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Abstract 

Harmonic word order is a well-established tendency in natural languages, which has 
previously been explained as a single ordering rule for all head-dependent relations. We 
propose that it can be more parsimoniously explained as an outcome of word-class 
frequencies, where the purported ‘head’ is the most frequently instantiated word class in 
a phrasal schema. We show that the most frequent class gravitates spontaneously to an 
edge position in a phrasal replication process, as long as words of one class may 
influence the position of words of another class. This avoids the need to posit head-
dependent ordering as an innate rule or bias, simplifying our theory of word order. We 
demonstrate the spontaneous emergence of harmony from word-class frequencies using 
a simple computational model of phrasal replication, and in further extensions show that 
the principle remains robust with fuzzy word classes and multi-word chunks, can capture 
competition between harmony and locality, and is compatible with the results of 
behavioural experiments on harmonic ordering. Our findings support further exploration 
of syntactic models with non-discrete word classes. 
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1. Introduction 

Harmonic ordering of heads and dependents is one of the best known cross-linguistic 
patterns in syntax (Biberauer & Sheehan 2013). For example, a noun and its dependent 
modifiers tend to be arranged with all dependents on the same side, either preceding the 
head as in the English noun phrase those two long fish-nets, or following the head as in 
Mauwake mera-sia maala erup nain (fish-net long two those) (Berghäll 2016: 231). This is 
a case of ‘parallel’ harmony within a single phrasal level, while other structures exhibit 
‘hierarchical’ harmony across nested levels (Jing et al. 2022). As we will see below, it is 
parallel harmony that poses the more difficult challenge to our theories of word order.  

In this article we propose a simple explanation for parallel harmonic order, which 
has hitherto been overlooked. We show that heads may be preferentially positioned at a 
phrase edge simply because they are the most frequent word-class in the phrase. We 
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demonstrate this using a simple word ordering algorithm that samples previous phrases 
and replicates their structure. Crucially, this algorithm allows for certain well-defined 
mismatches between a new phrase and a previous phrase. This makes the process 
powerful enough to produce novel orders, but also turns out to be sufficient to produce 
harmonic ordering. Our ‘replication-with-modification’ approach is compatible with 
dynamic approaches to syntax, including evolutionary processes where syntax develops 
incrementally (Progovac 2015; Diessel 2019). Besides revealing a fundamental 
relationship between word-class frequency and harmonic order, our model also elegantly 
captures the competitive relationship between harmony and locality (Gildea & 
Temperley 2010). 

We assume that words belong to word classes, and that the ‘head’ can be defined 
as the word class that is most frequently instantiated in a phrase type. As we will see 
below, this is consistent with most views in the literature on heads, and has the 
advantage of replacing theory-internal concepts of headedness with a clearly measurable 
criterion. Our most crucial assumption is that words of different classes can influence 
one another, for example a previous phrase of the form X-Y may favour a new phrase of 
the form X-Z, rather than Z-X. Words of different classes, ‘Y’ and ‘Z’, preferably go in 
the same position relative to a constant class ‘X’. Similar assumptions may be required 
for any model of word-order harmony, since harmony by definition involves similar 
positioning of distinct classes. But we will argue that this type of different-class matching 
is all we need to explain harmony, while head-dependent ordering rules can be 
jettisoned, since differential word-class frequencies already produce the type of 
asymmetric phrase structures we seek to explain. Parallel harmonic order can therefore 
be restated as: the word class with the highest frequency is at the edge of the phrase. 

The reinterpretation of headedness in terms of frequency is in line with the idea 
that the head of a phrase is an obligatory element (e.g. Hengeveld et al. 2004: 530), 
following an older idea that the phrase as a whole has a similar syntactic distribution to 
the head (Bloomfield 1933; Wells 1947). If the head is obligatory, this implies that it 
should be more frequent than non-obligatory elements. In fact heads are not strictly 
obligatory, as seen in examples like the poor, where the noun phrase lacks a noun. But 
our frequency approach avoids this problem, since ‘the most frequent element’ covers 
both cases of actual obligatoriness and near-obligatoriness. A more serious limitation of 
headedness is the lack of theoretical clarity about what it means for a word to be the 
head of a phrase, or how to identify heads (Fraser et al. 1993; Croft 1996). Some models 
of grammar treat headedness as a theoretical primitive, without explanation (e.g. 
Tesnière 2015 [1966]: 5; Kahane & Osborne 2015: lxi). Headedness may also have an 
important theory-internal function (e.g. Kornai & Pullum 1990), but this may not clarify 
its relevance outside of that theoretical framework. Rigorous analyses of purported head 
properties have found that they do not align on the same phrasal elements, which leads 
to fragmentation of the concept, or a range of quite different concepts sharing the same 
terminological label (Zwicky 1985; Lander 2022; Freywald & Simon 2022). This makes 
the concept of headedness dangerously flexible. Thus one advantage of our approach is 
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that it replaces a protean concept with a clearly measurable concept, namely frequency. 
We also thus avoid unresolved (or unresolvable) debates about whether head of the noun 
phrase is really the noun or the determiner (Salzmann 2020). What we are really 
interested in is the most frequent word class. 

Since we assume the potential for interaction between different word classes, our 
approach is incompatible with theories of grammar in which word classes are 
functionally discrete categories. In much of the psycholinguistic and computational 
modelling literature, syntactic categories are treated as sets of discrete symbols such as 
{N, V, Adj…} or {S, V, O…}, but it is arguably more reasonable to allow for some type 
of interaction or relationship between categories. There is a substantial tradition in 
typological linguistics of treating word classes as gradient or ‘fuzzy’ categories (for an 
overview see Keizer 2023), based for example on degrees of lexical overlap between 
categories, or distributional similarities between categories. In some work, individual 
words are treated as more or less prototypical members of syntactic categories (e.g. 
Crystal 1967; Auwera & Gast 2010), which may also imply that words of different 
classes can have degrees of similarity to one another. Other approaches assume that 
word classes are built from discrete categorical features, but each class is a composite of 
such features, with feature-sharing between classes (for an overview see Zeijlstra 2023). 
While sanitised data tends to allocate each word to a unique category, in practice 
linguists are not always able to decisively assign words to classes, since individual words 
may have characteristics of more than one class (e.g. Lyons 1999: 34; Hurford 2012: 309; 
Taylor 2014: 183). Thus while word classes continue to be treated as fully discrete in 
much of the literature, this appears to be a practical simplification rather than a 
motivated decision. The current study contributes to an alternative approach in which 
word classes are not fully discrete, in ways to be elaborated below. 

Below we will first show that, despite an extensive literature on harmonic word 
order, parallel harmonic order still demands a stronger theoretical explanation (§2). We 
describe the genesis of our new approach and motivate our use of a maximally simple 
replication process, as opposed to a more complex psycholinguistic model (§3). We then 
explain the replication-with-modification algorithm conceptually (§4), before illustrating 
both the outputs of a computational implementation, and some analytical mathematical 
results (§5). In the second half of the article, we explore several extensions to the basic 
algorithm, demonstrating its applicability beyond the noun phrase, and its compatibility 
with psycholinguistic theories and phenomena (§6). Code, data, supplementary analyses 
and formal mathematical description are available in an open data repository.1 

2. Types of harmony, and competition with locality 

There are two distinct types of harmonic word order, parallel and hierarchical (Jing et al. 
2022). Noun-phrase examples like those two long nets exhibit PARALLEL harmony (Figure 
1a), where multiple dependents of the same head are arranged in the same direction. 

