
adding one unit at a time. Thus, an LLM derives sequences of tokens step-by step (on the LLM’s
language learning, training and fine-tuning of the NN, Karpathy 2023)3, while in L1 the
one-word stage is followed by a two-word stage, and so on. Additionally, as we have seen in the
previous section, an LLM clearly separates form from meaning, working only with forms. The
same separation of form and meaning can be observed in L1: a child learns only forms, the
meaning comes from outside (usually from parents and other people). Meaning is not something
objective and, e.g., a parent may teach a child to associate a wrong (arbitrary) meaning with a
form (sequence of sounds). It is also possible that meaning is not provided at all, e.g., if a child
grows in isolation. Furthermore, like in an LLM, in L1, especially in its early stages, the
association of meaning and form is isomorphic: no adult tells all the meanings of a polysemous
word to a child. I am aware that this very brief comparison of LLM’s language learning with L1
is not the whole story; things are much more complex. But I hope to spark interest in these issues
among L1 researchers because the problems deserve serious investigation, including whether
children use words for L1.

5 Conclusions

To understand how an LLM learns and processes language, it is essential not to force a linguistic
logic on it but to start from that model’s architecture and to compare the latter to human language
structure and learning. I tackled the first component of an LLM, the tokenizer. All tokenization
steps have correspondences in a human language: alphabet, morphemization, frequent (short)
words. Tokens, the basic units in an LLM, are not associated with semantics. Letters, subword
units, and words are listed in the LLM’s vocabulary that appears to be the parallel of a human’s

3 Karpathy tends to call tokens words, which could lead to confusions.
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mental lexicon. What goes on in an LLM with respect to language learning resembles human L1
learning very much.
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Tokenizers
GPT tokenizer playground: https://gptforwork.com/tools/tokenizer
OpenAI Tokenizer: https://platform.openai.com/tokenizer
OpenAI Tiktoken: https://github.com/openai/tiktoken
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