 
1 https://osf.io/m94en/  
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HIERARCHICAL harmony (Figure 1b) instead involves the dependent in one relation 
being the head in another relation, for example a matrix verb with a dependent verb, 
which in turn has a dependent noun object.  

 
Figure 1. (a) Parallel harmonic order; (b) Hierarchical harmonic order. 

 
There is substantial evidence for word-order harmony in natural languages, though this 
is a statistical tendency rather than a hard constraint. Evidence has been found in 
typological research (Greenberg 1963; Dryer 1992; Dryer 2018), and more recently, 
phylogenetic modelling of word-order changes, which shows that word orders are more 
likely to change into harmonic configurations than disharmonic (Jäger & Wahle 2021). 
The evidence for a harmonic ordering bias is found both in hierarchical structure (clause-
level dependencies tend to have the same direction as dependencies within clausal 
arguments), and in parallel structure (multiple noun modifiers tend to be on the same 
side of the noun, and multiple arguments tend to be on the same side of the verb). 
Arguably the clearest parallel tendency is among the noun modifiers: adjective, number 
and demonstrative words tend to be positioned on the same side of the noun in a noun 
phrase (Dryer 2018; Jäger & Wahle 2021). There is also psycholinguistic evidence for a 
learning bias favouring harmonic noun-phrases (Culbertson et al. 2012; Culbertson & 
Newport 2015; Culbertson & Newport 2017; Culbertson & Franck & et al. 2020). We 
will see below that across diverse languages, the noun is consistently the most frequent 
word class in the noun phrase, which motivates the reinterpretation of noun-phrase 
harmony in terms of word-class frequency. Throughout the article we will take the noun 
phrase as our main example, though in fact our algorithm is quite general and can be 
applied to other grammatical structures, including clausal ordering (§6.1).  

Harmony interacts with another major ordering property, locality. In locality 
theory, language comprehension requires integrating words that are syntactically 
composed with one another, and this is easier when the words are in linear proximity, or 
‘local’ to one another (Hawkins 1994; Gibson 2000). Harmony interacts with locality in 
complex ways, once the aggregate dependency lengths of a sentence are taken into 
account (Futrell & Levy & et al. 2020; Jing et al. 2022). But in simplest terms, 
hierarchical harmony satisfies locality, while parallel harmony violates it (Gildea & 
Temperley 2010). The pro-locality effect of hierarchical harmony can be seen in Figure 
1b, where each pair of words linked by a dependency is maximally local to one another. 
Computational modelling also supports the idea that hierarchical harmony is driven by 
the need to shorten dependency lengths (Christiansen & Devlin 1997). Thus the drive for 
locality may provide an explanation for hierarchical harmonic order. However, this 
explanation does not extend to parallel harmonic order. For example, in Figure 1a, the 
harmonic ordering of parallel dependents creates an anti-locality effect, with longer 
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dependencies (Hahn & Xu 2022). Therefore, it is specifically parallel harmonic order that 
is in stark need of theoretical explanation, and which is the focus of the current study.  

Previous explanations of harmonic word order make their own claims for 
simplicity. One approach evokes a highly general grammatical rule, which specifies the 
direction of dependency linearisation for all word combinations (Venneman 1973; 
Venneman 1974). A similar idea can be found in ‘principles and parameters’ theory, 
where a single head-direction parameter could theoretically reduce the complexity of 
grammar (Chomsky 1981; Travis 1984). A single direction rule could simplify grammars 
by avoiding the need for specific linearisation rules for specific word classes, instead 
having just one rule covering for all head-dependent relations. However, one problem 
with this approach is the flexibility of the concept of ‘headedness’, as described above. 
This problem has already been acknowledged in previous work, noting for example that 
different annotation decisions about heads have potential to drastically alter research 
results (Song 2018: 245; de Marneffe & Nivre 2019). Another problem with a generalised 
linearisation rule is that it takes an ‘all or nothing’ approach, where all dependencies, 
both parallel and hierarchical, should go in the same direction (Hawkins 1980). But the 
evidence suggests that languages tend to have only a relatively consistent dependency 
linearisation, rather than being wholly consistent (Dryer 2018; Jing et al. 2022). Thus a 
‘total harmony’ rule does not fit the data well, and we should instead seek a dynamic 
model that can generate probabilistic harmony.2 

3. The virtue of simplicity 

In this study we offer a novel explanation for parallel harmonic order, based on the 
differential frequency of word classes. We show that in a simple phrasal replication 
algorithm, the most frequent word class naturally gravitates to an edge, offering a 
parsimonious explanation for parallel harmony in natural languages. But before we 
demonstrate this principle, it is worth clarifying some differences between our approach 
and other computational modelling work, and the relevance of abstract algorithms to 
natural language phenomena. Since our proposal has no clear precedent in syntactic 
theory, we also describe how we arrived at the idea that harmony is driven by word-class 
frequency. 

Much other computational work simulates psycholinguistic processes of syntactic 
learning and production (e.g. Lupyan & Christiansen 2002; Everbroeck 2003; Chang et 
al. 2006; McCauley & Christiansen 2019), or agent-based processes of cultural 
transmission (e.g. Baxter et al. 2006; Griffiths & Kalish 2007; Smith & Wonnacott 2010; 
Smith et al. 2017; Blythe & Croft 2021; Motamedi et al. 2022). The current study is very 
different to these, presenting a simple replication algorithm rather than a 
psycholinguistic model. Furthermore, while many computational models aim to 

 
2 Other theories propose that all branching has the same underlying direction, though this is not directly 
observable due to intervening movement operations (e.g. Kayne 1994). But movement operations add 
their own complexity to the grammar, and it is therefore debateable whether the underlying-simplicity 
model really results in an overall simpler grammar or not (Culicover & Jackendoff 2005: 47, 83). 
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recapitulate the exact word orders found in natural corpus data (Chang et al. 2008), we 
instead focus purely on the degree of harmony in our model outputs.  
 Our current approach grew out of exploratory work aiming to simulate the 
emergence of syntactic categories and phrase structure, while approximating 
psychological processes. The simulations required relatively complex models 
incorporating semantic similarity, memory decay, entrenchment and chunking, and 
while they produced some language-like outputs, we ultimately concluded that model 
complexity made the results difficult to interpret.3  However, we also observed that 
harmonic ordering emerged in almost all simulations, likely due to fuzzy matching 
between word classes. This led to the following hypothesis: that whenever words of 
different syntactic categories have an influence on each other’s positioning, this 
predominantly affects the less-frequent categories, leaving the most frequent category 
positioned at one edge of the phrase. The current study investigates this hypothesis, and 
in contrast to our exploratory work, aims to formalise it in the simplest possible way. 

A simpler algorithm for word order more clearly demonstrates the relationship 
between harmony and word-class frequency. We here present a model using the fewest 
possible ingredients, where phrasal ordering assumes nothing more than the consistent 
linear positioning of word classes (cf. Mansfield et al. 2020; Mansfield et al. 2022), as 
well as the potential for interaction between classes. More complex models may better 
approximate natural language processes, but with more complex models, such as 
artificial neural networks, it is not always completely clear why they work (Zhang et al. 
2021). Our aim in this study is to provide a stronger theoretical explanation for harmony, 
rather than modelling its instantiation in natural languages. 

While our basic algorithm is very simple, we nonetheless claim that it is 
compatible with psycholinguistic processes. To support this, in the second half of the 
article we demonstrate some extensions to our model that integrate fuzzy word classes 
and multi-word chunking. In the supplementary analyses we also demonstrate an 
extension with iterative learning. We show that our algorithm still produces harmonic 
order when combined with these other mechanisms. The success of these extended 
simulations suggests that frequency-based harmony is indeed relevant to real-world 
linguistic processes, rather than being of purely theoretical interest. We also discuss 
potential compatibility with psychological experiments on harmonic ordering, and with 
general models of syntactic learning and production. Since our notion of phrasal 
replication makes very few assumptions, we expect that it could be integrated into a wide 
range of learning and production mechanisms – essentially, any dynamic system where 
syntactic production replicates input data, and syntactic categories are not fully discrete.  

 
3 This exploratory work (by the first author) has been archived in a research repository: 
https://osf.io/m94en/  
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4. Ordering phrases by replication-with-modification 

In this section we explain our model of word order on a conceptual level, laying out the 
theoretical primitives. We here provide a relatively informal description, while a 
mathematical formalised version is included in the data repository.  

Let us assume that phrase structure imposes a linear order on linguistic 
expressions, each of which consists of one or more words belonging to a finite set of 
word classes, c1, c2 … cn. Whichever of these classes occurs most frequently in a phrase 
type we will call cF. Note that if one word class is obligatorily present in every phrase, 

this is just a special case of cF.4 Phrase structure is the consistent relative ordering of word 
classes in a phrase type, and parallel harmony is satisfied whenever cF is either first or last 
in this order. Thus harmonic structures include [cF-c1-c2], [cF-c2-c1], [c1-c2-cF], etc., while 

disharmonic structures include [c1-cF-c2], [c2-cF-c1], etc. Natural language also involves 
hierarchical structures, where phrases are linearised inside phrases, but in this study we 
focus on the problem of linearising a simple phrase. 
 To explain harmonic order, rather than merely stipulating it, we develop a model 
where word order has no inherent fixed rules, but instead develops consistent patterns 
under the influence of other principles. Starting from a completely unstructured state, 
where all possible word orders are equiprobable, consistent ordering can develop from a 
sampling regime. Finite samples tend to under-represent actual diversity (e.g. Chao & 
Shen 2003; Meinhardt et al. 2022), and when we recursively take finite samples, then 
add them to the pool from which further samples are taken, such processes gradually 
converge on fewer variants. In terms of word order, sampling regimes can therefore 
converge on relatively fixed word orders. Our core process involves the replication of 
samples: each new expression is linearised by replicating previous phrases, or more 
concretely, positioning words of the same class in the same linear positions, as in these 
black cats and those brown dogs (Mansfield et al. 2022; Herce et al. 2023). But there are 
limitations to any system that can only replicate based on complete one-to-one matching 
of word classes. A replication process is under-powered if it cannot order new word-class 
combinations, for example ordering an expression {N, Adj, Det}, when only expressions 
combining {N, Adj} and {N, Det} have been previously linearised. This requires a 
replication algorithm that can match a three-word phrase against two-word phrases. 
Furthermore, it may be that any model producing harmonic order must permit some 
form of matching between distinct classes, since between-class relations are at the core of 
harmony. Both ordering novel expression types, and interaction between classes, can be 
achieved using replication-with-modification, where new phrases approximate sampled 
phrases, rather than being limited to exact matches. We need a replication algorithm that 
preferentially matches words of the same class, but can also match words of distinct 
classes. This also reflects the idea that word classes are not fully discrete, but rather have 

 
4 The proposal does not account for situations where two or more word classes are obligatory in a phrase, 
or have equal highest frequency. We also assume that, in the majority of instances, each class appears 
maximally once per phrase. Multiple adjectives or determiners in a phrase are possible, but relatively rare. 



 8 

overlap and similarity between classes. In our simplest implementation we model word 
classes as discrete symbols, but allow different symbols to be matched so that they are 
not functionally discrete in the replication mechanism. In an extension to the basic model, 
we will implement a version with fuzzy word classes (§6.2), where each class is a cluster 
in a multi-dimensional space, and matching is based on proximity. 
 Now let us see why replication-with-modification gives rise to word orders with 
the most frequent word class at one edge. An unordered expression like {brown, fox, that} 
is linearised by selecting one possible order, either brown-fox-that, that-brown-fox … etc. 
Many such expressions are linearised, one after another, and the linearisation of each 
new expression is influenced by a sample of previous phrases, as schematised in Figure 
2. The new expression {brown, fox, that} is influenced by the sampled phrases, such that 
the linear order of each sample will influence the linearisation of the new expression. 
Once the new expression has been compared to the samples, whichever variant matches 
the most samples is selected as the linear output for the new phrase. In our example, the 
variant that-brown-fox is selected, as it matches the most samples. The alternative 
linearisations brown-fox-that and that-fox-brown also match some samples. Matching 
requires compatible word orders, to be defined below. In this example, the unsuccessful 
variants matched some two-word phrases, but the successful variant received more 
matches, since it matched the same two-word phrases, and additionally the three-word 
phrase this-brown-dog. 

 
Figure 2. Schematic example of linearisation algorithm. The box contains previous phrases, of which 

those in bold are being sampled for the replication process. Variant linearisations of the target phrase are 
shown below, with the selected variant in bold. Matches with the selected variant are indicated by solid 
lines; matches with other variants by dashed lines. Here the variant that-brown-fox is selected, as it is 
matches the greatest number of sampled phrases. 

 
What does it mean for an ordering variant to match a sampled phrase? Each word in the 
new expression can match with at most one word in a sampled phrase, and this word is 
preferentially of the same word class, though different-class matching is also possible. In 
the demonstrations below we will implement this in two different ways. Firstly, we will 
use the simplest possible model, where word-classes are represented as discrete labels 
{N, Adj, Num, Det}, but they are not functionally discrete, because the matching 
algorithm allows different-class matches once all possible same-class matches have been 
exhausted. Secondly, we will demonstrate a version where word classes are clusters of 
points in a multidimensional space, such that words of the same class tend to be closer to 

cat this-tree small-rabbit fox this-brown-dog
dog those-rabbits that-grass tree flower

black-dog child big-house old-man all-cats

brown-fox-that ~  that-brown-fox ~ ... that-fox-brown
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one another. Matching by proximity then results in preferential same-class matching, 
while also allowing for occasional different-class matching.  

Matched words establish compatibility of linearisation between a sampled phrase 
and an ordering variant. Compatibility is satisfied if, for each pair of words in the 
sampled phrase {XS, YS}, which are matched with a pair of words in the new expression 
{XT, YT}, the sampled linear precedence relation XS>YS is the same as the variant 
precedence relation, XT >YT. Note that this does not require adjacency between words, 
but only linear precedence. The effect of this is that a Det-Adj-N sample phrase would, 
for example, add weighting to a variant Det-N, given that the matching {Det, N} pairs 
have the same precedence relation, Det>N. This follows standard grammatical analyses, 
where an expression like that-fox is treated as compatible with schemas such as Det-Adj-
N. 

If words preferentially match to their own class, but can also match to a different 
class, then all else being equal, a class that occurs more frequently will have more same-
class matches. Less frequent classes tend to have more different-class matches, since they 
have lower probability of finding same-class matches in a sampled phrase. In noun 
phrases, if the N class is consistently present, and other classes such as Adj and Det are 
only intermittently present, then different-class matching will tend to occur more 
between Adj and Det, rather than between N and Adj, or N and Det. Classes that receive 
more different-class matching will tend to be positioned on the same side of a class that 
receives more same-class matching. Furthermore, incomplete matches also allow for 
samples such as Det-N and Adj-N to both provide matches for a new phrase Det-Adj-N. 
Thus differences of class frequency give rise to the characteristic edge position of so-
called ‘heads’. 

5. The emergence of harmony from corpus data  

In this section we implement the phrasal replication model outlined above, 
demonstrating that harmonic ordering emerges spontaneously in the vast majority of 
phrases. The computer code for the implementation is available at the data repository.5 
We here implement word-order replication by taking noun phrases (NPs) as an example, 
while a subsequent section demonstrates an implementation on clausal ordering (§6.1).  

We extract the word-class combinations from NPs in natural corpus data, and use 
these as material for implementing phrasal replication. For example, from a corpus 
phrase three black cats we extract an unordered class combination, {Adj, N, Num}. We 
extract such combinations from the Universal Dependencies v.2.13 corpus collection (de 
Marneffe et al. 2021), thus producing for each language a (randomly shuffled) series of 
expressions, each of which will be linearised by replication of previous phrases. Corpora 
yielding less than 100 NPs were excluded, while for larger corpora we select a random 
sample of 1000 expressions, since this is more than sufficient for consistent ordering to 
emerge. This provides corpora for 107 languages from 20 language families, with Indo-

 
5 https://osf.io/m94en/  



 10 

European represented by many languages, and most other families represented by a 
single language. For the illustrations below we use a selection of 30 languages: one 
randomly selected from each of the 20 families, plus another 10 selected from Indo-
European. We include extra Indo-European corpora because they tend to have higher 
NP complexity, which provides a more strenuous test for the model. Results for all 
languages are in the supplementary analyses. 

 

5.1. Statistical properties of NPs in natural corpora 
NPs in the sample corpora have a characteristic statistical profile, which plays an 
important role in the emergence of harmony. On the one hand, nouns are by far the 
most frequent word class in NPs from all corpora, supporting the reinterpretation of 
‘headedness’ in terms of word-class frequency. This is illustrated in Figure 3. For many 
languages such as Bambara and Japanese, nouns make up around 75–80% of all words 
in NPs. Determiners are usually the next-most-frequent class, although there are a few 
languages such as Georgian and Polish where adjectives are the next-most-frequent. 
Indo-European languages tend to have more frequent non-noun classes, especially 
determiners, which in some languages like Greek and Ligurian are almost as frequent as 
nouns, though never as frequent.  
 

 
Figure 3. Word class proportions in NPs for the 30 illustrative corpora. In most languages, nouns are 

much more frequent than any other word class. 

 
Not only are nouns the most frequent word class, often by a large margin, but even the 
sum of non-noun words in each NP is on average relatively low (note that hierarchical 
structures with genitives and relative clauses have been excluded from consideration). 
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The number of words per NP is illustrated in Figure 4. For most languages, one-word 
(noun-only) NPs are the most frequent, with a sharp monotonic decrease for additional 
words. These languages are line with previous findings that phrase length is 
approximately Zipfian (Piantadosi 2014). There are also some languages where two-
word NPs are more frequent, and in these the additional word is most frequently a 
determiner. The two-word type is dominant in many Indo-European languages with 
high-frequency determiners (e.g. Greek, Ligurian), but it is also found in Beja (Afro-
Asiatic) and K’iche’ (Mayan). 
 

 

 
Figure 4. NP complexity for the 30 illustrative corpora. In all languages, typical NP complexity is either 

one word or two words. NPs longer than three words are very rare (note that this excludes relative clauses 
and genitives). 

 
In summary, nouns are consistently the most frequent word class, and phrases with few 
words are more frequent than phrases with many words. Under our replication model, 
the combination of these statistical properties favours noun positioning at the edge of the 
phrase. If most phrases were to contain two or more non-noun words, then replication 
could just as well favour orders such as Det-N-Adj, since the classes Det and Adj would 
have more same-class matching and less different-class matching. But since multi-word 
phrases usually have exactly two words, matching is more often between expressions like 
{N, Det} and {N, Adj}, which favour harmonic ordering. 

 

5.2. Computational implementation and results 
Taking the corpus data illustrated above as input, we implement the phrase ordering 
algorithm for each language in the dataset. Within each language, we take our sample of 
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up to 1000 phrases and linearise each in turn, repeating this procedure 100 times, thus 
completing 100 ‘iterations’ for each language. Within each iteration, each new phrase is 
linearised by taking a sample of previous phrases in the same iteration, generated by 
giving each previous phrase an independent 0.5 probability of inclusion in the sample. 
Using a probabilistic sample, rather than sampling all previous phrases, makes the model 
more psychologically plausible while also greatly reducing computational runtime. At 
the beginning of an iteration, the set of previous-phrase samples is empty, in which case 
the current phrase is output with random order. The process thus begins from a point of 
randomness, and gradually develops consistent ordering as the pool of samples grows 
larger. 

Before showing the overall results, it is worth showing some snapshots from the 
progress of an iteration, to better understand how it works. Figure 5a illustrates an early 
point in an iteration over the Norwegian corpus. Inside the box are 14 phrases that have 
already been linearised, of which six are now being randomly sampled, and below the 
box are the two potential linearisation variants for a new expression {N, Det}. Of the 
randomly sampled previous phrases, only the multi-word phrases have potential to 
discriminate between variants. In this case, both multi-word samples, Adj-N and Num-
N, match the new expression by same-class matching N:N, and different-class matching 
Adj:Det and Num:Det. The ordering of both these samples is compatible only with the 
variant Det-N, which is therefore selected. 

 
Figure 5a. Linearisation after 14 phrases of the Norwegian corpus. The box contains previous phrases, of 

which those in bold are being sampled for the replication process. Variant linearisations of the target 
phrase are shown below, with the selected variant in bold. Matches to the selected variant are indicated by 
solid lines. In this case, the unselected variant N-Det did not receive any matches. 

 

Figure 5b shows the next multi-word expression from the same iteration, which now has 
a slightly larger sample pool. This time the sampled phrases do not concur on a single 
output variant, and dashed lines indicate matches to ultimately unsuccessful variants. 
The same number of matches go to a harmonic variant, Adj-Det-N, and a disharmonic 
variant, Det-N-Adj, resulting in a randomised tie-breaker, which in this instance selects 
the latter. Disharmonic outcomes such as this tend to occur more often in the earlier 
stages of an iteration, when the sample pool is smaller, and consistent orders have not 
yet emerged.  

N Adj-N N N-Det-Adj Adj-Adj-N-Adj
N N N N N-Det
N N N Num-N

N-Det ~ Det-N    
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Figure 5b. Linearisation after 18 phrases of the Norwegian corpus. Here several variants receive some 

matches, with matches to the selected variant indicated by solid lines, and matches to unselected variants 
indicated by dashed lines. The selected variant Det-N-Adj (which is disharmonic) has the same number of 
matches as the unselected variant Adj-Det-N (which is harmonic), and the tie is resolved randomly. 

 
Figure 5c shows one more example from the same iteration, now with harmony restored 
by the selection of Adj-Det-N. As the iteration continues, more and more multi-word 
phrases with right edge N become available for sampling, gradually strengthening the 
preference for harmony even in more complex expressions. 

 
Figure 5c. Linearisation after 32 phrases of the Norwegian corpus. The harmonic variant Adj-Det-N now 

has decisively more matches than other variants, due to the growing pool of previous phrases with right-
edge N. 

 
Through the incrementation of sampling procedures such as 5a–c, most iterations 
converge strongly on harmonic word orders. In each of 100 iterations over each language 
corpus, we record the proportion of multi-word phrases that are harmonic. Harmony is 
defined by calculating at which edge (left or right) the noun is predominantly positioned 
in the current iteration, then calculating what proportion of all multi-word NPs in the 
iteration have the N at this edge. 

Figure 6 illustrates degrees of harmony for the 30 illustrative corpora. The figure 
also compares the main model of replication-with-modification against a baseline 
process, where words of the same class are matched to the same linear positions, but 
there is no matching between different word classes. This confirms the importance of 
different-class matching, by illustrating how much harmony can be expected from purely 
same-class matching of mostly short phrases. For most languages, almost all of the 100 
iterations of the main model are clustered towards the right edge of the graph, indicating 

N Adj-N N N-Det-Adj Adj-Adj-N-Adj
N N N N N-Det
N N N Num-N Det-N
N N N

N-Det-Adj ~ N-Adj-Det ~ Adj-Det-N ... ~ Det-N-Adj     

N Adj-N N N-Det-Adj Adj-Adj-N-Adj
N N N N N-Det
N N N Num-N Det-N
N N N Det-N-Adj Num-N

N-Det N N N N-Det
N N Det-N N N
N N

N-Det-Adj ~ N-Adj-Det ~ Adj-Det-N ... ~ Det-N-Adj
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almost perfectly harmonic word orders. In the baseline process, without influence 
between word classes, we find a wide range of harmony rates between 0.4 and 1. 

 
Figure 6. Histograms of harmony rates in the 30 illustrative corpora. The x-axis indicates the proportion of 

harmonic phrases in an iteration, from 0.4 to 1.0, and the y-axis indicates numbers of iterations that fall 
into each proportion bin. Black bars illustrate the outputs of a replication process with different-class 
matching, white bars illustrate the baseline comparison with only same-class matching, and overlaps 
between the two display as grey colouring. In all corpora, phrasal replication with different-class matching 
results in an overwhelming preference for harmonic order. By contrast, the model with only same-class 
matching produces little or no preference for harmony. 

 

5.3. Harmony depends upon statistical properties of natural language 
We have now seen that a simple replication algorithm, with mutual influence between 
words of different classes, produces harmonic word orders from natural corpus data. But 
it is also important to note that harmony depends on the statistical profile of these 
natural language samples. This shows that harmonic order is not a logical necessity of 
the replication algorithm, but a particular consequence of word-class distributions in 
natural language. 

Firstly, inspection of the less frequent word classes Det, Adj and Num shows that 
none of them is consistently positioned at an edge. This means that word-order harmony 
is only generated for the most frequent word class, N. This is illustrated for determiners 
in Figure 7, while similar results for adjective and number are provided in the 
supplementary analyses. The figure shows degrees of ‘determiner harmony’, i.e. 
proportion of determiners positioned at a consistent edge in multi-word phrases, 
mirroring the measure used for nouns above. There is still a high degree of harmony for 
some languages, which reflects the fact that determiners are usually the second-most 
frequent word class. But there is significantly less harmony than there was for nouns. 



 15 

Furthermore, there is no longer a clear contrast between the main model and the 
baseline process. Determiner harmony only emerges consistently in languages like 
Nahuatl and Wolof, where almost all NPs in the corpus data consist maximally of {N, 
Det} (see Figure 3 above), which means that determiner harmony emerges almost 
inevitably from the statistical profile, and is equally generated by the baseline process. By 
contrast, determiner harmony is weaker in languages that have a high frequency of 
adjectives or numbers, relative to the frequency of determiners. This is the case in Greek 
and Vietnamese. Note that Georgian and Karelian are absent from this figure, as these 
UD corpora do not have any determiners in NPs. 
 

 
Figure 7. Histograms of determiner harmony in 28 corpora. Harmony preferences are weak or absent 

relative to determiners, confirming that the higher frequency of nouns plays a crucial role. 

 
Secondly, we can see that harmony depends upon the predominance of short phrases 
(see Figure 4 above). If we run the model on an artificial corpus in which phrases of 1–4 
words are all equally frequent, we no longer find a clear tendency towards harmony. We 
generated a corpus of 1000 expressions, using expression types {N}, {N, Adj}, {N, Adj, 
Num} and {N, Adj, Num, Det}, where each of these expression types is equiprobable. 
In this artificial corpus nouns are still the most frequent word class, but there is no 
tendency towards shorter phrases, in contrast to the distribution we observed for natural 
languages. 
 Figure 8 illustrates 100 iterations on the artificial corpus. We no longer find a 
strong tendency to harmony, but instead iterations converge on one of three outcomes. 
One possible outcome is that all three of the less frequent classes (Det, Adj, Num) end up 
on the same side of the N, in a generalised schema such as Adj-Num-Det-N. This 
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generates harmonic outcomes, indicated by the cluster of iterations at the right edge of 
the graph. But there is now also a substantial number of iterations that diverge from 
harmony, with one non-noun class occurring on the opposite side to the others. This 
proportion of disharmonic outcomes is expected to increase, as the complexity of 
phrases in the corpus increases. 

 
Figure 8. Histograms of harmony rates in 100 runs on an artificial corpus, where NPs have no tendency 

towards low complexity. The greater complexity of NPs in this artificial corpus destroys the preference for 
harmonic ordering. 

 

5.4. Analytical proof of frequency-based harmony 
Thus far, we have seen evidence for frequency-based harmony in computational 
implementations of the algorithm. But given that we claim this to be a fundamental 
principle, it is also desirable to prove analytically that the most frequent word class must 
tend towards an edge. To this end, we developed a formal mathematical description of 
harmony. This does indeed reveal fundamental harmonic biases in the phrasal 
replication algorithm, for example finding that replication processes can shift from 
disharmony to harmony, but not vice-versa. The formal description also allows some 
exact calculations of expected degrees of harmony. The full description is included in the 
data repository, while an outline is provided here. 
 Frequency-based harmony can be formalised as multiset unordered expressions, 
e.g. {N, A, B} or {N, A, A}, which are linearised into phrases such as N-A-B, N-B-A, 
etc. Replication-with-modification of previous phrases is formalised as a mapping 
function between phrases. We can then calculate probabilities of harmonic ordering in 
randomised sequences of phrase production, though combinatorial complexity makes 
such calculations impractical for systems with longer phrases or larger numbers of word 
classes. We therefore calculate probabilities for a language with three word classes (N 
and two other classes) and NPs consisting of no more than three words. As above, 
different-class matching is allowed when same-class matching has been exhausted. This 
allows us to compute a precise lower bound for the expected proportion of multi-word 
phrases that are harmonic. This lower bound depends on the proportion of three-word 
phrases compared to two-word phrases, and can be calculated precisely using the 
quadratic formula illustrated in Figure 9. This equation is derived from our formal 
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mathematical description of phrasal replication, in the supplementary material. It shows 
that as the proportion of three-word phrases increases, we get a lower degree of 
harmony. In the natural language corpora under consideration (see Figure 4), the 
proportion of three-word phrases among all multi-word phrases ranges from x = 0.024 
for Korean to x = 0.285 for Norwegian. Inserting these values into the functional 
equation shown, we obtain that the expected proportion of harmonic phrases is at least 
0.867 for Korean and at least 0.790 for Norwegian. 

 
Figure 9. Lower bound for expected proportion of harmonic phrases, where phrase complexity varies 

between two words and three words. For all proportions of three-word phrases, there is a general 
preference for harmony, but this decreases as three-word phrases increase in frequency. This supports the 
proposed association between phrasal simplicity and harmony. Also shown is the range of frequencies for 
three-word phrases in the natural language corpora, which lies between 0.024 (Korean) and 0.285 
(Norwegian). 

 
In summary, for phrases of up to three words, given the range of three-word frequencies 
in the corpus data, we can prove that they will tend towards harmonic ordering under 
our replication algorithm. While combinatoric complexity makes such calculations 
impractical for longer phrases or more word classes, this calculation already 
demonstrates that shorter phrases tend towards more harmony.  

6. Relevance of the model to natural language processes 

By reconceptualising harmonic word order as the positioning of the most frequent word 
class at an edge, we have shown that harmony emerges spontaneously from a simple 
phrasal replication algorithm. The replication process is based on words of the same 
class appearing in the same relative positions, though crucially, a kind of approximate 
replication can also occur where words of different classes are positioned in the same 
way, as for example when a previous phrase X-Y is matched by a new phrase X-Z. The 
emergence of harmony is also driven by the characteristic statistical profile of NPs in the 
corpus data, where one word class is much more frequent than the others, and shorter 
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phrases are more frequent than longer phrases. This draws a fundamental connection 
between harmonic order and the statistics of natural language. 

The simplicity of this model makes it an attractive explanation for parallel 
harmonic order, and suggests that the notion of headedness, with a grammatical rule 
controlling head-dependent ordering, is unnecessary for explaining word order. A model 
based on approximation and variation is also attractive because it produces harmony as 
a probabilistic tendency, which better fits the empirical data (Hawkins 1980). This also 
opens the way for interaction with competing probabilistic forces, which might explain 
why not all phrases in all languages are harmonic.  

In this section we will show that frequency-based harmony is not just 
parsimonious, but also plausible as a mechanism of natural language, by demonstrating 
some extended implementations, and discussing its compatibility with psycholinguistic 
models. We first address the applicability of the algorithm to other grammatical 
structures beyond the NP, then turn to questions of syntactic learning and production, 
with additional simulations that integrate fuzzy word classes and multi-word chunking. 
Another area in which compatibility might be considered is in processes of iterated 
learning among generations of individuals, and we include a simulation of this in the 
supplementary analyses. 

 

6.1. Harmony in other grammatical structures 
Our initial demonstration focused on NPs, as the prime example of cross-linguistically 
attested parallel harmony. However frequency-based harmony is not intrinsically linked 
to NP grammar, but instead is facilitated by statistical properties of which the NP 
provides just one example. Therefore we should expect frequency-based harmony to 
apply to other grammatical structures.  

At a lower structural level, frequency-based harmony could apply to 
morphological affix positioning. In complex word structures, we would expect the stem 
to be the most frequent morphological class, and affix classes less frequent. This would 
predict that stems tend to be positioned at the edge of word structure, with multiple 
affixes arranged mostly on one side of the stem. This might interact with other effects, 
such as a preference for suffixes over prefixes (Cutler et al. 2009; Himmelmann 2014; 
Martin & Culbertson 2020). We do not know of any existing research that directly 
addresses this prediction, nor do we know of any multilingual corpora that might 
facilitate an implementation, but this could be a fruitful direction for further research.  

At a higher structural level, clauses exhibit another type of parallel dependency. 
Subject, object and other arguments are typically analysed as multiple dependents of the 
same head, namely the verb. Thus a clause exhibits parallel harmony when multiple 
arguments occur on the same side of the verb, as in S-O-V or V-S-O (Dryer 1997). 
Oblique arguments or adpositional phrases can also be analysed as contributing to 
clause-level harmony (Dryer 2009). We can demonstrate frequency-based harmony with 
these clausal elements much as we did for NPs above. First, we extract unordered clausal 
expressions from the UD corpora, this time targeting verbs and their associated subject, 
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object and oblique arguments. For example the corpus sentence The dog chased the cat 
would yield an unordered set of symbols {O, S, V}, and the sentence She placed it on the 
table would yield {O, Obl, S, V}. All the expressions thus extracted contain exactly one 
V symbol, maximally one S symbol, maximally one O symbol, and any number of Obl 
symbols. Figure 10 illustrates the complexity of these clausal structures in our sample 
languages. Complexity here is somewhat higher than what we found for NPs. Whereas 
NPs were usually between 1–2 words, with a substantial minority of 3-word clauses but 
rarely longer than this, the clause elements we extract here usually number 1–3 elements 
per clause, with a substantial minority of 4–5 element clauses in many languages such as 
Dutch, Karelian and Manx. Given that frequency-based harmony depends on low 
average complexity of phrases, we should therefore expect to find a lower degree of 
harmony in clauses compared to NPs. 
 

 
Figure 10. Clausal complexity for the 30 illustrative corpora, counting the verb and its arguments as 

constituents. Phrasal complexity is higher in clauses than in NPs, which should result in a lower degree of 
harmonic ordering. 

 
Using the UD clausal expressions, we run exactly the same replication algorithm as we 
did for NPs. Figure 11 shows the results, again comparing the main process that allows 
different-category matching against a baseline with only same-category matching. The 
majority of iterations with different-category matching again produce harmony rates 
close to 100%. However, in the languages with more complex clause structures, such as 
Dutch, Karelian and Manx, the proportion of strongly harmonic iterations is somewhat 
reduced. The greater disharmony in clause ordering follows our principle of phrasal 
complexity: since clausal expressions are on average more complex than NPs, the degree 
of harmony for clauses is somewhat lower than it was in the NPs.  



 20 

 
Figure 11. Histograms of clausal harmony rates in the 30 illustrative corpora. As with NPs, a replication 

process with different-class matching again produces mostly harmonic orders, though the tendency is 
somewhat weaker here due to the higher average phrasal complexity. Note that the x-axis limits here are 
different from the NP results in Figure 6, as the clausal implementation produces more deeply disharmonic 
iterations. 

 
The clausal implementation suggests that the frequency-based explanation for harmony 
is not specific to NPs, but should be applicable to any other structure that meets the 
fundamental statistical properties outlined in section §5.3. However, although our 
implementation might suggest a preference for parallel harmony on the clausal level, in 
natural languages the frequency-based harmony effect might here be overshadowed by a 
variety of other factors. Many different mechanisms have been proposed to influence 
clausal order (Song 2018), including animacy or agency effects (Sauppe et al. 2023), 
communicative efficiency (Gibson et al. 2013) or pragmatic salience (Mithun 1992). 
Furthermore, clause production in natural language is often considered to be 
incrementally planned (Chang et al. 2008), in contrast to the holistic ordering 
implemented in our model, which may be more applicable to NPs (Martin et al. 2010; 
Roeser et al. 2019).  

Despite the theoretical complexity of clausal ordering, we can still make a 
tentative prediction from frequency-based harmony: in languages where S and O 
arguments are less frequently overt, they should have a stronger tendency to different-
category matching, and therefore be more likely to appear on the same side of the verb. 
Thus harmonic basic orders such as S-O-V and V-S-O should correlate with more 
argument omission. This prediction is compatible with some previous work arguing that 
harmonic S-O-V order is preferred in languages with less overt arguments, compared to 
those with more overt arguments, which prefer disharmonic S-V-O (Ueno & Polinsky 
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2009; Luk 2014; Hahn & Xu 2022). Further research might aim to explicitly model 
replication-with-modification as part of the mechanism generating clausal ordering 
differences in languages with different frequency profiles. 
 

6.2. Fuzzy word classes 
In our initial implementation we maximised simplicity by representing word classes as 
discrete symbols {N, Adj, Num, Det}, which however can be matched to other symbols 
in phrasal replication, if same-class matching has been exhausted. Arguably a more 
realistic model is one in which word classes are not discrete symbols, but instead are 
latent, fuzzy categories, with degrees of similarity between exemplars. As mentioned 
above, this is the approach taken in some recent typological investigations of word 
classes (Keizer 2023). It is also more plausible from the perspective of language 
acquisition, where children must discover syntactic categories from linguistic input and 
perceptual experience. In this spirit, some computational studies model early learning 
based purely on individual words, without any syntactic category annotation (e.g. 
McCauley & Christiansen 2019). There is also a great deal of cognitive modelling work 
on category formation from individual exemplars (e.g. Love et al. 2004; Nosofsky 2011). 
It is therefore of interest to test whether frequency-based harmony can be demonstrated 
with latent, fuzzy categories. To do this, we created an alternative implementation that 
models words as points distributed in a ‘similarity space’, without any overt category 
labelling in the replication mechanism. Instead there are latent syntactic categories {N, 
Adj, Num, Det} underlying the similarity distributions, allowing us to evaluate whether 
harmony emerges for the most frequent fuzzy category, N.  

Modelling word order with a more complex representation of syntactic categories 
threatens to drastically increase the complexity of the model. We therefore design our 
fuzzy categories in the simplest way possible. We use a four-dimensional similarity 
space, in which words are distributed as spatial coordinates. The words labelled N, Adj, 
Num, Det in the UD corpus data are probabilistically assigned spatial coordinates in 
such a way that they form gradient clusters in the four-dimensional space, with word 
matching and replication now based on spatial proximity of individual words, as 
opposed to discrete word class labels. This is compatible with some recent experimental 
work exploring grammatical ordering based on similarity (Mansfield et al. 2022; Herce et 
al. 2023). We here remain agnostic as to what sorts of similarity underlie word classes 
(but see e.g. Aarts 2007; Gärdenfors 2014), and model the similarity space using beta 
distributions to create clustering at the extremes of each of the four dimensions, such that 
each latent class has high values in one dimension, and low values in the other three 
dimensions. For example nouns are spatial coordinates with high values in the 
‘nouniness’ dimension, while words of all other classes have low values in the nouniness 
dimension, and so on for each of four dimensions. This design introduces only one free 
parameter to the model, namely a single beta parameter used for the spatial distributions, 
which determines the tightness of the clusters in the similarity space. Figure 12 illustrates 
the effect of the beta parameter in a single dimension, for example the nouniness 
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dimension in which noun words have high values, and all non-noun words have low 

values. The left panel illustrates β=4, where there is only a small degree of word-class 
overlap in the centre of the graph. In the nouniness dimension, this would generate very 
few word pairs of Ns and non-Ns with a similar nouniness value, and therefore only a 
few similarity matches between Ns and non-Ns. The right panel illustrates β=2, 
generating a much greater degree of overlap between latent word classes, and therefore 
more different-class matching.  

 
Figure 12. Beta distributions used to model word classes as clusters in multidimensional space. The x-axis 

shows an example of one spatial dimension (say, nouniness), and the y-axis shows the density of words in 
this dimension. In the nouniness dimension, nouns tend towards high values (green line) and all other 
classes tending towards low values (red line). The beta parameter can be used to produce tighter clustering 
and less overlap (left), or looser clustering and more overlap (right). 

 
In our discrete-classes model, phrase replication first matched words of the same class, 
and then matched any unmatched words to remaining words of different classes. In the 
fuzzy version, the algorithm instead matches words according to spatial proximity. 
Given words wT1 … wTi in the target expression, and words wS1 … wSj in a sampled 
previous phrase, matching begins with whichever pair wT , wS has the shortest distance. 
This pair of words is then excluded from further matching. Matching proceeds in this 
way, according to the ranked proximity of pairs, until either the target expression or the 
sampled phrase has been entirely matched. All other aspects of the implementation 
remain as before. 

The fuzzy-classes implementation, like the discrete-classes version, produces an 
overwhelming tendency towards harmonic orders. Note that harmony rates can still be 
calculated based on the latent (fuzzy) noun class, even though there are no overt 
syntactic labels used in the replication algorithm, just gradient spatial distributions. As 
shown in Figure 13a, the tight similarity clusters with β=4 produce close to 100% 

harmony in almost all iterations. However if clustering is loosened to β=2.5, as shown in 
Figure 13b, the harmonic tendency is substantially attenuated. Looser classes gradually 
undermine the harmonic tendency, likely because they create less consistent ordering. 
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Figure 13a. Histograms of harmony rates with fuzzy word classes and β=4. The small amount of 

semantic overlap between word classes is sufficient to produce a strong harmonic tendency. 

 

 
Figure 13b. Histograms of harmony rates with fuzzy word classes and β=2.5. When word classes have 

greater overlap, word-class matching is weakened and so is the harmonic tendency. 

 
The results of the fuzzy-class implementation indicate that frequency-based harmony 
does not depend on the specific implementation with same-class matching followed by 
different-class matching. Rather, frequency-based harmony is expected to emerge in a 
range of models, including those with gradient word classes. The only necessary 
conditions are that there are some kind of word classes (without which the definition of 
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harmony becomes meaningless), and that word-matching in replication should favour 
same-class matching, while also allowing some different-class matching. 
 

6.3. Locality and chunking of multi-word sequences 
As mentioned above, parallel harmony is in competition with locality effects, which 
intrinsically tend to violate parallel harmony. With multiple parallel dependents, locality 
favours sequences such as X-N-Y, where dependents are maximally close to the head by 
being arranged symmetrically on both sides. This directly competes with the harmonic 
principle found in structures such as N-X-Y, and thus offers a potential explanation for 
why natural languages exhibit only partial harmony (Jing et al. 2022). The clash with 
locality makes our need for a convincing theoretical explanation of parallel harmony all 
the more urgent. But we should therefore also seek an explanation of harmony that can 
be integrated with a locality effects. In particular, we should expect that integrating the 
two principles will reduce the degree of harmony produced.  

Locality has been proposed in two different versions, an earlier one claiming that 
it is driven by dependency relations, and a more recent one claiming that proximate 
linearisation of words is driven by high mutual information (MI) between words (Futrell 
2019). In the domain of the NP, evidence for this ‘information locality’ has been 
adduced by showing that the classes Adj, Num and Dem tend to have different degrees 
of MI with nouns, in the ranking Adj > Num > Dem, and this matches typological 
tendencies for linear proximity to the noun (Culbertson & Schouwstra & et al. 2020; see 
also Hahn et al. 2018). Thus adjectives tend to be at least as close to the noun as number 
words, which tend to be at least as close to the noun as demonstratives (Dryer 2018). We 
here implement this informational version of locality, incorporating it into our NP 
linearisation algorithm. 
 One way of modelling information locality is via chunking, where words with 
high MI are output as contiguous multi-word chunks (McCauley & Christiansen 2019; 
Mansfield & Kemp in press). This produces a correspondence between MI and linear 
proximity (for alternative models of information locality see Futrell & Gibson & et al. 
2020; Hahn et al. 2021). Chunking has been proposed as a psycholinguistic solution to 
the problem of parsing rapid sequences of words in real time (Christiansen & Chater 
2015), though it could also aid syntactic production by more efficiently retrieving 
frequent multi-word chunks (Mansfield & Kemp in press). Chunking is also at the heart 
of one psycholinguistic model, the Chunk Based Learner (McCauley & Christiansen 
2019), which demonstrates that sentences ordered based on chunk-learning match the 
sentences spoken by children to a significant degree.6  
 To implement a chunky version of the replication algorithm, we simply add a 
filter on the selection of variant word orders. We treat pairs of words with high MI as 
inseparable chunks, thus excluding any variant in which such a pair would be non-

 
6 The Chunk Based Learner uses transitional predictability, rather than MI, though the two are 
mathematically related through the concept of conditional probability. 
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adjacent. For computational tractability we implement only bigram chunks. Obtaining 
accurate and comprehensive MI measures for word pairs is a significant challenge 
(Culbertson & Franck & et al. 2020), and for this we used massive corpus data available 
from the Google Books project (Goldberg & Orwant 2013; see supplementary analyses 
for details). Given the computational demands of the MI calculations, we limit this 
analysis to English only. We thus use the English UD corpora as our NP source data, in 
the same way as above, but now add an additional step in the processing of each NP, 
checking MI values for all word pairs and assigning chunks accordingly. This introduces 
one free parameter into the model, namely the MI threshold at which a word pair is 
treated as a chunk. Lower MI thresholds generate more chunking, and thus stricter 
locality conditions, which should in turn create more harmony violations. 
 The chunky version of the replication algorithm works as expected. The left panel 
in Figure 14 shows the degree of harmony produced by our main (non-chunked) 
algorithm when run on English corpus data. Like the other languages, this produces 
almost perfect harmony in most iterations. The middle panel shows the results with a 
small amount of chunking, treating word pairs with MI > 3 as chunks. As expected, this 
somewhat reduces the degree of harmony, since it occasionally favours X-N-Y structures 
over N-X-Y structures. The right panel shows a lower threshold of MI > 1, which 
provokes more chunking and thus produces more disharmonic iterations. These results 
capture the trade-off between harmony and locality, and suggest that locality may 
provide one explanation for why harmony is not consistently exhibited in natural 
languages.  
 

 
Figure 14. Histograms of harmony rates in English with chunking at MI > 3 and MI > 1. A moderate 

amount of chunking (at MI > 3) slightly weakens harmony, while still maintaining an overall harmonic 
tendency. More frequent chunking (at MI > 1) progressively undermines the harmonic tendency. 
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6.4. Compatibility with psycholinguistic experiments and models 
We turn now to the compatibility of frequency-based harmony with behavioural 
experiments in artificial language learning, and general models of syntactic learning and 
production. We argue that, although our replication algorithm does not represent the 
complexities of psychological phenomena, it is nonetheless compatible with such 
phenomena. This makes our proposal not just parsimonious, but also plausible as an 
explanation for harmonic ordering in natural language.  
 Behavioural experiments on harmonic order have yielded results that are 
compatible with frequency-based harmony. A series of such experiments have been 
conducted using an artificial language learning paradigm, finding that participants prefer 
harmonic ordering when learning novel NP-like structures, even if their native language 
has disharmonic NPs (Culbertson et al. 2012; Culbertson & Newport 2015; Culbertson 
& Newport 2017; Culbertson & Franck & et al. 2020). Participants are presented with 
images and labels in a miniature invented language, with labels consisting of either {N, 
Adj} or {N, Num} word pairs. The training phase uses variable word orders, and the test 
phase investigates whether participants’ own productions in the artificial language 
exhibit a shift towards harmonic ordering, in comparison to their training data. The 
experiments found a bias towards harmony in adult English speakers (Culbertson et al. 
2012), English-learning children aged 6–7 (Culbertson & Newport 2015), and adult 
speakers of French and Hebrew (Culbertson & Franck & et al. 2020).  
 Frequency-based harmony provides a neat explanation for the artificial language 
learning results. Every training exposure includes an N label, while only half the 
exposures include an Adj, and half include a Num. Therefore Ns are the most frequent 
class (as in natural language corpora), and participants encounter scenarios where, for 
example, they have previously learnt a phrase of the form N-Adj, and they are then 
presented with a phrase containing the elements {N, Num}. A natural solution for 
participants, when they ‘match’ the new phrase with the old one, is to match N with N, 
expecting these to be in the same linear position, then match Adj with Num, despite 
their different word classes. A learning mechanism of this type would then learn N-Num 
more efficiently than Num-N, and subsequently tend to produce harmonic phrases such 
N-Adj and N-Num, as reflected in the experimental results. One way of summarising the 
experiment is that participants readily treated novel nouns as ‘the same’ for the purposes 
of linear ordering, but furthermore treated adjective and number words as ‘the same’ 
when shifting between phrase types. This is captured by different-class matching in our 
basic phrasal replication algorithm. The relevance of our model to novel sequence 
learning is further reinforced by a recent follow-up in which participants exhibited 
harmonic ordering of Adj-N and V-N phrases, but only when there was semantic 
similarity between the Adj and V words in question (Wang et al. 2023). This is captured 
by similarity-matching between fuzzy categories, in the gradient version of our 
algorithm.  

We can also consider psycholinguistic relevance from the point of view of general 
computational models of syntactic learning and production. Our phrasal replication 
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principles appear to be compatible with a wide range of usage-based psycholinguistic 
models, including artificial neural networks (ANNs), which sample from one set of 
sentences, then must replicate similar ordering on a set of test sentences (e.g. Lupyan & 
Christiansen 2002; Everbroeck 2003; Chang et al. 2006; Chang et al. 2008). Such models 
are ‘usage-based’ because they produce new sentences by replicating the structure of 
input examples, implementing probabilistic selection over variant orders, and using some 
variety of approximation or extrapolation to enable the production of new expressions 
beyond the input. Each of these design features is mirrored in our algorithm, which at 
the same time minimises its commitments to any particular training regime, probabilistic 
selection process or evaluation target.  

7. Conclusion 

Our simple phrasal replication algorithm offers a parsimonious explanation for parallel 
harmonic word order, which is one of the most widely discussed and demonstrated 
tendencies of natural language syntax. We propose that harmonic ordering is really a 
frequency effect: as replication converges on a phrase structure with a consistent linear 
order, the most frequent word class tends to be at one edge. This is because lower 
frequency classes are more subject to different-class matching, which tends to position 
them on the same side of the most frequent class. We first demonstrated such a process 
in the simplest possible form, then showed how it can be integrated with features of 
language processing such as fuzzy word classes and multi-word chunking. Since the 
algorithm can be easily integrated with these processes, and no doubt many others, we 
argue that it is not just parsimonious, but also psychologically plausible as an 
explanation for parallel harmonic order. 
 The most unorthodox assumption we have made is that word classes are not fully 
discrete. Instead, we assume that words of different classes may influence each other to 
some extent, for example via gradient similarity measures that apply both within classes 
and between classes. We hope that the success of this approach in explaining harmonic 
order will promote further research on how syntactic structure can be modelled in terms 
of similarity relations between words. If a similarity-based syntax has the power to 
explain harmonic word order as a consequence of basic statistical patterns, this is one 
reason, alongside existing typological evidence, to move away from word classes as fully 
discrete categories.  
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